• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 252
  • 70
  • 68
  • 24
  • 23
  • 18
  • 14
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 567
  • 105
  • 96
  • 95
  • 94
  • 94
  • 88
  • 86
  • 82
  • 80
  • 80
  • 79
  • 71
  • 60
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Management-Buy-In bei eigentümergeführten Unternehmen

Wallraff, Thomas 24 July 2013 (has links) (PDF)
Der Anteil der externen Nachfolge bei eigentümergeführten bzw. Familienunternehmen nimmt stetig zu. Eine Möglichkeit ist dabei ein Management-Buy-In, bei dem ein externer Manager die Position des Altinhabers übernimmt. In einer solchen Situation kann die Nachfolge in Form einer Relay Succession erfolgen, eine zeitlich gestaffelte Übergabe vom alten an den neuen Inhaber. In dieser Arbeit werden die Relay Succession, ihre Vor- und Nachteile, relevante Einflussfaktoren und Prozessempfehlungen in qualitativen Fallstudien untersucht.
162

Diversity Multiplexing Tradeoff and Capacity Results in Relayed Wireless Networks

Oveis Gharan, Shahab January 2010 (has links)
This dissertation studies the diversity multiplexing tradeoff and the capacity of wireless multiple-relay network. In part 1, we study the setup of the parallel Multi-Input Multi-Output (MIMO) relay network. An amplify-and-forward relaying scheme, Incremental Cooperative Beamforming, is introduced and shown to achieve the capacity of the network in the asymptotic case of either the number of relays or the power of each relay goes to infinity. In part 2, we study the general setup of multi-antenna multi-hop multiple- relay network. We propose a new scheme, which we call random sequential (RS), based on the amplify-and-forward relaying. Furthermore, we derive diversity- multiplexing tradeoff (DMT) of the proposed RS scheme for general single-antenna multiple-relay networks. It is shown that for single-antenna two-hop multiple- access multiple-relay (K > 1) networks (without direct link between the source(s) and the destination), the proposed RS scheme achieves the optimum DMT. In part 3, we characterize the maximum achievable diversity gain of the multi- antenna multi-hop relay network and we show that the proposed RS scheme achieves the maximum diversity gain. In part 4, RS scheme is utilized to investigate DMT of the general multi-antenna multiple-relay networks. First, we study the case of a multi-antenna full-duplex single-relay two-hop network, for which we show that the RS achieves the optimum DMT. Applying this result, we derive a new achievable DMT for the case of multi-antenna half-duplex parallel relay network. Interestingly, it turns out that the DMT of the RS scheme is optimum for the case of multi-antenna two parallel non-interfering half-duplex relays. Furthermore, we show that random unitary matrix multiplication also improves the DMT of the Non-Orthogonal AF relaying scheme in the case of a multi-antenna single relay channel. Finally, we study the general case of multi-antenna full-duplex relay networks and derive a new lower-bound on its DMT using the RS scheme. Finally, in part 5, we study the multiplexing gain of the general multi-antenna multiple-relay networks. We prove that the traditional amplify-forward relaying achieves the maximum multiplexing gain of the network. Furthermore, we show that the maximum multiplexing gain of the network is equal to the minimum vertex cut-set of the underlying graph of the network, which can be computed in polynomial time in terms of the number of network nodes. Finally, the argument is extended to the multicast and multi-access scenarios.
163

Transmission Strategies for the Gaussian Parallel Relay Channel

Changiz Rezaei, Seyed Saeed January 2010 (has links)
Cooperative wireless communication has received significant attention during recent years due to several reasons. First, since the received power decreases rapidly with distance, the idea of multi-hopping is becoming of particular importance. In multi-hopped communication, the source exploits some intermediate nodes as relays. Then the source sends its message via those relays to the destination. Second, relays can emulate some kind of distributed transmit antennas to form spatial diversity and combat multi-path fading effect of the wireless channel. Parallel Relay Channel is an information theoretical model for a communication system whereby a sender aims to communicate to a receiver with the help of relay nodes. It represents the simplest model for a multi–hop wireless network and a full understanding of the limits of communication over such a channel can potentially shed light on the design of more efficient wireless networks. However, the capacity of the relay channel has been established only for few special cases and little progress has been made toward solving the general case since the early 1980s. In this dissertation, motivated by practical constraints, we study the information theoretical limits of the half-duplex Gaussian Parallel Relay channel , as well as, the transmission strategies for the parallel relay channel with bandwidth mismatch between the first and the second hops. Chapter 2 investigates the problem of communication for a network composed of two half-duplex parallel relays with additive white Gaussian noise (AWGN). There is no direct link between the source and the destination. However, the relays can communicate with each other through the channel between them. Two protocols, i.e., \emph{Simultaneous} and \emph{Successive} relaying, associated with two possible relay scheduling are proposed. The simultaneous relaying protocol is based on \emph{Broadcast-multiaccess with Common Message (BCM)} scheme. For the successive relaying protocol: (i) a \emph{Non-Cooperative} scheme based on the \emph{Dirty Paper Coding (DPC)}, and (ii) a \emph{Cooperative} scheme based on the \emph{Block Markov Encoding (BME)} are considered. The composite scheme of employing BME in \emph{at most} one relay and DPC in \emph{at least} another one is shown to achieve at least the same rate when compared to the \emph{Cooperative} and \emph{Non-Cooperative} schemes. A \emph{``Simultaneous-Successive Relaying based on Dirty paper coding scheme" (SSRD)} is also proposed. The optimum scheduling of the relays and hence the capacity of the half-duplex Gaussian parallel relay channel in the low and high signal-to-noise ratio (SNR) scenarios is derived. In the low SNR scenario, it is revealed that under certain conditions for the channel coefficients, the ratio of the achievable rate of the simultaneous relaying based on BCM to the cut-set bound tends to be 1. On the other hand, as SNR goes to infinity, it is proved that successive relaying, based on the DPC, asymptotically achieves the capacity of the network. Schein and Gallager introduced the Gaussian parallel relay channel in 2000. They proposed the Amplify-and-Forward (AF) and the Decode-and-Forward (DF) strategies for this channel. For a long time, the best known achievable rate for this channel was based on the AF and DF with time sharing (AF-DF). Recently, a Rematch-and-Forward (RF) scheme for the scenario in which different amounts of bandwidth can be assigned to the first and second hops were proposed. In chapter 3, we propose a \emph{Combined Amplify-and-Decode Forward (CADF)} scheme for the Gaussian parallel relay channel. We prove that the CADF scheme always gives a better achievable rate compared to the RF scheme, when there is a bandwidth mismatch between the first hop and the second hop. Furthermore, for the equal bandwidth case (Schein's setup), we show that the time sharing between the CADF and the DF schemes (CADF-DF) leads to a better achievable rate compared to the time sharing between the RF and the DF schemes (RF-DF) as well as the AF-DF.
164

OFDM-based Cooperative Communications in a Single Path Relay Network and a Multiple Path Relay Network

Wu, Victor Kai Yuen 10 November 2006 (has links)
In this thesis, we investigate cooperation by applying OFDM signals to cooperative relay networks. We consider the single path relay network and the multiple path relay network. Using the amplify-and-forward relay algorithm, we derive the input-output relations and mutual informations of both networks. Using a power constraint at each relay, we consider two relay power allocation schemes. The first is constant gain allocation, where the amplifying gain used in the amplify-and-forward algorithm is constant for all subcarriers. The second is equal power allocation, where each subcarrier transmits the same power. The former scheme does not require CSI (channel state information), while the latter one does. We simulate the mutual informations using the two relay power allocation schemes. Results indicate that equal power allocation gives a slightly higher mutual information for the single path relay network. For the multiple path network, the mutual information is practically the same for both schemes. Using the decode-and-forward relay algorithm, we derive the input-output relations for both networks. The transmitter and each relay are assumed to have uniform power distributions in this case. We simulate the BER (bit error rate) and WER (word error rate) performance for the two networks using both the amplify-and-forward and decode-and-forward relay algorithms. For the single path relay network, amplify-and-forward gives very poor performance, because as we increase the distance between the transmitter and receiver (and thus, add more relays), more noise and channel distortion enter the system. Decode-and-forward gives significantly better performance because noise and channel distortion are eliminated at each relay. For the multiple path relay network, decode-and-forward again gives better performance than amplify-and-forward. However, the performance gains are small compared to the single path relay network case. Therefore, amplify-and-forward may be a more attractive choice due to its lower complexity.
165

Diversity Multiplexing Tradeoff and Capacity Results in Relayed Wireless Networks

Oveis Gharan, Shahab January 2010 (has links)
This dissertation studies the diversity multiplexing tradeoff and the capacity of wireless multiple-relay network. In part 1, we study the setup of the parallel Multi-Input Multi-Output (MIMO) relay network. An amplify-and-forward relaying scheme, Incremental Cooperative Beamforming, is introduced and shown to achieve the capacity of the network in the asymptotic case of either the number of relays or the power of each relay goes to infinity. In part 2, we study the general setup of multi-antenna multi-hop multiple- relay network. We propose a new scheme, which we call random sequential (RS), based on the amplify-and-forward relaying. Furthermore, we derive diversity- multiplexing tradeoff (DMT) of the proposed RS scheme for general single-antenna multiple-relay networks. It is shown that for single-antenna two-hop multiple- access multiple-relay (K > 1) networks (without direct link between the source(s) and the destination), the proposed RS scheme achieves the optimum DMT. In part 3, we characterize the maximum achievable diversity gain of the multi- antenna multi-hop relay network and we show that the proposed RS scheme achieves the maximum diversity gain. In part 4, RS scheme is utilized to investigate DMT of the general multi-antenna multiple-relay networks. First, we study the case of a multi-antenna full-duplex single-relay two-hop network, for which we show that the RS achieves the optimum DMT. Applying this result, we derive a new achievable DMT for the case of multi-antenna half-duplex parallel relay network. Interestingly, it turns out that the DMT of the RS scheme is optimum for the case of multi-antenna two parallel non-interfering half-duplex relays. Furthermore, we show that random unitary matrix multiplication also improves the DMT of the Non-Orthogonal AF relaying scheme in the case of a multi-antenna single relay channel. Finally, we study the general case of multi-antenna full-duplex relay networks and derive a new lower-bound on its DMT using the RS scheme. Finally, in part 5, we study the multiplexing gain of the general multi-antenna multiple-relay networks. We prove that the traditional amplify-forward relaying achieves the maximum multiplexing gain of the network. Furthermore, we show that the maximum multiplexing gain of the network is equal to the minimum vertex cut-set of the underlying graph of the network, which can be computed in polynomial time in terms of the number of network nodes. Finally, the argument is extended to the multicast and multi-access scenarios.
166

Transmission Strategies for the Gaussian Parallel Relay Channel

Changiz Rezaei, Seyed Saeed January 2010 (has links)
Cooperative wireless communication has received significant attention during recent years due to several reasons. First, since the received power decreases rapidly with distance, the idea of multi-hopping is becoming of particular importance. In multi-hopped communication, the source exploits some intermediate nodes as relays. Then the source sends its message via those relays to the destination. Second, relays can emulate some kind of distributed transmit antennas to form spatial diversity and combat multi-path fading effect of the wireless channel. Parallel Relay Channel is an information theoretical model for a communication system whereby a sender aims to communicate to a receiver with the help of relay nodes. It represents the simplest model for a multi–hop wireless network and a full understanding of the limits of communication over such a channel can potentially shed light on the design of more efficient wireless networks. However, the capacity of the relay channel has been established only for few special cases and little progress has been made toward solving the general case since the early 1980s. In this dissertation, motivated by practical constraints, we study the information theoretical limits of the half-duplex Gaussian Parallel Relay channel , as well as, the transmission strategies for the parallel relay channel with bandwidth mismatch between the first and the second hops. Chapter 2 investigates the problem of communication for a network composed of two half-duplex parallel relays with additive white Gaussian noise (AWGN). There is no direct link between the source and the destination. However, the relays can communicate with each other through the channel between them. Two protocols, i.e., \emph{Simultaneous} and \emph{Successive} relaying, associated with two possible relay scheduling are proposed. The simultaneous relaying protocol is based on \emph{Broadcast-multiaccess with Common Message (BCM)} scheme. For the successive relaying protocol: (i) a \emph{Non-Cooperative} scheme based on the \emph{Dirty Paper Coding (DPC)}, and (ii) a \emph{Cooperative} scheme based on the \emph{Block Markov Encoding (BME)} are considered. The composite scheme of employing BME in \emph{at most} one relay and DPC in \emph{at least} another one is shown to achieve at least the same rate when compared to the \emph{Cooperative} and \emph{Non-Cooperative} schemes. A \emph{``Simultaneous-Successive Relaying based on Dirty paper coding scheme" (SSRD)} is also proposed. The optimum scheduling of the relays and hence the capacity of the half-duplex Gaussian parallel relay channel in the low and high signal-to-noise ratio (SNR) scenarios is derived. In the low SNR scenario, it is revealed that under certain conditions for the channel coefficients, the ratio of the achievable rate of the simultaneous relaying based on BCM to the cut-set bound tends to be 1. On the other hand, as SNR goes to infinity, it is proved that successive relaying, based on the DPC, asymptotically achieves the capacity of the network. Schein and Gallager introduced the Gaussian parallel relay channel in 2000. They proposed the Amplify-and-Forward (AF) and the Decode-and-Forward (DF) strategies for this channel. For a long time, the best known achievable rate for this channel was based on the AF and DF with time sharing (AF-DF). Recently, a Rematch-and-Forward (RF) scheme for the scenario in which different amounts of bandwidth can be assigned to the first and second hops were proposed. In chapter 3, we propose a \emph{Combined Amplify-and-Decode Forward (CADF)} scheme for the Gaussian parallel relay channel. We prove that the CADF scheme always gives a better achievable rate compared to the RF scheme, when there is a bandwidth mismatch between the first hop and the second hop. Furthermore, for the equal bandwidth case (Schein's setup), we show that the time sharing between the CADF and the DF schemes (CADF-DF) leads to a better achievable rate compared to the time sharing between the RF and the DF schemes (RF-DF) as well as the AF-DF.
167

Campos descontínuos com chaveamento no Rn / Relay systems in Rn

Silva , Tharsis Souza 13 May 2016 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-09T12:27:04Z No. of bitstreams: 2 Tese - Tharsis Souza Silva - 2016.pdf: 3242823 bytes, checksum: 4cdf7de6c7ba7cfe6f4fc07cc9501592 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-09T12:27:26Z (GMT) No. of bitstreams: 2 Tese - Tharsis Souza Silva - 2016.pdf: 3242823 bytes, checksum: 4cdf7de6c7ba7cfe6f4fc07cc9501592 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-09T12:27:26Z (GMT). No. of bitstreams: 2 Tese - Tharsis Souza Silva - 2016.pdf: 3242823 bytes, checksum: 4cdf7de6c7ba7cfe6f4fc07cc9501592 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-13 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / In this work we _rstly study a relay system X on the Rn that, under certain conditions, it has a one parameter family of 1-periodic orbits that arises in the origin and increase inde_nitely. We study yet another relay system class X_, that it is formed from the initial relay system by aditions of nilpotent parameters that, under certain conditions, it has the same result of the previous, and yet family of periodic orbits that arises in the origin and ends in a loop, or family that bifurcate of a loop and arise inde_nitelly. Furthermore the periodic solutions are explicitely given by Euler polynomials. Finally we study a third order di_erential equation with relay looking for periodic orbits of di_erent degrre of di_erentiability and this is done by the associated vector _eld with jump. / Neste trabalho estudamos primeiramente um campo vetorial descontínuo com chaveamento X atuando no Rn que, sob certas condições, possui uma família a um parâmetro de órbitas 1-periódicas que surge na origem e cresce indenidamente. Estudamos também uma classe de campos vetoriais descontínuos com chaveamento (relay systems) X, que se diferencía do campo inicial pela adição de parâmetros i;j de forma linear Nilpotente que, sob certas condições, possui o mesmo resultado que o caso anterior, e ainda famílias que surgem na origem e termina em um Laço ou mesmo que bifurcam de um laço e crescem indenidamente. Além disso as soluções periódicas são dadas explicitamente através dos polinômios de Euler. Ainda estudamos uma equação diferencial de terceira ordem com chaveamento a m de buscar órbitas periódicas de diferentes graus de diferenciabilidade e esse estudo é feito através do campo vetorial associado com impulso.
168

Cooperative Communication In Store And Forward Wireless Networks Using Rateless Codes

Bansal, Gaurav 05 1900 (has links) (PDF)
In this thesis, we consider a cooperative relay-assisted communication system that uses rateless codes. When multiple relays are present, the relay with the highest channel gain to the source is the first to successfully decode a message from the source and forward it to the destination. Thus, the unique properties of rateless codes ensure that both rate adaptation and relay selection occur without the transmitting source or relays acquiring instantaneous channel knowledge. We show that in such cooperative systems, buffering messages at relays significantly increases throughput. We develop a novel analysis of these systems that combines the communication-theoretic aspects of cooperation over fading channels with the queuing-theoretic aspects associated with buffering. Closed-form expressions are derived for the throughput and end-to-end delay for the general case in which the channels between various nodes are not statistically identical. Results are also shown for the benchmark system that does not buffer messages. Though relay selection combined with buffering of messages at the relays substantially increases the throughput of a cooperative network, it also increases the end-to-end delays due to the additional queuing delays at the relay nodes. In order to overcome this, we propose a novel method that exploits a unique property of rateless codes that enables a receiver to decode a message from non-contiguous and unordered portions of the received signal. In it, each relay, depending on its queue length, ignores its received coded bits with a given probability. We show that this substantially reduces the end-to-end delays while retaining almost all of the throughput gain achieved by buffering. In effect, the method increases the odds that the message is first decoded by a relay with a smaller queue. Thus, the queuing load is balanced across the relays and traded off with transmission times. We derive conditions for the stability of this system when the various channels undergo fading. Despite encountering analytically intractable G/GI/1 queues in our system, we also gain insights about the method by analyzing a similar system with a simpler model for the relay-to-destination transmission times. Next we combine the single relay selection scheme at the source with physical layer power control at the relays (due to the diversity provided by the rateless codes, power control at the source is not needed). We derive an optimal power control policy that minimizes the relay to destination transmission time. Due to its computational and implementation complexity, we develop another heuristic easily implementable near optimal policy. In this policy, power allocated turns out to be inversely proportional to the square root of channel gain. We also see that this policy performs better than the channel inversion policy. Our power control solution substantially decreases the mean end-to-end delays with a marginal increase in throughput also. Finally, we combine bit dropping with power control at the relays which further improves the system performance.
169

Otestovaní komunikace po IEC61850 s využitím GOOSE mezi ABB a Siemens ochranou / Testing Communication via IEC 61850 and GOOSE between ABB and Siemens Protections

Vavreczky, Gábor January 2012 (has links)
The main objective of this thesis is to examine the possibility of cooperation of IEDs from ABB and Siemens in accordance with IEC61850. The aim is to create and test a workflow, after which protection relays from ABB and Siemens will communicate with each other via GOOSE messages. This paper provides a description of the international standard IEC61850, as a theoretical basis. Describes in detail the configuration of protection relays SIPROTEC 7SA610 according to IEC61850. Work provides a description of the configuration tools PCM600 and IET600 which are used for configuration of protection relays RELION® REF615 by ABB. In the final part of the work experiences that are written in collaboration used protection.
170

Návrh systému chránění s použitím elektronických přístrojových transformátorů (senzorů) v rozvodně vysokého napětí / Design of protection system using an sensor technology in MV substation

Strapko, Miroslav January 2012 (has links)
Master's thesis deals with use of electronic instrument transformers (sensors) in the protection system in medium-voltage substation. Substation consists of 2 incoming feeders, 2 outgoing feeders for motors, 2 outgoing feeders for power transformers, measuring, bus coupler and bus riser feeder. Incoming feeders are connected to distribution system E.ON by cable lines which were proposed. Protected machines (power transformers and motors with rated power) are connected to switchgear panels of UniGear ZS1 type by cable lines too. Proposed protection system is based on the short-circuit conditions, standard CSN 33 3051 recommendations as well as theoretical backgrounds acquired from technical papers and other publicated literature according to the bibliography. For selected protection functions are defined their parameters. Control, monitoring and protection functions provides REF 542plus relay. Consequently, secondary tests which are part of the commissioning, are given in the practical part of thesis. Secondary tests were performed by relay test system FREJA 300 by Megger. Results of tests are displayed in tripping characteristics.

Page generated in 0.0588 seconds