• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 32
  • 5
  • 1
  • 1
  • Tagged with
  • 71
  • 34
  • 26
  • 16
  • 15
  • 15
  • 15
  • 11
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Kohlenstoff in EFG-Silizium

Scholz, Sandra 27 July 2009 (has links) (PDF)
In EFG-Silizium wird Kohlenstoff weit über der Gleichgewichtslöslichkeit im Gitter eingebaut. In dünnen Bereichen der EFG-Bänder wird dabei mehr gelöster Kohlenstoff inkooperiert. Im EFG-Material liegen 4 · 10^17At/cm^3 Kohlenstoff in ausgeschiedener Form vor. Dabei bildet sich zum Einen in einigen Zwillingskorngrenzen eine monoatomare Schicht SiC aus, zum Anderen bilden sich Präzipitate, die kleiner als 60nm sind und kaum Spannungen in der Siliziummatrix erzeugen. Es wird vermutet, dass es sich um atomare Agglomerate aus wenigen Atomen Kohlenstoff und interstitiellen Siliziumatomen handelt. Diese Präzipitate verschlechtern die elektrischen Eingeschaften im Ausgangsmaterial. Durch eine veränderte Spülgaszusammensetzung (Zugabe von CO oder CO_2) während der Züchtung bilden sich Präzipitate größer als 60nm im Volumen der EFG-Bänder. Dadurch verbessert sich der Wirkungsgrad der gefertigten Solarzellen, verglichen mit den herkömmlichen EFG-Zellen.
42

The role of two sex chromosome associated proteins, SCML1 and ANKRD31, in gametogenesis in mice

Papanikos, Frantzeskos 30 January 2020 (has links)
Meiosis is a specialized cell division that produces haploid cells (gametes) from diploid progenitors. During meiosis parental chromosomes (homologs) need to pair, synapse and eventually segregate. Faithful chromosome segregation depends on chromosome recombination. In the beginning of prophase I programmed double strand breaks (DSBs) are introduced in meiotic cells by SPO11 enzyme. DSBs are positioned at hotspot sites that are specified by that action of DNA-binding histone methyltransferase PRDM9. Specific enzymes act at the site of breaks to create 5’ single stranded DNA ends. With the assistance of the strand exchange proteins DMC1 and RAD51 these ends invade homologous DNA sequence and DSB repair is initiated. DSB repair can be completed either as a crossover (reciprocal exchange of DNA) or as a non-crossover. Crossover events lead to the formation of chiasmata between homologs and ensure proper segregation during the first meiotic division. An interesting feature in male meiosis is the XY chromosomes. The shared region between sex chromosomes is short and is called pseudoautosomal region (PAR). Due to their large non synapsed region, XY chromosomes need to be transcriptionally silenced. Thus they are covered with the phosphorylated histone variant H2AX (γH2AX) forming the so called sex body. PAR region has higher density of DSBs than autosomes and it had been shown that sex chromosomes undergo delayed homologous pairing. Nevertheless little is known how meiotic recombination is regulated in PAR region of sex chromosomes. In close proximity with sex body it has been found a structure named dense body (DB). There are few reports suggesting that DB contains RNAs/proteins but no DNA. Its role in meiosis was unclear because no structural component had been described. In the present thesis the role of two meiotic expressed genes is described. In our group after performing RNA screens we identified several genes that are highly expressed during meiotic prophase I. Based on the expression profile we selected polycomb-related sex comb on midleg like 1 (Scml1) gene and the ankyrin repeat domain 31 (Ankrd31) to study their role in mammalian meiosis.:List of figures i List of abbreviations ii 1. Introduction 1 1.1 Gametogenesis 1 1.2 Meiotic prophase I 2 1.2.1 Meiotic recombination 4 1.2.2 Regulation of meiotic recombination 7 1.2.2.1 Meiotic recombination hotspots and PRDM9 activity 7 1.2.2.2 Meiotic surveillance mechanisms 8 1.3 Unique properties of XY recombination 9 1.4 Sex chromatin associated structure: The dense body 10 1.5 Aim of the thesis 11 2. Publications 12 3. Discussion 92 4. Summary 98 5. References 102 Acknowledgements 108 Declarations 109
43

Defektenspektroskopie im hochreinen und dotierten CaF2 für optische Anwendungen im DUV

Sils, Janis 07 April 2009 (has links)
Diese Arbeit befasst sich mit den Untersuchungen an Defekten in optischen Materialien die in der Lithographie verwendet werden, speziell mit der Spektroskopie der Verunreinigungen im Kalziumfluorid. Zum einen werden die Eigenschaften der Sauerstoffdefekte in dotierten Proben untersucht, zum anderen werden die Ionen der seltenen Erden in nominal reinen Proben unterschiedlicher Herkunft identifiziert. Die Mechanismen der Aggregatbildung, Dissoziation und der Rekombination so wie die Reaktionsprodukte des Sauerstoffs wurden experimentell belegt und mit Ergebnissen der anderen Autoren verglichen. Bei den nominal reinen Proben konnte anhand der Zusammensetzung des Defektenhaushaltes der seltenen Erden Rückschlüsse auf Herkunft des Materials und Herstellungsbesonderheiten gemacht werden. Es konnte gezeigt werden, dass auch nominal reines Kalziumfluorid den Sauerstoff in Form von Aggregaten enthält.
44

Creation and establishment of transgenic mouse models for for Mecp2 gene, causing Rett syndrome / Kreation und Einrichtung der transgenic Maus modelliert für Mecp2, verursacht Rett Syndrom

Arunachalam, Jayamuruga Pandian 03 May 2007 (has links)
No description available.
45

Molekulare Charakterisierung muriner Noroviren

Müller, Birthe 25 March 2010 (has links)
Das murine Norovirus ist ein neu entdecktes Mitglied der Familie Caliciviridae. Bislang wurden vier Virusstämme beschrieben und charakterisiert (MNV1-4). In dieser Arbeit wurde erstmals die Prävalenz von MNV bei Labormäusen in Deutschland untersucht. Daraufhin wurden die neu detektierten Virusstämme anhand ihrer morphologischen, phylogenetischen und pathogenen Eigenschaften charakterisiert. In 55% der untersuchten 82 Kotproben wurde mittels real-time PCR die Ausscheidung von MNV nachgewiesen. Morphologische Untersuchungen bestätigten das Vorhandensein intakter Viruspartikel in den Proben, die auch genetisch als MNVs charakterisiert wurden. Phylogenetisch wurden die Viren in vier genetische Cluster eingruppiert, die sich sowohl untereinander als auch von den Stämmen MNV1-4 deutlich unterscheiden. Die Relevanz der Subklassifizierung von MNV wurde durch unterschiedliche Wachstumskinetiken und IFN-beta-Sensitivitäten divergenter Stämme funktional bekräftigt. Zudem konnten, basierend auf Sequenzdaten aus zwei subgenomischen Bereichen, rekombinante Virusstämme identifiziert werden. Durch Kokultivierung von MNV-Isolaten wurde homologe Rekombination von Noroviren erstmals in vitro simuliert. Beobachtungen von natürlich und experimentell infizierten Mäusen zeigten, dass der Stamm MNV-M21 in den Tieren eine persistierende Infektion induziert. Serologische Untersuchungen verdeutlichten, dass die Persistenz unabhängig von einer intakten und protektiven Immunantwort stattfand. Bestimmungen der ORF2-Sequenzen zu unterschiedlichen Zeitpunkten der Infektion gaben Hinweise auf Antigendrift der hypervariablen P2-Domäne. Innerhalb dieser Domäne ist eine zwischen murinen und humanen Noroviren konservierte Proteinsequenz lokalisiert. Die antigenen Eigenschaften dieses Peptids wurden genauer untersucht. Generierte Antiseren zeigten Kreuzreaktivitäten gegenüber verschiedenen Norovirus-Kapsidproteinen. Zudem waren Peptidantikörper in der Lage eine MNV-Infektion in vitro zu neutralisieren. / The murine norovirus is a newly discovered member of the familiy Caliciviridae. So far, four strains have been described and characterised (MNV1-4). This is the first study on the prevalence of MNV among laboratory mice in Germany. Thereupon the detected new strains have been characterised considering morphologic, phylogenetic and pathogenic properties. Using real-time PCR, shedding of MNV has been found in 55% of 82 investigated faeces samples. Morphologic investigations confirmed the presence of intact virus particles within the samples, which genetically also have been characterised as MNVs. Phylogenetically these viruses have been grouped into four genetic clusters, which could be distinguished from each other and from strains MNV1-4. Relevance of MNV subtyping has been functionally corroborated through different growth kinetics and Interferon-beta sensitivities of divergent strains. Based on subtyping in two different subgenomic regions, recombinant strains have been identified. By cocultivation of MNV isolates, homologous recombination of noroviruses in vitro has been simulated for the first time. Studies of naturally and experimentally infected mice showed that strain MNV-M21 induce a persistent infection. Serological testings confirmed that the persistence occured independently of an intact and protective immune response. Determination of ORF2 sequences at different time points of infection indicated antigenic drift of the hypervariable P2 domain. A protein sequence stretch, which is conserved between murine and human noroviruses, is located within this domain. The antigenic features of this stretch have been investigated. Generated antisera against this peptide were crossreactive with different norovirus capsid proteins and were able to neutralize MNV infection in vitro.
46

Relaxationsprozesse in stark gekoppelten ultrakalten Plasmen

Bannasch, Georg 04 July 2013 (has links) (PDF)
Typischerweise sind Plasmen extrem heiß - diese hohen Energien sind nötig, um die Ionisationsschwelle der Atome zu überwinden und damit einen stabilen Plasmazustand zu gewährleisten. Folglich werden die physikalischen Eigenschaften dieser Plasmen für gewöhnlich durch die thermischen Energie der Plasmateilchen bestimmt, während Korrelationen zwischen den Ladungen eine untergeordnete Rolle spielen. Durch die rasanten Fortschritte auf dem Gebiet der ultrakalten Gase ist es jedoch ebenso möglich, Plasmen bei extrem tiefen Temperaturen zu erzeugen, indem lasergekühlte Atome photoionisiert werden. In diesen ultrakalten Plasmen (UKP) lassen sich aufgrund der niedrigen Temperaturen bereits deutliche Auswirkungen von Korrelationen beobachten, die zu gänzlich anderer Dynamik führen können als aus dem Bereich der heißen schwach gekoppelten Plasmen bekannt. Ähnliche Prozesse werden auch in dichten Plasmen beobachtet, in denen durch extrem kurzen Teilchenabstände die Wechselwirkungsenergie auch bei Temperaturen von über 10000 Kelvin die kinetische Energie dominiert. Dichte Plasmen spielen eine wichtige Rolle für technische Anwendungen wie die Trägheitsfusion. Im Gegensatz zu diesen dichten Plasmen realisieren UKP starke Korrelationen jedoch bei sehr viel geringen Dichten von ρ ∼ 10^9 cm^{−3} . Die daraus resultierende langsame Dynamik ist experimentell wesentlich besser zugänglich und macht diese System deshalb besonders interessant, um Korrelationseffekte in stark gekoppelten Plasmen zu studieren. Diese Arbeit beschäftigt sich mit Effekten von starken Korrelationen auf verschiedene Relaxationsprozesse, die insbesondere, aber nicht ausschließlich in UKP eine bedeutende Rolle spielen. Neben dem fundamentalen Interesse an diesen Prozessen gilt ein Augenmerk auch möglichen experimentellen Tests der getroffenen Vorhersagen. Da die Theorie der schwach gekoppelten Plasmen Korrelationen größtenteils vernachlässigt, ist sie im Regime der UKP nur eingeschränkt anwendbar. Zur Berücksichtigung der starken Korrelationen werden in dieser Arbeit umfangreiche molekulardynamischen Simulationen eingesetzt, die teilweise mit quantenmechanischen Beschreibungen kombiniert werden, um den in UKP relevanten atomphysikalischen Aspekten gerecht zu werden. Im Rahmen dieser Rechnungen wird zunächst die seit langem ungeklärte Frage der Atombildung bei tiefen Temperaturen beantwortet. Dieser Prozess ist für UKP besonders relevanten, da die Rekombination die Lebensdauer des Plasmas bestimmt. Die konventionelle Theorie für Rekombination basiert auf der Annahme von von isolierten Drei-Körper-Stößen. Die daraus resultierende Rate divergiert mit abnehmender Temperatur und verliert daher ihre Gültigkeit im ultrakalten Bereich. In dieser Arbeit wird die Beschreibung der Rekombination mit Hilfe aufwendiger Vielteilchen-Simulationen auf den stark gekoppelte Bereich ausgebaut. Hierbei zeigt sich, dass die Rekombinationsrate im Bereich tiefer Temperaturen auf einen konstanten Wert konvergiert, so dass das Problem der divergierenden Rate gelöst werden kann. Ein weiteres, seit langem kontrovers diskutiertes Problem, stellt die Relaxation aufgrund von elastischen Stößen in stark gekoppelten Plasmen dar. Auch hier gilt, dass die konventionelle Theorie für heiße Plasmen, die auf Landau und Spitzer zurückgeht, aufgrund der Vernachlässigung von Korrelationen im Regime starker Kopplung unzureichend wird. Bisher waren keine experimentellen Ergebnisse verfügbar, um die verschiedenen Vorschläge zur Erweiterung der Landau-Spitzer-Beschreibung auf den stark gekoppelten Bereich zu beurteilen. In enger Zusammenarbeit mit der Gruppe von Prof. T. C. Killian (Rice University, Houston, USA) können im Rahmen dieser Arbeit nun erstmals Relaxationsraten in stark gekoppelten Plasmen gemessen werden. Dazu wird mittels eines Pump-Probe-Verfahren die Relaxation der ionischen Geschwindigkeitsverteilung in UKP beobachtet. In dieser Arbeit konnte eine Methode zur Interpretation der experimentellen Daten entwickelt und durch semiklassische Simulationen der Parameterbereich enorm erweitert werden. Unsere Ergebnisse zeigen, dass die Landau-Spitzer-Theorie bereits bei geringen Kopplungsstärken deutliche Defizite aufweist und liefern erstmalig Vorhersagen im stark gekoppelten Bereich. Bei der Untersuchung der ionischen Relaxation wird deutlich, dass insbesondere experimentelle Ergebnisse bei hohen Kopplungsstärken von Interesse sind. Derzeit sind typische UKP-Experimente jedoch auf mäßige Kopplungsstärken limitiert. Ursache hierfür ist, dass das Plasma in einem Zustand weit entfernt vom Gleichgewicht erzeugt wird. Bei der Relaxation ins Gleichgewicht kommt es zu einer Ausbildung von Korrelationen und damit zu einer Umwandlung von potentieller in kinetische Energie. In dieser Arbeit wird deshalb ein neues Plasmaherstellungsverfahren vorgeschlagen, das für die Ionen dieses „Korrrelationsheizen“ stark unterdrücken kann. Durch eine kollektive Anregung kalter Atome in Rydberg-Zustände werden vor der Photoionsation der Atome Korrelationen im atomaren Gas induziert. Es wird gezeigt, dass diese Korrelationen durch eine selektive Ionisation der Rydberg-Atome mit Hilfe von Mikrowellen an das Plasma weitergegeben werden können. Dadurch verringert sich das Korrelationsheizen und eröffnet neue Perspektiven für Untersuchungen ultrakalter Plasmen tief im stark gekoppelten Regime.
47

A recombineering pipeline for functional genomics applied to Caenorhabditis elegans

Sarov, Mihail 19 February 2007 (has links) (PDF)
Genome sequencing and annotation projects define the complete sets of RNA and protein components for living systems. They also present the challenge to generate functional information for thousands of previously uncharacterized genes. Protein tagging with fluorescent or affinity tags provides a generic way to describe protein expression and localization patterns and protein-protein interactions. The genome wide application of this approach in Saccharomyces cerevisiae has resulted in a comprehensive picture of the core proteome of a simple, well-studied model system. Extending these studies to more complex, multicellular model organisms, would allow us to place protein function onto a 4 dimensional space-time map, and will improve our understanding of the complex processes of development and differentiation. This will require efficient protein tagging methods and new high performance tags. Here we present a generic protein tagging approach for the model nematode Caenorhabditis elegans. The method is based on recombination mediated DNA engineering of genomic BAC clones into tagged transgenes for integrative transformation. C.elegans offers unique advantages for function discovery through protein tagging: compact and a well annotated genome, combined with a simple and well-understood anatomy and pattern of development. However, the methods for protein tagging in C.elegans have so far been inefficient and largely dependent on artificial cDNA based constructs, which can lack important regulatory elements. In contrast, our approach combines the advantages of authentic regulation with a new application of recombineering, which is simple, fast and efficient. For the first time we apply liquid culture cloning for multiple recombineering steps. This is particularly important when high throughput applications are considered, as it offers significant advantages in scale up and automation. We show that the BAC derived transgenes can be used for stable, integrative transformation in C. elegans. We show that the tagged transgene can take over the function of its endogenous counterpart. Using florescent reporter, we reproduce known and document new expression patterns. The second part of the thesis describes a project that we undertook to develop improved double affinity cassettes for protein purification. We evaluated the performance of 5 new double tag combinations in vitro and in mammalian culture cells. All of the new cassettes performed well and present a valuable tool for protein interaction studies in higher model systems.
48

Kohlenstoff in EFG-Silizium: Verteilung und Einfluss auf die Rekombinationseigenschaften

Scholz, Sandra 05 December 2008 (has links)
In EFG-Silizium wird Kohlenstoff weit über der Gleichgewichtslöslichkeit im Gitter eingebaut. In dünnen Bereichen der EFG-Bänder wird dabei mehr gelöster Kohlenstoff inkooperiert. Im EFG-Material liegen 4 · 10^17At/cm^3 Kohlenstoff in ausgeschiedener Form vor. Dabei bildet sich zum Einen in einigen Zwillingskorngrenzen eine monoatomare Schicht SiC aus, zum Anderen bilden sich Präzipitate, die kleiner als 60nm sind und kaum Spannungen in der Siliziummatrix erzeugen. Es wird vermutet, dass es sich um atomare Agglomerate aus wenigen Atomen Kohlenstoff und interstitiellen Siliziumatomen handelt. Diese Präzipitate verschlechtern die elektrischen Eingeschaften im Ausgangsmaterial. Durch eine veränderte Spülgaszusammensetzung (Zugabe von CO oder CO_2) während der Züchtung bilden sich Präzipitate größer als 60nm im Volumen der EFG-Bänder. Dadurch verbessert sich der Wirkungsgrad der gefertigten Solarzellen, verglichen mit den herkömmlichen EFG-Zellen.
49

Relaxationsprozesse in stark gekoppelten ultrakalten Plasmen

Bannasch, Georg 01 March 2013 (has links)
Typischerweise sind Plasmen extrem heiß - diese hohen Energien sind nötig, um die Ionisationsschwelle der Atome zu überwinden und damit einen stabilen Plasmazustand zu gewährleisten. Folglich werden die physikalischen Eigenschaften dieser Plasmen für gewöhnlich durch die thermischen Energie der Plasmateilchen bestimmt, während Korrelationen zwischen den Ladungen eine untergeordnete Rolle spielen. Durch die rasanten Fortschritte auf dem Gebiet der ultrakalten Gase ist es jedoch ebenso möglich, Plasmen bei extrem tiefen Temperaturen zu erzeugen, indem lasergekühlte Atome photoionisiert werden. In diesen ultrakalten Plasmen (UKP) lassen sich aufgrund der niedrigen Temperaturen bereits deutliche Auswirkungen von Korrelationen beobachten, die zu gänzlich anderer Dynamik führen können als aus dem Bereich der heißen schwach gekoppelten Plasmen bekannt. Ähnliche Prozesse werden auch in dichten Plasmen beobachtet, in denen durch extrem kurzen Teilchenabstände die Wechselwirkungsenergie auch bei Temperaturen von über 10000 Kelvin die kinetische Energie dominiert. Dichte Plasmen spielen eine wichtige Rolle für technische Anwendungen wie die Trägheitsfusion. Im Gegensatz zu diesen dichten Plasmen realisieren UKP starke Korrelationen jedoch bei sehr viel geringen Dichten von ρ ∼ 10^9 cm^{−3} . Die daraus resultierende langsame Dynamik ist experimentell wesentlich besser zugänglich und macht diese System deshalb besonders interessant, um Korrelationseffekte in stark gekoppelten Plasmen zu studieren. Diese Arbeit beschäftigt sich mit Effekten von starken Korrelationen auf verschiedene Relaxationsprozesse, die insbesondere, aber nicht ausschließlich in UKP eine bedeutende Rolle spielen. Neben dem fundamentalen Interesse an diesen Prozessen gilt ein Augenmerk auch möglichen experimentellen Tests der getroffenen Vorhersagen. Da die Theorie der schwach gekoppelten Plasmen Korrelationen größtenteils vernachlässigt, ist sie im Regime der UKP nur eingeschränkt anwendbar. Zur Berücksichtigung der starken Korrelationen werden in dieser Arbeit umfangreiche molekulardynamischen Simulationen eingesetzt, die teilweise mit quantenmechanischen Beschreibungen kombiniert werden, um den in UKP relevanten atomphysikalischen Aspekten gerecht zu werden. Im Rahmen dieser Rechnungen wird zunächst die seit langem ungeklärte Frage der Atombildung bei tiefen Temperaturen beantwortet. Dieser Prozess ist für UKP besonders relevanten, da die Rekombination die Lebensdauer des Plasmas bestimmt. Die konventionelle Theorie für Rekombination basiert auf der Annahme von von isolierten Drei-Körper-Stößen. Die daraus resultierende Rate divergiert mit abnehmender Temperatur und verliert daher ihre Gültigkeit im ultrakalten Bereich. In dieser Arbeit wird die Beschreibung der Rekombination mit Hilfe aufwendiger Vielteilchen-Simulationen auf den stark gekoppelte Bereich ausgebaut. Hierbei zeigt sich, dass die Rekombinationsrate im Bereich tiefer Temperaturen auf einen konstanten Wert konvergiert, so dass das Problem der divergierenden Rate gelöst werden kann. Ein weiteres, seit langem kontrovers diskutiertes Problem, stellt die Relaxation aufgrund von elastischen Stößen in stark gekoppelten Plasmen dar. Auch hier gilt, dass die konventionelle Theorie für heiße Plasmen, die auf Landau und Spitzer zurückgeht, aufgrund der Vernachlässigung von Korrelationen im Regime starker Kopplung unzureichend wird. Bisher waren keine experimentellen Ergebnisse verfügbar, um die verschiedenen Vorschläge zur Erweiterung der Landau-Spitzer-Beschreibung auf den stark gekoppelten Bereich zu beurteilen. In enger Zusammenarbeit mit der Gruppe von Prof. T. C. Killian (Rice University, Houston, USA) können im Rahmen dieser Arbeit nun erstmals Relaxationsraten in stark gekoppelten Plasmen gemessen werden. Dazu wird mittels eines Pump-Probe-Verfahren die Relaxation der ionischen Geschwindigkeitsverteilung in UKP beobachtet. In dieser Arbeit konnte eine Methode zur Interpretation der experimentellen Daten entwickelt und durch semiklassische Simulationen der Parameterbereich enorm erweitert werden. Unsere Ergebnisse zeigen, dass die Landau-Spitzer-Theorie bereits bei geringen Kopplungsstärken deutliche Defizite aufweist und liefern erstmalig Vorhersagen im stark gekoppelten Bereich. Bei der Untersuchung der ionischen Relaxation wird deutlich, dass insbesondere experimentelle Ergebnisse bei hohen Kopplungsstärken von Interesse sind. Derzeit sind typische UKP-Experimente jedoch auf mäßige Kopplungsstärken limitiert. Ursache hierfür ist, dass das Plasma in einem Zustand weit entfernt vom Gleichgewicht erzeugt wird. Bei der Relaxation ins Gleichgewicht kommt es zu einer Ausbildung von Korrelationen und damit zu einer Umwandlung von potentieller in kinetische Energie. In dieser Arbeit wird deshalb ein neues Plasmaherstellungsverfahren vorgeschlagen, das für die Ionen dieses „Korrrelationsheizen“ stark unterdrücken kann. Durch eine kollektive Anregung kalter Atome in Rydberg-Zustände werden vor der Photoionsation der Atome Korrelationen im atomaren Gas induziert. Es wird gezeigt, dass diese Korrelationen durch eine selektive Ionisation der Rydberg-Atome mit Hilfe von Mikrowellen an das Plasma weitergegeben werden können. Dadurch verringert sich das Korrelationsheizen und eröffnet neue Perspektiven für Untersuchungen ultrakalter Plasmen tief im stark gekoppelten Regime.
50

Discovery and evolution of novel Cre-type tyrosine site-specific recombinases for advanced genome engineering

Jelicic, Milica 06 December 2023 (has links)
Tyrosine site-specific recombinases (Y-SSRs) are DNA editing enzymes that play a valuable role for the manipulation of genomes, due to their precision and versatility. They have been widely used in biotechnology and molecular biology for various applications, and are slowly finding their spot in gene therapy in recent years. However, the limited number of available Y-SSR systems and their often narrow target specificity have hindered the full potential of these enzymes for advanced genome engineering. In this PhD thesis, I conducted a comprehensive investigation of novel Y-SSRs and their potential for advancing genome engineering. This PhD thesis aims to address the current limitations in the genetic toolbox by identifying and characterizing novel Cre-type recombinases and demonstrating their impact on the directed evolution of designer recombinases for precise genome surgery. To achieve these aims, I developed in a collaboration a comprehensive prediction pipeline, combining a rational bioinformatical approach with knowledge of the biological functions of recombinases, to enable high success rate and high-throughput identification of novel tyrosine site-specific recombinase (Y-SSR) systems. Eight putative candidates were molecularly characterized in-depth to ensure their successful integration into future genome engineering applications. I assessed their activity in prokaryotes (E. coli) and eukaryotes (human cell lines), and determined their specificity in the sequence space of all known Cre- type target sites. The potential cytotoxicity associated with cryptic genomic recombination sites was also explored in the context of recombinase applicability. This approach allowed the identification of novel Y-SSRs with distinct target sites, enabling simultaneous use of multiple Y-SSR systems, and provided knowledge that will facilitate the assignment of novel and known recombinases to specific uses or organisms, ensuring their safe and effective implementation. The introduction of these novel Y-SSRs into the genome engineering toolbox opens up new possibilities for precise genome manipulation in various applications. The broader targetability offered by these enzymes could accelerate the development of novel gene therapies, as well as advance the understanding of gene function and regulation. Moreover, these recombinases could be used to design custom genetic circuits for synthetic biology, allowing researchers to create more complex and sophisticated cellular systems. Finally, I introduced the novel Y-SSRs into efforts aimed at developing designer recombinases for precise genome surgery, demonstrating their impact on accelerating the directed evolution process. Therapeutically relevant recombinases with altered DNA specificity have been developed for excision or inversion of specific DNA sequences. However, the potential for evolving recombinases capable of integrating large DNA cargos into naturally occurring lox-like sites in the human genome remained untapped so far. Thus, I embarked on evolving the Vika recombinase to mediate the integration of DNA cargo into a native human sequence. I discovered that Vika could integrate DNA into the voxH9 site in the human genome, and then, I enhanced the process through directed evolution. The evolved variants of Vika displayed a marked improvement in integration efficiency in bacterial systems. However, the translation of these results into mammalian systems has not yet been entirely successful. Despite this, the study laid the groundwork for future research to optimize the efficiency and applicability of Y-SSRs for genomic integration. In summary, this thesis made significant strides in the identification, characterization, and development of novel Y-SSRs for advanced genome engineering. The comprehensive prediction pipeline, combined with in-depth molecular characterization, has expanded the genetic toolbox to meet the growing demand for better genome editing tools. By exploring efficiency, cross-specificity, and potential cytotoxicity, this research lays the foundation for the safe and effective application of novel Y-SSRs in various therapeutic settings. Furthermore, by demonstrating the potential of these recombinases to improve efforts in creating designer recombinases through directed evolution, this research has opened new avenues for precise genome surgery. The successful development and implementation of these novel recombinases have the potential to revolutionize gene therapy, synthetic biology, and our understanding of gene function and regulation.

Page generated in 0.1084 seconds