• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 3
  • Tagged with
  • 21
  • 21
  • 11
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude de nouvelles fonctions de la protéine checkpoint kinase 1 (Chk1) au cours de la différenciation myéloïde normale et leucémique / Checkpoint kinase 1 : its novel functions during normal myeloid differentiation ans its role as prognostic marker and therapeutic target in acute myeloid leukemia

David, Laure 11 October 2016 (has links)
Le cycle cellulaire est l'ensemble des étapes qui conduisent une cellule mère à se diviser en deux cellules filles. La protéine Checkpoint kinase 1 (Chk1) est importante pour sa progression. Nous avons d'une part cherché à savoir si Chk1 intervenait lors des mécanismes de production des plaquettes, car ces cellules permettant la coagulation du sang sont issues d'un cycle cellulaire particulier. Par ailleurs, nous avons étudié le rôle de Chk1 dans la Leucémie Aiguë Myéloïde (LAM), cancer des cellules sanguines. Les patients atteints de LAM sont traités par une chimiothérapie visant à endommager l'ADN afin d'entrainer la mort des cellules cancéreuses. Chk1 est garante du contrôle de la réparation des dommages de l'ADN, ce qui contrecarre l'effet de la chimiothérapie. Elle pourrait donc favoriser l'apparition de résistance. Son rôle dans les LAM étant peu connu, l'objectif de ce projet est donc de vérifier si Chk1 favorise la résistance des cellules leucémiques aux chimiothérapies. / The cell cycle is a series of events that takes place in a mother cell, leading to its division into two daughter cells. The protein Checkpoint kinase 1 (Chk1) is mandatory for its coordinated progression. In this PhD projet, we wondered on the one hand whether Chk1 could be involved in the platelets production process, because these componants of blood that enables coagulation are produced due to a particular cell cycle dedicated to this end. On the other hand, we studied the role of Chk1 in Acute Myeloid Leukemia (LAM) physiopathology. LAM is a cancer of blood cells, in which patients are treated with drugs that create DNA damages, causing the death of tumoral cells. The role of Chk1 in the drug response in LAM is not well studied, but, as it enables DNA repair, it may render theses medicines less efficient, leading to relapses to therapies. So the goal of this project is to check wether Chk1 favors the resistance of some LAM cells to chemotherapeutic treatments.
12

Identification de nouveaux mécanismes de régulation temporelle des origines de réplication dans les cellules humaines / Identification of new mechanisms of temporal regulation of DNA replication origins in human cells

Guitton-Sert, Laure 11 December 2015 (has links)
La duplication de l'ADN au cours de la phase S est initiée à partir de l'activation de plusieurs dizaines de milliers d'origines de réplication. La mise en place des origines a lieu au cours de la phase G1 sous la forme de complexe de pré-réplication (pré-RC) et leur activation est orchestrée par un programme spatio-temporel. La régulation spatiale détermine les origines qui seront activées et la régulation temporelle, ou timing de réplication, détermine le moment de leur activation. En effet, toutes ces origines ne sont pas activées en même temps durant la phase S : certaines origines seront activées en début de phase S, d'autre en milieu, ou d'autre à la fin. Ce programme est établi en tout début de phase G1, au " point de décision du timing ". C'est un programme très robuste qui signe l'identité d'une cellule, son état de différenciation et le type cellulaire à laquelle elle appartient. Il a aussi été montré qu'il est altéré dans des situations pathologiques, en particulier le cancer, sans qu'on ne comprenne très bien les raisons mécanistiques. De manière générale, les mécanismes moléculaires qui régulent le timing de réplication sont méconnus. Le premier volet de ma thèse a permis l'identification d'un nouveau régulateur du timing de réplication : il s'agit de l'ADN polymérase spécialisée Thêta. Recrutée à la chromatine très tôt en phase G1, elle interagit avec des composants du pré-RC, et régule le recrutement des hélicases réplicatives à la chromatine. Enfin, sa déplétion ou sa surexpression entraîne une modification du timing de réplication à l'échelle du génome. Dans la deuxième partie de ma thèse, j'ai exploré les mécanismes qui régulent ce programme temporel d'activation des origines suite à un stress réplicatif. J'ai identifié un mécanisme de régulation transgénérationnel inédit : la modification du timing de réplication de domaines chromosomiques ayant subi un stress réplicatif au cycle cellulaire précédent. Des cellules-filles issues d'une cellule ayant subi des problèmes de réplication dans des domaines fragiles (riches en AT, et donc potentiellement structurés, et pauvres en origines) présentent un timing plus précoce de l'activation des origines au niveau de ces domaines. Ce nouveau processus biologique d'adaptation est particulièrement intéressant dans un contexte tumoral de haut stress réplicatif chronique car ce pourrait être un moyen pour la cellule tumorale de survivre à son propre stress réplicatif mais aussi aux thérapies antitumorales qui sont nombreuses à cibler la réplication de l'ADN. / DNA duplication in S phase starts from thousands of initiation sites called DNA replication origins. These replication origins are set in G1 as pre-replication complexes (pre-RC) and fired in S phase following a spatio-temporal program of activation. This program determines which origins will be fired and when. Indeed, all the origins are not fired in the same time and we can distinguish early, middle and late replication origins. This temporal regulation is called "replication timing" and is determined at the "timing decision point" (TDP) in early G1. It's a robust program, which participates to the definition of cell identity, in term of differentiation state or cell type. However, the precise molecular mechanisms involved are poorly understood. Defective timing program has been evidenced in pathological contexts, in particular in cancers, but the mechanisms of this deregulation remain unclear. In the first part of my PhD, I contributed to the discovery of a new regulator of the origin timing program: the specialized DNA polymerase Theta (Pol Theta). Pol Theta is loaded onto chromatin in early G1, coimmunoprecipitates with pre-RC components and modulates the recruitment of Mcm helicases at TDP. Moreover, depletion or overexpression of Pol Theta modifies the timing of replication at a fraction of chromosomal domains. The second part of my work aimed at exploring the mechanisms that regulates replication timing after a replicative stress. I identified a totally new transgenerational adaptive mechanism of DNA replication timing regulation: the modification of the timing of origin activation at chromosomal domains that have suffered from a replicative stress during the previous cell cycle. Daughter cells from a cell that has experienced replication stress at particular domains (late replicating domains, AT rich so they can form structured DNA, and poor in origin density) shows advanced origin activation within these regions. This new biological process in response to replicative stress could be of particular interest in the context of cancer since, tumor cells are characterized by high level of intrinsic chronic replicative stress. This new mechanism may favor cancer cell survival despite replication stress, particularly upon treatments with anti-tumor agents that target DNA.
13

Study of the biphasic effect of resveratrol and ATR-inhibitors on cellular fitness

Zeinaty, Alya 08 1900 (has links)
Le resvératrol (RV/RSV) est un composé chimique organique connu pour ses effets anticancéreux mais aussi pour son effet rajeunissant sur les cellules et les organismes. Afin d’étudier le ou les multiples mécanismes à l’origine de ces effets, Y. Benslimane du laboratoire Harrington a étudié l’effet du resvératrol in vitro, à des concentrations de l’ordre de 12,5 μM à 25 μM, sur plusieurs lignées de cellules cancéreuses humaines, notamment NALM6 et JURKAT. Ses recherches ont démontré que le traitement par resvératrol conduit à l’activation de la voie de signalisation ATR/CHK1, qui maintient les cellules mitotiques en phase S afin d'induire la réparation de l'ADN. Dans ces cellules, le resvératrol présente spécifiquement une signature similaire à celle de l’hydroxyurée, un composé anticancéreux connu pour l’induction de stress réplicatif. Cette induction de stress réplicatif semble complémentaire aux mécanismes de la littérature existante, qui présente le resvératrol comme un activateur de sirtuines, une famille d’histones désacétylases hautement conservées entre les espèces et impliquées dans la réparation de l'ADN et la réponse métabolique. Cependant, alors que plusieurs articles démontrent une activation de la sirtuine 1 (SIRT1) comme conséquence notable du traitement par le resvératrol, les études de Benslimane et al. ont démontré quant à elles que le knock-out de la sirtuine 1 dans les cellules NALM6 et Jurkat n’affectait pas le phénotype de stress réplicatif observé. Or les concentrations de resvératrol employées dans l’ensemble de la littérature scientifique varient de 0,5 μM à 100 μM in vitro, laissant supposer une variance dans les conditions expérimentales qui pourrait expliquer la variance de résultats observés. Dans ce contexte, nous avons émis l’hypothèse que l’effet du resvératrol était dépendant de la concentration utilisée, autrement dit, que son effet était biphasé. Plus spécifiquement, dans les cellules NALM6 cancéreuses, nous avons supposé que les stress réplicatif causé par des concentrations élevées (>12,5 μM) de resvératrol pouvait masquer l’activation des sirtuines et spécifiquement celle de la sirtuine 1, tandis que des concentrations plus faibles (<5 μM) 4 permettraient l’observation potentielle de mécanismes parallèles à l’activation de la voie ATR/CHK1. Nous avons également émis l’hypothèse que l’échelle temporelle d’observation jouait un rôle dans la mesure des résultats et leur observabilité. Afin d’examiner nos hypothèses, nous avons dans un premier temps fixé le temps d’observation à 72h après traitement, et évalué l'effet du resvératrol et de l'inhibiteur de l'ATR VE-821 sur la viabilité cellulaire relative dans les cellules NALM6 WT, p53 KO et SIRT1 KO. La lignée p53 KO fut choisie, car p53 est en aval des voies de signalisation ATR/CHK1 et SIRT1. Cette expérience a montré une augmentation légère et non significative de la viabilité relative dans les trois lignées à des concentrations de resvératrol d'environ 2,5 μM, et une réduction significative de la viabilité à des concentrations supérieures à 10 μM. En outre, le score de synergie Bliss a révélé un effet additif entre le resvératrol et VE-821. Dans un second temps, nous avons quantifié l’effet de différentes concentrations de resvératrol sur le cycle cellulaire. Dans les trois lignées cellulaires, on trouve un pourcentage significatif de cellules arrêtées en phase S après un traitement de 24 heures avec 12,5 μM de resvératrol, mais aucune différence significative entre les conditions DMSO et 2,5 μM de resvératrol. On n’observe pas de différence significative entre les lignées. Enfin, une expérience temporelle révèle que les effets du resvératrol pourraient s'estomper après 16h, et montre une légère augmentation des cellules arrêtées en phase S après un traitement à 2,5 μM de resvératrol à 16h, par rapport au contrôle DMSO, suggérant un temps d’observation intéressant en deçà de 16h et un potentiel effet du resvératrol à faible dose. Ces résultats semblent confirmer l'action du resvératrol sur la voie ATR/CHK1, avec un arrêt du cycle cellulaire en phase S après traitement par 12,5 μM de resvératrol, dans les trois lignées WT, SIRT1 KO et p53 KO. Ils suggèrent également un effet potentiellement bénéfique du resvératrol à faibles doses par le biais d'un stress réplicatif de faible intensité, sans démontrer de dépendance à SIRT1 ou p53. Enfin, ils soulignent la nécessité d’une observation à différentes échelles temporelles. / Resveratrol (RV/RSV) is an organic chemical compound known for its anti-cancer and rejuvenating effects on cells and organisms. To investigate the multiple mechanisms behind these effects, Y. Benslimane of the Harrington laboratory studied the effect of resveratrol in vitro, at concentrations ranging from 12.5 μM to 25 μM, on several human cancer cell lines, including NALM6 and JURKAT. His research has shown that treatment with resveratrol leads to activation of the ATR/CHK1 signaling pathway, which keeps mitotic cells in S phase to induce DNA repair. Resveratrol specifically displays a signature similar to that of hydroxyurea, an anti-cancer compound known to induce replicative stress. This induction of replicative stress seems complementary to the mechanisms exposed in the literature, which presents resveratrol as an activator of sirtuins, a family of histone deacetylases highly conserved across species and involved in DNA repair and metabolic response. However, while several articles demonstrate activation of sirtuin 1 (SIRT1) as a notable consequence of resveratrol treatment, studies by Benslimane et al. showed that sirtuin 1 knockout in NALM6 and Jurkat cells did not affect the observed phenotype of replicative stress. Because concentrations of resveratrol used in the literature vary from 0.5 μM to 100 μM in vitro, we hypothesized that this variance in experimental conditions might explain the variety of results observed. More specifically, in NALM6 cancer cells, we hypothesized that replicative stress caused by high concentrations (>12.5 μM) of resveratrol could mask activation of sirtuins and specifically sirtuin 1, while lower concentrations (<5 μM) would allow the potential observation of mechanisms parallel to activation of the ATR/CHK1 pathway. We also hypothesized that the time scale of observation played a role in the measurement of results and their observability. To examine our hypotheses, we first set the observation time at 72h post-treatment, and assessed the effect of resveratrol and the ATR inhibitor VE-821 on relative cell viability in NALM6 WT, p53 KO and SIRT1 KO cells. The p53 KO line was chosen, as p53 is downstream of the 6 ATR/CHK1 and SIRT1 signaling pathways. This experiment showed a slight, non-significant increase in relative viability in all three lines at resveratrol concentrations of around 2.5 μM, and a significant reduction in viability at concentrations above 10 μM. In addition, the Bliss synergy score revealed an additive effect between resveratrol and VE-821. In a second step, we quantified the effect of different resveratrol concentrations on the cell cycle. In all three cell lines, we found a significant percentage of cells arrested in S phase after 24h treatment with 12.5 μM resveratrol, but no significant difference between DMSO and 2.5 μM resveratrol conditions. No significant difference was observed between lines. Finally, a time-course experiment revealed that the effects of resveratrol might fade after 16h, and showed a slight increase in S-phase arrested cells after treatment with 2.5 μM RSV at 16h, compared with the DMSO control, suggesting an interesting observation time below 16h and a potential effect of resveratrol at low doses. These results seem to confirm the action of resveratrol on the ATR/CHK1 pathway, with cell cycle arrest in S phase after treatment with 12.5 μM resveratrol, in the three lines WT, SIRT1 KO and p53 KO. They also suggest a potentially beneficial effect of low-dose resveratrol via low-intensity replicative stress, without demonstrating dependence on SIRT1 or p53. Finally, they emphasize the need for observation on different time scales.
14

Implication de la voie ERK3/4-MK5 dans la phase G2/M du cycle cellulaire

Tanguay, Pierre-Luc 12 1900 (has links)
La division cellulaire est influencée par les différents stimuli provenant de l’extérieur ou de l’intérieur de la cellule. Plusieurs réseaux enzymatiques élaborés au cours de l’évolution relayent l’information générée par ces signaux. Les modules MAP kinases sont extrêmement importants au sein de la cellule. Chez l’humain, 14 MAP kinases sont regroupées en sept voies distinctes intervenant dans le contrôle d’une myriade de processus cellulaires. ERK3/4 sont des homologues de ERK1/2 pour lesquelles on ne connaît que très peu de choses concernant leurs fonctions et régulation. Ces MAP kinases sont dites atypiques puisqu’elles ont des particularités structurales et des modes de régulation qui diffèrent des autres MAP kinases classiques. Ainsi, notre laboratoire a démontré que l’activité de ERK3 est régulée par le système ubiquitine-protéasome et qu’elle pourrait avoir un rôle à jouer dans le contrôle de la différenciation et la prolifération cellulaire. La première étude présentée décrit la régulation de ERK3 au cours du cycle cellulaire. Nous avons observé que ERK3 est hyperphosphorylée et s’accumule spécifiquement au cours de la mitose. Des analyses de spectrométrie de masse ont mené à l’identification de quatre sites de phosphorylation situés à l’extrémité du domaine C-terminal. Nous avons pu démontrer que la kinase mitotique CDK1/cycline B phosphoryle ces sites et que les phosphatases CDC14A et CDC14B les déphosphorylent. Finalement, nous démontrons que la phosphorylation mitotique de ERK3 a pour effet de la stabiliser. Au début de mes études doctorales, la kinase MK5 fut identifiée comme premier partenaire et substrat de ERK3. MK5 a très peu de fonctions connues. Des données dans la littérature suggèrent qu’elle peut moduler le cycle cellulaire dans certaines conditions. Par exemple, MK5 a récemment été identifié comme inducteur de la sénescence induite par l’oncogène Ras. Dans la deuxième étude, nous décrivons une nouvelle fonction de MK5 dans le contrôle du cycle cellulaire. Nous démontrons par des expériences de gain et perte de fonction que MK5 ralentit l’entrée en mitose suite à un arrêt de la réplication. Cette fonction est dépendante de l’activité enzymatique de MK5 qui régule indirectement l’activité de CDK1/cycline B. Finalement, nous avons identifié Cdc25A comme un nouveau substrat in vitro de MK5 dont la surexpression supprime l’effet de MK5 sur l’entrée en mitose. En conclusion, nos résultats décrivent un nouveau mécanisme de régulation de ERK3 au cours de la mitose, ainsi qu’une nouvelle fonction pour MK5 dans le contrôle de l’entrée en mitose en réponse à des stress de la réplication. Ces résultats démontrent pour la première fois l’implication de ces protéines au cours de la transition G2/M. Nos travaux établissent de nouvelles pistes d’études pour mieux comprendre les rôles encore peu définis des kinases ERK3/4-MK5. / The process of cell division is largely influenced by extracellular and intracellular cues. Many enzymatic pathways refined during evolution propagate the information generated by those cues. MAP kinase modules are extremely important within the cells. Human genome encodes 14 MAP kinases genes grouped into seven distinct pathways involved in the control of many cellular processes. ERK3/4 are kinases homologous to ERK1/2. Very little is known about their regulation and molecular functions. These MAP kinases are described as being atypical based on their unique structural characteristics and mode of regulation. Our laboratory was the first to demonstrate that the activity of ERK3 is mainly regulated by the ubiquitin-proteasome system in proliferating cells. In addition, several lines of evidence suggest a role for ERK3 in the control of cell differentiation and proliferation. The first study presented herein documents the regulation of ERK3 during the cell cycle. We observed that ERK3 is hyperphosphorylated and accumulated specifically during mitosis. Mass spectrometry analyses led to the identification of four phosphorylation sites located in the C-terminal domain. We demonstrate that mitotic kinase CDK1/cyclin B phosphorylates these sites which are dephosphorylated by Cdc14A and Cdc14B phosphatases. Finally, we show that mitotic phosphorylation of ERK3 controls its stability. At the beginning of my Ph.D. training, the kinase MK5 was the first identified binding partner and substrate of ERK3. MK5 is implicated in very few cellular functions. Data suggest that under certain conditions it modulates cell cycle progression. For example, MK5 was recently identified as a tumor suppressor gene essential for ras-induced senescence. In the second study of this thesis, we describe a novel function of MK5 in cell cycle progression. Gain and loss of function experiments demonstrate that MK5 delays G2/M transition following replicative stress. This function depends on its catalytic activity to indirectly regulates CDK1/cyclin B. Finally, we identified Cdc25A as a good in vitro substrate for MK5. Interestingly, Cdc25A expression inhibits MK5-induced delay of entry into mitosis. In conclusion, our results described a novel mechanism of regulation of ERK3 during mitosis and a novel function of MK5 in the control of G2/M transition after replicative stress. These data demonstrate for the first time the relation between these kinases and the G2/M transition. Our work should contribute to a better understanding of the roles of ERK3/4-MK5 kinases.
15

Rôles de la protéine E4F1 dans le contrôle de la réponse aux dommages de l’ADN dans le cancer du sein triple négatif / Roles of E4F1 protein in the control of the DNA damage response in triple negative breast cancer

Batnini, Kalil 25 April 2019 (has links)
La protéine E4F1 découverte comme cible cellulaire de l'oncoprotéine adénovirale E1A est une protéine ubiquitaire agissant comme facteur de transcription et comme E3-ligase atypique. La protéine E4F1 interagit également directement avec plusieurs gènes suppresseurs de tumeurs et des oncoprotéines, suggérant son implication dans la tumorigénèse. Des travaux antérieurs du laboratoire, sur les fonctions cellulaires d’E4F1 dans les cellules cancéreuses ont montré que sa déplétion entraîne une mort cellulaire massive dans les Mefs transformés déficients en p53. De plus, E4F1 contrôle directement l'expression de 38 gènes, notamment impliqués dans le métabolisme cellulaire et les checkpoints du cycle cellulaire/Réponse aux dommages de l'ADN (DDR), tel que Chek1 qui code un composant majeur du checkpoint ATR/ATM. Conformément à ce rôle d’E4F1 dans la survie des cellules cancéreuses chez la souris, des patientes atteintes d'un cancer du sein triple négatif (TNBC) exprimant fortement E4F1 présentent une survie sans rechute (RFS) plus faible.Nous avons donc décidé d’étudier pour la première fois le programme transcriptionnel d’E4F1 dans les cellules humaines et d’explorer son rôle dans la survie des cellules de TNBC, avec une attention particulière pour son rôle dans la réponse aux agents de chimiothérapie.Les transcriptomes (RNAseq) de cellules SUM159 de TNBC montrent, lors de la déplétion d’E4F1, une diminution de l’expression de 147 des 276 gènes associés à la DDR. La combinaison de RNAseq et de ChIPseq révèle qu’E4F1 régule directement 57 gènes dans les cellules de TNBC humaines. Parmi ces gènes, E4F1 lui-même, CHEK1, mais aussi TTI2 et PPP5C codant pour des régulateurs post-transcriptionnels de l'axe ATM/ATR-CHK1, et définissant ainsi un "régulon" ATM/ATR-CHK1, encore inconnu et dépendant d’E4F1. TTI2 forme avec TELO2 et TTI1, le complexe TTT nécessaire au repliement correct et à la stabilité des protéines de la famille PIKK, telles qu’ATR et ATM. La phosphatase PPP5C est impliquée dans l'activation de la signalisation ATR-CHK1. Fait important, nous montrons qu’E4F1 se fixe sur et régule probablement ces trois gènes in vivo dans des tumeurs TNBC dérivées de patientes (PDTX). Dans la lignée SUM159 et les PDTX, le recrutement d’E4F1 sur ces gènes est augmenté lors du traitement avec la Gemcitabine, un agent de chimiothérapie bloquant la réplication de l’ADN. Étonnamment, nous avons révélé qu’E4F1 contrôle aussi indirectement l'expression de TELO2, un second membre du complexe TTT. Par conséquent, dans les cellules TNBC déplétées en E4F1, les taux de protéines des CHK1, TTI2, TELO2 mais aussi des kinases ATM/ATR, sont fortement diminués, entraînant une déficience de la DDR. Ainsi, les cellules SUM159 déplétées en E4F1 ne parviennent pas à s'arrêter en phase S lors du traitement à la Gemcitabine et sont hautement sensibilisées à cet agent de chimiothérapie, ainsi qu'à d'autres agents endommageant l'ADN comme le Cisplatine. Dans leur ensemble, mes travaux de thèse révèlent que la voie de signalisation ATM/ATR-CHK1, et la réponse au stress / dommages de l'ADN sont étroitement contrôlées aux niveaux transcriptionnel et post-transcriptionnel par E4F1. E4F1 apparait donc comme un acteur central dans la survie cellulaire des cellules TNBC, en particulier lorsqu'elles sont exposées à des agents endommageant l'ADN ou à des agents de chimiothérapie. Ainsi E4F1 pourrait représenter un marqueur pronostique de réponse à la chimiothérapie et une cible thérapeutique potentielle. / The E4F1 protein discovered as the cellular target of the adenoviral oncoprotein E1A is a ubiquitous protein acting both as a transcription factor and as an atypical E3-ligase. E4F1 protein also interacts directly with several cellular tumor suppressors and oncoproteins, suggesting its involvement in tumorigenesis. Previous laboratory work on the cellular functions of E4F1 in cancer cells has shown that its depletion leads to massive cell death in transformed Mefs deficient in p53. In addition, E4F1 directly controls the expression of 38 genes, including genes involved in cell metabolism and cell cycle checkpoints/DNA Damage Response (DDR), such as Chek1 that encodes a major component of the ATR/ATM checkpoint. Consistent with this role of E4F1 in cancer cell survival in mice, patients with triple-negative breast cancer (TNBC) with high E4F1 expression exhibit a poorer relapse free survival (RFS).We therefore aimed to study for the first time the transcriptional program of E4F1 in human cells and explore its role in the survival of TNBC cells, with particular focus on its role in the response to chemotherapy agents.Transcriptomes (RNAseq) of SUM159 TNBC cells show, when E4F1 is depleted, a decrease in expression of 147 out of 276 DDR-associated genes. The combination of RNAseq and ChIPseq shows that E4F1 directly regulates 57 genes in human TNBC cells. Among these genes, E4F1 itself, CHEK1, but also TTI2 and PPP5C coding for post-transcriptional regulators of the ATM/ATR-CHK1 axis, and thus defining an ATM/ATR-CHK1 "regulon", undescribed and E4F1-dependent. TTI2 composes with TELO2 and TTI1, the TTT complex required for the correct folding and stability of PIKK family proteins, such as ATR and ATM. PPP5C phosphatase is involved in the activation of ATR-CHK1 signaling. Importantly, we show that E4F1 binds to and probably regulates these three genes in vivo in Patient Derived TNBC Xenografts (PDTX). In both SUM159 cells and PDTX, the recruitment of E4F1 on these genes is increased upon Gemcitabine treatment, a chemotherapy agent that impairs DNA replication. Surprisingly, we found that E4F1 also indirectly controls the expression of TELO2, a second member of the TTT complex. Consequently, in TNBC cells depleted of E4F1, the protein levels of CHK1, TTI2, TELO2 but also ATM/ATR kinases, are significantly decreased, leading to DDR deficiency. Thus, SUM159 cells depleted of E4F1 fail to stop in phase S during Gemcitabine treatment and are highly sensitized to this chemotherapy agent, as well as other DNA damaging agents such as Cisplatin. Altogether, my thesis results demonstrate that the ATM/ATR-CHK1 signaling pathway, and the response to stress / DNA damage are tightly controlled at the transcription and post-transcription levels by E4F1. E4F1 therefore appears to be a central actor in the cellular survival of TNBC cells, particularly when exposed to DNA-damaging agents or chemotherapy agents. Thus, E4F1 could represent a prognostic marker for chemotherapy response and a potential therapeutic target.
16

Le rôle de la structure de la chromatine naissante dans la réponse au stress réplicatif

Simoneau, Antoine 12 1900 (has links)
No description available.
17

Implication de la voie ERK3/4-MK5 dans la phase G2/M du cycle cellulaire

Tanguay, Pierre-Luc 12 1900 (has links)
La division cellulaire est influencée par les différents stimuli provenant de l’extérieur ou de l’intérieur de la cellule. Plusieurs réseaux enzymatiques élaborés au cours de l’évolution relayent l’information générée par ces signaux. Les modules MAP kinases sont extrêmement importants au sein de la cellule. Chez l’humain, 14 MAP kinases sont regroupées en sept voies distinctes intervenant dans le contrôle d’une myriade de processus cellulaires. ERK3/4 sont des homologues de ERK1/2 pour lesquelles on ne connaît que très peu de choses concernant leurs fonctions et régulation. Ces MAP kinases sont dites atypiques puisqu’elles ont des particularités structurales et des modes de régulation qui diffèrent des autres MAP kinases classiques. Ainsi, notre laboratoire a démontré que l’activité de ERK3 est régulée par le système ubiquitine-protéasome et qu’elle pourrait avoir un rôle à jouer dans le contrôle de la différenciation et la prolifération cellulaire. La première étude présentée décrit la régulation de ERK3 au cours du cycle cellulaire. Nous avons observé que ERK3 est hyperphosphorylée et s’accumule spécifiquement au cours de la mitose. Des analyses de spectrométrie de masse ont mené à l’identification de quatre sites de phosphorylation situés à l’extrémité du domaine C-terminal. Nous avons pu démontrer que la kinase mitotique CDK1/cycline B phosphoryle ces sites et que les phosphatases CDC14A et CDC14B les déphosphorylent. Finalement, nous démontrons que la phosphorylation mitotique de ERK3 a pour effet de la stabiliser. Au début de mes études doctorales, la kinase MK5 fut identifiée comme premier partenaire et substrat de ERK3. MK5 a très peu de fonctions connues. Des données dans la littérature suggèrent qu’elle peut moduler le cycle cellulaire dans certaines conditions. Par exemple, MK5 a récemment été identifié comme inducteur de la sénescence induite par l’oncogène Ras. Dans la deuxième étude, nous décrivons une nouvelle fonction de MK5 dans le contrôle du cycle cellulaire. Nous démontrons par des expériences de gain et perte de fonction que MK5 ralentit l’entrée en mitose suite à un arrêt de la réplication. Cette fonction est dépendante de l’activité enzymatique de MK5 qui régule indirectement l’activité de CDK1/cycline B. Finalement, nous avons identifié Cdc25A comme un nouveau substrat in vitro de MK5 dont la surexpression supprime l’effet de MK5 sur l’entrée en mitose. En conclusion, nos résultats décrivent un nouveau mécanisme de régulation de ERK3 au cours de la mitose, ainsi qu’une nouvelle fonction pour MK5 dans le contrôle de l’entrée en mitose en réponse à des stress de la réplication. Ces résultats démontrent pour la première fois l’implication de ces protéines au cours de la transition G2/M. Nos travaux établissent de nouvelles pistes d’études pour mieux comprendre les rôles encore peu définis des kinases ERK3/4-MK5. / The process of cell division is largely influenced by extracellular and intracellular cues. Many enzymatic pathways refined during evolution propagate the information generated by those cues. MAP kinase modules are extremely important within the cells. Human genome encodes 14 MAP kinases genes grouped into seven distinct pathways involved in the control of many cellular processes. ERK3/4 are kinases homologous to ERK1/2. Very little is known about their regulation and molecular functions. These MAP kinases are described as being atypical based on their unique structural characteristics and mode of regulation. Our laboratory was the first to demonstrate that the activity of ERK3 is mainly regulated by the ubiquitin-proteasome system in proliferating cells. In addition, several lines of evidence suggest a role for ERK3 in the control of cell differentiation and proliferation. The first study presented herein documents the regulation of ERK3 during the cell cycle. We observed that ERK3 is hyperphosphorylated and accumulated specifically during mitosis. Mass spectrometry analyses led to the identification of four phosphorylation sites located in the C-terminal domain. We demonstrate that mitotic kinase CDK1/cyclin B phosphorylates these sites which are dephosphorylated by Cdc14A and Cdc14B phosphatases. Finally, we show that mitotic phosphorylation of ERK3 controls its stability. At the beginning of my Ph.D. training, the kinase MK5 was the first identified binding partner and substrate of ERK3. MK5 is implicated in very few cellular functions. Data suggest that under certain conditions it modulates cell cycle progression. For example, MK5 was recently identified as a tumor suppressor gene essential for ras-induced senescence. In the second study of this thesis, we describe a novel function of MK5 in cell cycle progression. Gain and loss of function experiments demonstrate that MK5 delays G2/M transition following replicative stress. This function depends on its catalytic activity to indirectly regulates CDK1/cyclin B. Finally, we identified Cdc25A as a good in vitro substrate for MK5. Interestingly, Cdc25A expression inhibits MK5-induced delay of entry into mitosis. In conclusion, our results described a novel mechanism of regulation of ERK3 during mitosis and a novel function of MK5 in the control of G2/M transition after replicative stress. These data demonstrate for the first time the relation between these kinases and the G2/M transition. Our work should contribute to a better understanding of the roles of ERK3/4-MK5 kinases.
18

Accumulation of single-stranded DNA in tumour cells as a result of replicative stress

Kunze, Meike 30 January 2018 (has links)
No description available.
19

Genome-wide CRISPR screens for the interrogation of genome integrity maintenance networks

Benslimane, Yahya 08 1900 (has links)
Le matériel génétique (l’ADN) d’un organisme contient l’information nécessaire à sa survie, sa croissance et sa reproduction. La perte de cette information affecte grandement la santé de l’organisme et cette altération est l’un des facteurs les plus courants dans le vieillissement ou le cancer. Quasiment toutes les cellules d’un organisme contiennent une copie de ce matériel génétique, communément appelé le génome, et font usage de plusieurs mécanismes pour en réparer les sections endommagées ainsi que pour le copier avec précision lors de la division cellulaire. Nous avons cherché à étudier les processus cellulaires qui maintiennent la stabilité génomique en inactivant systématiquement chacun des gènes avec la technique de criblage par CRISPR afin d’en étudier les rôles. Nous avons effectué ces criblages à l’échelle du génome dans des lignées cellulaires humaines en combinaison avec des perturbations chimiques dans le but d’identifier l’effet du traitement chimique ou le rôle de gènes qui exacerbent ou atténuent la perturbation. Nous nous sommes d’abord concentrés sur le resvératrol, une molécule initialement extraite de plantes qui a démontré des propriétés antivieillissement dans certains organismes modèles ainsi que la capacité d’inhiber la prolifération cellulaire. Notre criblage génétique a révélé que le resvératrol inhibait la réplication de l’ADN. En comparant les effets cellulaires du resvératrol à l’hydroxyurée, un agent connu pour causer du stress réplicatif, nous avons montré que ces deux traitements menaient à une diminution similaire de la progression de la fourche de réplication ainsi qu’à une activation de la signalisation en réponse au stress réplicatif. Nous avons également démontré que l’inhibition de la réplication de l’ADN dans les cellules humaines par le resvératrol est l’un des effets principaux de la molécule sur la prolifération cellulaire et ne requiert pas la présence de la déacétylase d’histone Sirtuin-1, protéine qui a été suggérée comme étant la cible principale du resvératrol pour son effet antivieillissement. Nous avons également étudié la perturbation d’un second processus cellulaire, soit le maintien des télomères. Ces séquences spéciales aux extrémités des chromosomes sont indispensables à la protection du génome et leur érosion graduelle est contrebalancée par l’activité enzymatique de la télomérase. Nous avons effectué un crible génétique par CRISPR à l’échelle du génome dans une lignée cellulaire dont nous avons inhibé la télomérase en utilisant BIBR1532, un inhibiteur spécifique de la télomérase. Nous avons découvert une forte interaction génétique entre la télomérase et C16orf72, un gène non-annoté que nous avons nommé TAPR1. Nous avons montré que les cellules déficientes en TAPR1 possèdent des niveaux élevés de la protéine p53, un facteur de transcription central à la réponse cellulaire aux dommages télomériques et aux dommages à l’ADN. Nous suggérons que TAPR1 agit comme un inhibiteur de la stabilité protéique de p53. En somme, ces travaux mettent en évidence la capacité des cribles génétiques CRISPR à approfondir nos connaissances sur le fonctionnement des processus de maintien de la stabilité génomique chez l’humain. / The genetic material (DNA) of an organism contains the necessary information for survival, growth and reproduction. Loss of this information strongly impacts the health of the organism and is the leading factor in aging and cancer. Almost all cells in an organism contain a copy of said genetic material (genome) and employ several mechanisms to repair any damaged section of the genome and to accurately copy it during cell division. We sought to understand the cellular processes by which cells maintain genome stability by systematically inactivating individual genes to uncover their role using pooled CRISPR-Cas9 screening. We employed genome-wide CRISPR screening in human cell lines in combination with specific chemical perturbations to identify gene deletions that enhance or suppress the phenotype of the chemical treatment, thereby shedding light on the effect of the treatment or the role of said enhancer/suppressor genes. We first focused on resveratrol; a small molecule first discovered in plants that has been suggested to extend lifespan in model organisms while also inhibiting cell proliferation ex vivo. Chemical-genetic screening pinpointed a role of resveratrol in inhibition of DNA replication. When we compared the cellular effects of resveratrol to hydroxyurea, a known inducer of replicative stress, we found that both treatments led to slower replication fork progression and activation of signaling in response to replicative stress. Importantly, we showed that the inhibition of DNA replication by resveratrol in human cells is a primary effect on cell proliferation and independent of the histone deacetylase Sirtuin-1, which has been implicated as the primary target in lifespan extension by resveratrol. We then studied the perturbation of a second cellular process, namely telomere maintenance. These specialized sequences at the termini of chromosomes are critical for the protection of chromosome ends and their erosion is counteracted by the enzymatic activity of telomerase. We performed a genome-wide CRISPR screen in cells that were concomitantly treated with a specific telomerase inhibitor, BIBR1532. We uncovered a strong genetic interaction between telomerase and a previously unannotated gene, C16orf72, which we named TAPR1. We found that TAPR1-depleted cells led to elevated p53 levels, a transcription factor central for the cellular response to telomeric and global DNA damage. We propose that TAPR1 is a negative regulator of p53 protein levels by promoting its turnover. Altogether, these studies highlight the power of CRISPR-Cas9 in genetic screening to uncover novel insight into the human genome stability maintenance network.
20

R-2-hydroxyglutarate modulates DNA Replication via Integrated Stress Response

Sharma, Jyoti 06 1900 (has links)
Les gènes de l'isocitrate déshydrogénase (IDH) sont mutés dans 70 à 80 % des gliomes de bas grade. Les enzymes mutantes IDH qui en résultent présentent une activité de gain de fonction, produisant du R-2-hydroxyglutarate (R-2-HG), appelé oncométabolite en raison de son accumulation anormale dans les tumeurs et de ses activités oncogéniques potentielles. Parmi les caractéristiques du cancer telles que la reprogrammation métabolique et épigénétique, le stress réplicatif et la stabilité du génome ont été peu caractérisés dans les cancers IDH-mutants. Par conséquent, cette étude vise à étudier l'impact de l'accumulation de R-2-HG sur la réplication de l'ADN et sa contribution au stress réplicatif dans les cancers IDH-mutants. Nous avons étudié la dynamique de la fourche de réplication dans des astrocytes humains normaux et confirmé les résultats dans d'autres lignées cellulaires normales et cancéreuses. Nous avons constaté que le traitement exogène par l'octyl-R-2-HG entravait la progression de la fourche de réplication et retardait par conséquent l'achèvement de la phase S. L'évaluation des niveaux de phosphorylation des protéines RPA, CHK1 et H2AX a révélé que la réponse classique au stress réplicatif (RSR) n'était pas activée. Un état cellulaire dans lequel la réplication de l'ADN est altérée sans activation de la RSR a notamment été décrit dans la littérature comme résultant de l'activation de la réponse au stress intégré (ISR). Cependant, l'activation de la RSI dans les cancers mutants IDH n'est pas bien étudiée. En évaluant les marqueurs d'activation de la RSI, tels que la phosphorylation de l'eIF2α et les niveaux de protéines ATF4, nous avons montré que l'octyl-R-2-HG activait la RSI. De plus, le blocage de l'ISR a partiellement sauvé la fourche de réplication et la progression de la phase S. Nous avons répliqué cette étude oncométrique. Nous avons reproduit ce défaut de réplication de l'ADN lié à l'oncométabolite ainsi que l'effet de sauvetage partiel de l'ISRIB lors de l'induction de la surexpression du gène IDH mutant. Nos résultats indiquent que la production de R-2-HG associée à la mIDH peut inhiber la dynamique normale de réplication de l'ADN via la signalisation ISR. / The isocitrate dehydrogenase (IDH) genes are mutated in 70-80% of low-grade gliomas. The resulting IDH mutant enzymes exhibit gain-of-function activity, producing R-2-hydroxyglutarate (R-2-HG), which is referred to as an oncometabolite due to its abnormal accumulation in tumours and potential oncogenic activities. Among the hallmarks of cancer such as metabolic and epigenetic reprogramming, replicative stress and genome stability have been poorly characterized in IDH-mutant cancer. Therefore, this study aims to investigate the impact of R-2-HG accumulation on DNA replication and its contribution to replicative stress in IDH-mutant cancers. We investigated replication fork dynamics in normal human astrocytes and confirmed the results in other normal and cancer cell lines. We found that exogenous treatment with octyl-R-2-HG impaired replication fork progression and consequently delayed S-phase completion. Assessment of RPA, CHK1 and H2AX protein phosphorylation levels revealed that the classical Replicative Stress Response (RSR) was not activated. Among others, a cell state in which DNA replication was impaired without activation of the RSR has been described in the literature as a result of activation of the Integrated Stress Response (ISR). However, ISR activation in IDH-mutant cancers is not well studied. Hence, by assessing ISR activation markers such as eIF2α phosphorylation and ATF4 protein levels, we showed that octyl-R-2-HG activated ISR. Moreover, blocking ISR partially rescued the replication fork and S-phase progression. We replicated this oncometabolite-related DNA replication defect as well as ISRIB’s partial rescue effect upon induction of mutant IDH gene overexpression. Our results indicate that mIDH-associated R-2-HG production possibly inhibits normal DNA replication dynamics via ISR signalling.

Page generated in 0.168 seconds