• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1104
  • 49
  • 25
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 1199
  • 791
  • 437
  • 269
  • 230
  • 223
  • 200
  • 192
  • 182
  • 156
  • 130
  • 129
  • 121
  • 119
  • 111
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Estimação do período de carência de medicamento veterinário em produtos comestíveis (tecidos) de origem animal por modelos de regressão / Estimation of the withdrawal period for veterinary drugs in edible tissues of animal origin by regression models

Rosa, Simone Cristina 12 August 2016 (has links)
Resíduos de medicamento veterinário podem estar presentes em produtos comestíveis de origem animal, tais como carne, leite, ovos e mel. Para assegurar que a concentração de tais resíduos não excede um limite considerado seguro (Limite Máximo de Resíduo - LMR) deve ser estabelecido o período de carência, que é o tempo que deve ser respeitado para que um animal possa ser enviado para o abate após ter recebido um dado medicamento veterinário. A estimação do período de carência usualmente é feita pelo ajuste de um modelo de regressão linear simples, seguido pelo cálculo de um limite de tolerância. Para isso, os pressupostos de homocedasticidade e de normalidade dos erros do modelo devem ser atendidos. No entanto, violações desses pressupostos são frequentes nos estudos de depleção residual. No presente trabalho foram utilizados dois bancos de dados da quantificação de resíduo de medicamento veterinário em tecidos de bovinos e o período de carência foi estimado para fígado, gordura, músculo e rins. Os modelos de regressão foram ajustados para a média dos resultados de cada animal, para a média dos resultados de cada extração analítica e para os resultados obtidos para cada réplica, sendo que para esta última situação foi ajustado um modelo de regressão linear com efeitos mistos. O modelo linear ajustado para as médias obtidas para cada extração analítica apresentou maior precisão nas estimativas dos parâmetros do modelo e também menor período de carência. No entanto, para esse modelo também foram detectados mais pontos potencialmente influentes comparado aos demais modelos ajustados. Não foi possível calcular o limite de tolerância e, consequentemente, predizer o período de carência quando utilizado o modelo com efeitos mistos. Conclui-se que a o ajuste de outros modelos estatísticos mais robustos e flexíveis deve ser considerado para a estimação do período de carência de medicamento veterinário. / Veterinary drugs residues can be found in foodstuffs of animal origin such as meat, milk, eggs and honey. In order to ensure that the concentration of these residues does not exceed a safe limit (Maximum Residue Limit - MRL) it is necessary to establish a withdrawal period, which is the waiting time necessary for an animal to be sent for slaughtering after having received a veterinary drug. The estimation of the withdrawal period is normally obtained by the fitting of a simple linear regression model, followed by the calculation of a tolerance limit. For this, the assumptions of homoscedasticity and the normality of the errors must be met. However, violations of these assumptions are frequent in the residual depletion studies. In the present study two database of the quantification of veterinary drug residue in bovine tissues were used and the withdrawal period was estimated for liver, fat, muscle and kidneys. The regression models were fitted to the mean value of the results obtained for each animal, to the mean value of the results obtained for each analytical extraction and to the results obtained for the repeated sample measurements, and a linear mixed model was fitted for this later situation. The linear model fitted to the mean value of the results obtained for each analytical extraction showed greater precision in the parameters estimates of the model as well as shorter withdrawal period. However, for this model, more potentially influential points were detected compared to other models fitted. It was not possible to calculate the tolerance limit, and, consequently, to predict the withdrawal period using the mixed effects model. In conclusion, the fitting of the other more robust and flexible statistical models should be considered for the estimation of the withdrawal period of veterinary drug.
112

Modelagem digital de atributos de solo da Fazenda Edgárdia - Botucatu-SP / Digital soil attributes modeling of Fazenda Edgárdia - Botucatu-SP

Carvalho, Tânia Maria de [UNESP] 19 December 2016 (has links)
Submitted by TÂNIA MARIA DE CARVALHO null (taniacarvalho2010@gmail.com) on 2017-02-02T19:26:12Z No. of bitstreams: 1 TESE_arquiv.pdf: 4743361 bytes, checksum: 0c094f892ee8b02e1690df7e4438651f (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-06T16:42:11Z (GMT) No. of bitstreams: 1 carvalho_tm_dr_bot.pdf: 4743361 bytes, checksum: 0c094f892ee8b02e1690df7e4438651f (MD5) / Made available in DSpace on 2017-02-06T16:42:11Z (GMT). No. of bitstreams: 1 carvalho_tm_dr_bot.pdf: 4743361 bytes, checksum: 0c094f892ee8b02e1690df7e4438651f (MD5) Previous issue date: 2016-12-19 / O mapa de solos é uma ferramenta essencial para o planejamento de uso da terra e estudos que envolvem aspectos ambientais relativos a esse importante recurso natural. Técnicas quantitativas e ferramentas de geoprocessamento têm sido aliadas à interpretação dos processos pedogenéticos para possibilitar a elaboração de mapas mais precisos, obtidos por processo mais rápido e menos oneroso. Dentre os modelos aplicados, os denominados modelos híbridos empregam variáveis auxiliares preditoras e autocorrelação espacial, para viabilizar a predição de atributos de solo em locais não amostrados. A iniciativa para mapeamento digital do solo em escala mundial – GlobalSoilMap.net atua no sentido de disponibilizar representações globais de atributos de solo, elaboradas por meio da aplicação de modelo híbrido em dados legados de solos, realizando a prática do Mapeamento Digital de Solos (MDS). Com base nesse princípio, esse trabalho baseou-se na hipótese de que a aplicação da técnica híbrida regressão-krigagem, utilizando dados legados de levantamento de solo e covariáveis de relevo e sensoriamento remoto proveem mapa de atributos de solo representativos de uma área da Cuesta de Botucatu. O modelo foi aplicado localmente, a duas profundidades, para representação contínua do Índice de Avermelhamento (IAV), saturação de bases (V%), teor de areia, teor de argila, CTC e pH dos solos da Fazenda Experimental Edgárdia, para a qual são disponíveis dados de levantamento de solo. As covariáveis preditoras derivadas de um MDE e de imagem orbital foram uniformizadas a uma resolução espacial de 10 m, e os métodos foram selecionados de acordo com a verificação de correlação linear significativa entre atributos e covariáveis e autocorrelação espacial dos atributos ou dos resíduos de regressões lineares múltiplas (RLM). Os dados foram separados em subconjuntos de treinamento e validação. Os coeficientes de correlação entre atributos de solo e covariáveis foram significativos e variaram de -0,40 a 0,51. Os preditores mais correlacionados aos atributos foram Índice Topográfico de Umidade (ITU), Declividade (Decl), Aspecto (Aspc), Elevação (Elev) e índice de vegetação NDVI, sendo os quatro últimos os principais na estimação das frações texturais. Os valores de R² ajustado das RLM, entre 0,10 e 0,36, foram considerados baixos. De modo geral, os mapas de predição expuseram padrões característicos da variação espacial observada nos mapas das covariáveis preditoras, usadas na calibração dos modelos. Foi observado um incremento na acurácia entre as duas etapas do processo de RK, indicando que o mapa final é superior em relação à RLM. No entanto, os modelos apresentaram, de modo geral, um baixo desempenho quando avaliados por meio de validação externa, mesmo com a estratificação em duas áreas mais uniformes em termos de relevo. Os resultados indicaram a limitação do uso de amostragem para fins de levantamento em modelos de predição. Houve ainda dificuldade de aplicação dos modelos em função do contexto litológico complexo e da dinâmica local de formação de solos, que não puderam ser detectadas pelas covariáveis selecionadas. Apesar das limitações, os mapas de predição apresentaram coerência com o conhecimento relativo aos atributos, nas condições locais. / The soil map is an essential tool for land use planning and studies related to environmental aspects of this important natural resource. Quantitative techniques and geoprocessing tools are currently combined with the interpretation of pedogenic processes to enable the development of more accurate maps obtained by faster and less costly process. Among the models applied to it, the hybrid models employ predictive auxiliary variables and spatial autocorrelation, to enable the prediction of soil attributes in unsampled locations. The digital soil mapping worldwide project – GlobalSoilMap.net acts in order to provide global representations of soil attributes developed through the application of hybrid model in legacy soil data, performing the practice of Digital Soil Mapping (MDS). This work was based on the assumption that the application of the hybrid technique of regression-kriging (RK), using legacy data of soil survey and covariates of relief and remote sensing provide representative map of soil attributes of an area in Cuesta of Botucatu. The goal was to apply locally, in two depths, prediction models and continuous representation of Soil Redness Index (IAV), base saturation index (V%), sand content and clay content, cation-exchange capacity (CTC) and pH of the soils in Edgardia Experimental Farm, for which are available soil survey data. The predictor covariates were derived from an Digital Elevation Model (MDE) and an orbital image. They were all standardized at spatial resolution of 10 m, the methods were selected by checking significant linear correlation between attributes and covariates and spatial autocorrelation of attributes or residues of multiple linear regressions (RLM). The data were separated into training and validation subsets. The correlation coefficients (r) between soil attributes and covariates were significant and ranged from -0.40 to 0.51. The predictors more correlated to attributes were topographic wetness index (ITU), slope (Decl), aspect (Aspc), elevation (Elev) and vegetation index (NDVI), and the last four are key definers of granulometric fractions. The values of adjusted R² of RLM were between 0.10 and 0.36, which is considered low. In general, the prediction maps exhibited characteristic patterns of spatial variation observed in the covariates maps, used in the calibration of the models. An increase in accuracy was observed between the two steps of the modeling process by RK, indicating that the final map is better than the RLM. However, the models showed generally low performance, and did not provide good results when evaluated by external validation and even if the area was stratified in two smaller plots, with more homogeneous relief. The results indicated the restricted use of soil survey sampling in prediction models, and the difficulty of applying MDS in areas with complex lithology, especially where the correlation between local dynamics of soil genesis and selected covariates are not strong. Despite the limitations, the prediction maps were consistent with knowledge about soil properties in local conditions.
113

Estimação do período de carência de medicamento veterinário em produtos comestíveis (tecidos) de origem animal por modelos de regressão / Estimation of the withdrawal period for veterinary drugs in edible tissues of animal origin by regression models

Simone Cristina Rosa 12 August 2016 (has links)
Resíduos de medicamento veterinário podem estar presentes em produtos comestíveis de origem animal, tais como carne, leite, ovos e mel. Para assegurar que a concentração de tais resíduos não excede um limite considerado seguro (Limite Máximo de Resíduo - LMR) deve ser estabelecido o período de carência, que é o tempo que deve ser respeitado para que um animal possa ser enviado para o abate após ter recebido um dado medicamento veterinário. A estimação do período de carência usualmente é feita pelo ajuste de um modelo de regressão linear simples, seguido pelo cálculo de um limite de tolerância. Para isso, os pressupostos de homocedasticidade e de normalidade dos erros do modelo devem ser atendidos. No entanto, violações desses pressupostos são frequentes nos estudos de depleção residual. No presente trabalho foram utilizados dois bancos de dados da quantificação de resíduo de medicamento veterinário em tecidos de bovinos e o período de carência foi estimado para fígado, gordura, músculo e rins. Os modelos de regressão foram ajustados para a média dos resultados de cada animal, para a média dos resultados de cada extração analítica e para os resultados obtidos para cada réplica, sendo que para esta última situação foi ajustado um modelo de regressão linear com efeitos mistos. O modelo linear ajustado para as médias obtidas para cada extração analítica apresentou maior precisão nas estimativas dos parâmetros do modelo e também menor período de carência. No entanto, para esse modelo também foram detectados mais pontos potencialmente influentes comparado aos demais modelos ajustados. Não foi possível calcular o limite de tolerância e, consequentemente, predizer o período de carência quando utilizado o modelo com efeitos mistos. Conclui-se que a o ajuste de outros modelos estatísticos mais robustos e flexíveis deve ser considerado para a estimação do período de carência de medicamento veterinário. / Veterinary drugs residues can be found in foodstuffs of animal origin such as meat, milk, eggs and honey. In order to ensure that the concentration of these residues does not exceed a safe limit (Maximum Residue Limit - MRL) it is necessary to establish a withdrawal period, which is the waiting time necessary for an animal to be sent for slaughtering after having received a veterinary drug. The estimation of the withdrawal period is normally obtained by the fitting of a simple linear regression model, followed by the calculation of a tolerance limit. For this, the assumptions of homoscedasticity and the normality of the errors must be met. However, violations of these assumptions are frequent in the residual depletion studies. In the present study two database of the quantification of veterinary drug residue in bovine tissues were used and the withdrawal period was estimated for liver, fat, muscle and kidneys. The regression models were fitted to the mean value of the results obtained for each animal, to the mean value of the results obtained for each analytical extraction and to the results obtained for the repeated sample measurements, and a linear mixed model was fitted for this later situation. The linear model fitted to the mean value of the results obtained for each analytical extraction showed greater precision in the parameters estimates of the model as well as shorter withdrawal period. However, for this model, more potentially influential points were detected compared to other models fitted. It was not possible to calculate the tolerance limit, and, consequently, to predict the withdrawal period using the mixed effects model. In conclusion, the fitting of the other more robust and flexible statistical models should be considered for the estimation of the withdrawal period of veterinary drug.
114

Regressão de estimadores OBM

Santos, José Paulo January 2000 (has links)
Tese de mestr.. Métodos Computacionais em Ciências e Engenharia. Faculdade de Engenharia. Universidade do Porto. 2000
115

Estimação de regressões aditivas via Backfitting e integração marginal: performance em amostras finitas

Silva, Fernando Augusto Boeira Sabino da January 2001 (has links)
Nesta dissertação realizou-se um experimento de Monte Carla pararevelar algumas características das distribuições em amostras finitas dos estimadores Backfitting(B) e de Integração Marginal(MI) para uma regressão aditiva bivariada. Está-se particularmente interessado em fornecer alguma evidência de como os diferentes métodos de seleção da janela hn, tais como os métodos plug-ín, impactam as propriedades em pequenas amostras dos estimadores. Está-se interessado, também, em fornecer evidência do comportamento de diferentes estimadores de hn relativamente a seqüência ótima de hn que minimiza uma função perda escolhida. O impacto de ignorar a dependência entre os regressares na estimação da janela é também investigado. Esta é uma prática comum e deve ter impacto sobre o desempenho dos estimadores. Além disso, não há nenhuma rotina atualmente disponível nos pacotes estatísticos/econométricos para a estimação de regressões aditivas via os métodos de Backfitting e Integração Marginal. É um dos objetivos a criação de rotinas em Gauss para a implementação prática destes estimadores. Por fim, diferentemente do que ocorre atualmente, quando a utilização dos estimadores-B e MI é feita de maneira completamente ad-hoc, há o objetivo de fornecer a usuários informação que permita uma escolha mais objetiva de qual estirnador usar quando se está trabalhando com urna amostra finita. / In this thesis we conduct a Monte Carlo investigation to reveal some characteristics of the small sample distributions of the Backfitting (B) and Marginal Integration (MI) estimators for an additive bivariate regression. We are particularly interested in providing some evidence on how different data driven window width estimation procedures, such as some plug in methods impact the small sample properties of the MI and B estimators. We are also interested in providing evidence on the behavior of how the differente window widths estimators impact the optimal sequence of window widths that minimizes a chosen loss function. The impact of ignoring regressar dependency on window width estimation is also investigated. This is common practice and should impact estimators' performance. Besides, nowadays there no available statistical/ econometrical packages that perform estimation of additive regression by Backfitting and Marginal Integration. It 's an objective of our dissertation the creation of routines in Gauss for the practical implementation of these estimators. Ultimately, differently from what occurs at the present time, when the utilization of the B e MI estimators is clone in a way completely ad-hoc, our objective is to provide applied researches with information that allows for a more accurate comparison of these two competing alternatives in a finite sample setting.
116

A propensão ao financiamento através de cartões de crédito

Guedes, Marcio Fernandes 08 September 2005 (has links)
Made available in DSpace on 2010-04-20T20:20:18Z (GMT). No. of bitstreams: 1 19665.pdf: 2458370 bytes, checksum: 4874f7227fcc5af6bd8d2828916aec07 (MD5) Previous issue date: 2005-09-08T00:00:00Z / Esta dissertação aborda as causas da tendência ao financiamento dos clientes de cartões de crédito da CREDICARD, que tem uma base de clientes superior a 5 milhões de contas e 7 milhões de cartões. O financiamento – seja através do Crédito Rotativo, pela simples não-quitação da integralidade da fatura, seja através da utilização de produtos com taxas de juros pré-fixadas como o Parcelamento com Juros ou o Crédito Pessoal – é responsável por mais de 50% das receitas da Administradora. Analisamos aqui diversos motivos que possam levar a explicar os picos e vales da Propensão ao Financiamento através de cartões de crédito, sejam eles conseqüência de variáveis de Emprego & Renda, Produção, Indicadores Econômicos, devidos a sazonalidade ou a decisões internas da Empresa, ou ainda outras causas. A seguir aproveitamos a experiência adquirida para estabelecer um modelo matemático explicativo de tal desempenho, e ainda avaliar a capacidade preditiva de tal modelo. Os resultados obtidos indicam uma forte influência das decisões de distribuição da base de clientes sobre o comportamento da Propensão, bem como os impactos da sazonalidade, de indicadores nacionais de Produção e das operações de crédito totais do sistema financeiro a pessoas físicas. O que não invalida influências de outras variáveis, que podem ter seu comportamento refletido pela conjunção do comportamento de outras variáveis.
117

Estimação de regressões aditivas via Backfitting e integração marginal: performance em amostras finitas

Silva, Fernando Augusto Boeira Sabino da January 2001 (has links)
Nesta dissertação realizou-se um experimento de Monte Carla pararevelar algumas características das distribuições em amostras finitas dos estimadores Backfitting(B) e de Integração Marginal(MI) para uma regressão aditiva bivariada. Está-se particularmente interessado em fornecer alguma evidência de como os diferentes métodos de seleção da janela hn, tais como os métodos plug-ín, impactam as propriedades em pequenas amostras dos estimadores. Está-se interessado, também, em fornecer evidência do comportamento de diferentes estimadores de hn relativamente a seqüência ótima de hn que minimiza uma função perda escolhida. O impacto de ignorar a dependência entre os regressares na estimação da janela é também investigado. Esta é uma prática comum e deve ter impacto sobre o desempenho dos estimadores. Além disso, não há nenhuma rotina atualmente disponível nos pacotes estatísticos/econométricos para a estimação de regressões aditivas via os métodos de Backfitting e Integração Marginal. É um dos objetivos a criação de rotinas em Gauss para a implementação prática destes estimadores. Por fim, diferentemente do que ocorre atualmente, quando a utilização dos estimadores-B e MI é feita de maneira completamente ad-hoc, há o objetivo de fornecer a usuários informação que permita uma escolha mais objetiva de qual estirnador usar quando se está trabalhando com urna amostra finita. / In this thesis we conduct a Monte Carlo investigation to reveal some characteristics of the small sample distributions of the Backfitting (B) and Marginal Integration (MI) estimators for an additive bivariate regression. We are particularly interested in providing some evidence on how different data driven window width estimation procedures, such as some plug in methods impact the small sample properties of the MI and B estimators. We are also interested in providing evidence on the behavior of how the differente window widths estimators impact the optimal sequence of window widths that minimizes a chosen loss function. The impact of ignoring regressar dependency on window width estimation is also investigated. This is common practice and should impact estimators' performance. Besides, nowadays there no available statistical/ econometrical packages that perform estimation of additive regression by Backfitting and Marginal Integration. It 's an objective of our dissertation the creation of routines in Gauss for the practical implementation of these estimators. Ultimately, differently from what occurs at the present time, when the utilization of the B e MI estimators is clone in a way completely ad-hoc, our objective is to provide applied researches with information that allows for a more accurate comparison of these two competing alternatives in a finite sample setting.
118

Modelos de antedependência para avaliação genética de características longitudinais

Araujo Neto, Francisco Ribeiro de [UNESP] 04 July 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:17Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-07-04Bitstream added on 2014-06-13T18:43:26Z : No. of bitstreams: 1 araujoneto_fr_dr_jabo.pdf: 483862 bytes, checksum: 621ba6341f8e63b31e3db9bb69db36d2 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Em programas de melhoramento animal, diversas características utilizadas como critérios de seleção representam medidas repetidas do mesmo animal, sendo importante o estudo de metodologias que considere esta estrutura longitudinal. Assim, o objetivo deste trabalho foi implementar a metodologia de antedependência utilizando de inferência bayesiana, na estimação de componentes de variância para avaliação genética de características longitudinais. Foram realizados dois estudos de simulação a fim de verificar as propriedades da aplicação da metodologia. Para o primeiro estudo foram considerados apenas os efeitos fixos, o genético e resíduo, sendo empregado duas estruturas de (co)variância: uma de antedependência e outra de regressão aleatória. O segundo estudo apresenta adicionalmente o efeito de ambiente permanente, sendo utilizado para ambos os efeitos aleatórios. Os resultados demonstraram que a metodologia proposta apresentou capacidade de estimar valores próximos aos simulados, entretanto alguns parâmetros dos modelos apresentaram algumas dificuldades de convergência. Verificou-se por meio do estudo realizado, que a implementação da metodologia de antedependência utilizando de inferência bayesiana e amostrador de Gibbs em um modelo animal, possibilitou a obtenção de estimativas próximas aos valores simulados. Além disso, pode-se constatar algumas dificuldades inerentes a convergência dos parâmetros do modelo, sendo necessário a realização de novos estudos visando utilizar novas funções para a modelagem dos coeficientes autorregressivos e das variâncias das inovações, assim como outras estratégias de amostragem / In animal breeding programs, several traits used as selection criteria represent repeated measurements of the same animal, thus the study of methodologies that consider this longitudinal structure. The objective of this study was to implement a antedependence model using Bayesian inference, in the estimation of variance components for genetic evaluation of longitudinal characteristics. Two studies were conducted simulation in order to verify the properties of application of the methodology. For the first study included only fixed effects, genetic and residual, being employed two structures (co)variance: one antedependence and other random regression. The second study further shows the effect of permanent environment, and is used for both random effects. The results demonstrated that the proposed methodology showed ability to estimate values close to those simulated, however, some parameters of the models presented convergence difficulties. It was found through the study, the implementation of the methodology antedependence using Bayesian inference and Gibbs sampling in an animal model, makes possible to get estimates close to the simulated values. Moreover, one can observe some convergence difficulties of the model parameters, it is necessary to conduct new studies to use new functions for modeling the autoregressive coefficients and variances of the innovations, as well as other sampling strategies
119

Modelos de regressão bivariados Bernoulli : exponencial

Prado, Flávia Bolssone do 05 April 2013 (has links)
Made available in DSpace on 2016-06-02T20:06:08Z (GMT). No. of bitstreams: 1 5174.pdf: 1132464 bytes, checksum: 1cccdf2e905f1a63c44eea06a7f29684 (MD5) Previous issue date: 2013-04-05 / Universidade Federal de Sao Carlos / Neste trabalho desenvolvemos modelos de regressão para respostas bivariadas, discreta e contínua, com a variável discreta seguindo distribuição Bernoulli e a variável contínua, condicionada na discreta, seguindo distribuição exponencial. Um procedimento de ajuste, via abordagem Bayesiana, é utilizado para estimar os parâmetros do modelo e uma análise de resíduos Bayesianos é apresentada. Um estudo de simulação é descrito a fim de ilustrar a metodologia desenvolvida. Utilizamos três tamanhos amostrais diferentes para analisarmos os resultados. Aplicamos o modelo em um conjunto de dados reais relacionado a gastos com pacientes internados em hospitais, levando em consideração a utilização, ou não, de tratamento cirúrgico. A covariável disponível para a análise foi o número de dias de permanência do paciente hospitalizado.
120

Ponderação de modelos com aplicação em regressão logística binária.

Brocco, Juliane Bertini 18 April 2006 (has links)
Made available in DSpace on 2016-06-02T20:06:12Z (GMT). No. of bitstreams: 1 DissJBB.pdf: 632747 bytes, checksum: 7f6e8caa78736a965ecb167ee27b7cc3 (MD5) Previous issue date: 2006-04-18 / Universidade Federal de Sao Carlos / This work consider the problem of how to incorporate model selection uncertainty into statistical inference, through model averaging, applied to logistic regression. It will be used the approach of Buckland et. al. (1997), that proposed an weighed estimator to a parameter common to all models in study, where the weights are obtained by information criteria or bootstrap method. Also will be applied bayesian model averaging as shown by Hoeting et. al. (1999), where posterior probability is an average of the posterior distributions under each of the models considered, weighted by their posterior model probability. The aim of this work is to study the behavior of the weighed estimator, both, in the classic approach and in the bayesian, in situations that consider the use of binary logistic regression, with foccus in prediction. The known model-choice selection method Stepwise will be considered as form of comparison of the predictive performance in relation to model averaging. / Esta dissertação considera o problema de incorporação da incerteza devido à escolha do modelo na inferência estatística, segundo a abordagem de ponderação de modelos, com aplicação em regressão logística. Será utilizada a abordagem de Buckland et. al. (1997), que propuseram um estimador ponderado para um parâmetro comum a todos os modelos em estudo, sendo que, os pesos desta ponderação são obtidos a partir do uso de critérios de informação ou do método bootstrap. Também será aplicada a ponderação bayesiana de modelos como apresentada por Hoeting et. al. (1999), onde a distribuição a posteriori do parâmetro de interesse é uma média da distribuição a posteriori do parâmetro sob cada modelo em consideração ponderado por suas respectivas probabilidades a posteriori. O objetivo deste trabalho é estudar o comportamento do estimador ponderado, tanto na abordagem clássica como na bayesiana, em situações que consideram o uso de regressão logística binária, com enfoque na estimação da predição. O método de seleção de modelos Stepwise será considerado como forma de comparação da capacidade preditiva em relação ao método de ponderação de modelos.

Page generated in 0.0383 seconds