Spelling suggestions: "subject:"rescue robots"" "subject:"fescue robots""
1 |
Web-based Real-Time Communication for Rescue RobotsGallastegi, Akaitz January 2014 (has links)
In this thesis an audio and video streaming system is implemented for its use in rescue robots. WebRTC technology is used in order to stream in real time. Implemented in an architecture based on a Web server, two pages running WebRTC and a TURN1-STUN2 server, the system has been tested in terms of CPU and bandwidth utilization. Measurements show that when WebRTC is run in an Intel Core i3, less than 10% of CPU is used, whereas on smaller tablets the performance is not enough for running the application with the desired quality of service.
|
2 |
Developing robots that impact human-robot trust in emergency evacuationsRobinette, Paul 07 January 2016 (has links)
High-risk, time-critical situations require trust for humans to interact with other agents even if they have never interacted with the agents before. In the near future, robots will perform tasks to help people in such situations, thus robots must understand why a person makes a trust decision in order to effectively aid the person. High casualty rates in several emergency evacuations motivate our use of this scenario as an example of a high-risk, time-critical situation. Emergency guidance robots can be stored inside of buildings then activated to search for victims and guide evacuees to safety. In this dissertation, we determined the conditions under which evacuees would be likely to trust a robot in an emergency evacuation.
We began by examining reports of real-world evacuations and considering how guidance robots can best help. We performed two simulations of evacuations and learned that robots could be helpful as long as at least 30% of evacuees trusted their guidance instructions. We then developed several methods for a robot to communicate directional information to evacuees. After performing three rounds of evaluation using virtually, remotely and physically present robots, we concluded that robots should communicate directional information by gesturing with two arms. Next, we studied the effect of situational risk and the robot's previous performance on a participant's decision to use the robot during an interaction. We found that higher risk scenarios caused participants to align their self-reported trust with their decisions in a trust situation. We also discovered that trust in a robot drops after a single error when interaction occurs in a virtual environment. After an exploratory study in trust repair, we have learned that a robot can repair broken trust during the emergency by apologizing for its prior mistake or giving additional information relevant to the situation. Apologizing immediately after the error had no effect.
Robots have the potential to save lives in emergency scenarios, but could have an equally disastrous effect if participants overtrust them. To explore this concept, we created a virtual environment of an office as well as a real-world simulation of an emergency evacuation. In both, participants interacted with a robot during a non-emergency phase to experience its behavior and then chose whether to follow the robot’s instructions during an emergency phase or not. In the virtual environment, the emergency was communicated through text, but in the real-world simulation, artificial smoke and fire alarms were used to increase the urgency of the situation. In our virtual environment, we confirmed our previous results that prior robot behavior affected whether participants would trust the robot or not. To our surprise, all participants followed the robot in the real-world simulation of an emergency, despite half observing the same robot perform poorly in a navigation guidance task just minutes before. We performed additional exploratory studies investigating different failure modes. Even when the robot pointed to a dark room with no discernible exit the majority of people did not choose to exit the way they entered.
The conclusions of this dissertation are based on the results of fifteen experiments with a total of 2,168 participants (2,071 participants in virtual or remote studies conducted over the internet and 97 participants in physical studies on campus). We have found that most human evacuees will trust an emergency guidance robot that uses understandable information conveyance modalities and exhibits efficient guidance behavior in an evacuation scenario. In interactions with a virtual robot, this trust can be lost because of a single error made by the robot, but a similar effect was not found with real-world robots. This dissertation presents data indicating that victims in emergency situations may overtrust a robot, even when they have recently witnessed the robot malfunction. This work thus demonstrates concerns which are important to both the HRI and rescue robot communities.
|
3 |
Intelligent Gait Control Of A Multilegged Robot Used In Rescue OperationsKaralarli, Emre 01 December 2003 (has links) (PDF)
In this thesis work an intelligent controller based on a gait synthesizer for a hexapod robot used in rescue operations is developed. The gait synthesizer draws decisions from insect-inspired gait patterns to the changing needs of the terrain and that of rescue. It is composed of three modules responsible for selecting a new gait, evaluating the current gait, and modifying the recommended gait according to the internal reinforcements of past time steps. A Fuzzy Logic Controller is implemented in selecting the new gaits.
|
4 |
Immunity-based framework for heterogeneous mobile robotic systemsRaza, Ali, 1977- 21 February 2013 (has links)
Artificial immune systems (AIS), biologically inspired from natural immune functions, can be reactive as well as adaptive in handling generic and varying pathogens, respectively. Researchers have used the immunological metaphors to solve science and engineering problems where unknown/unexpected scenarios are plausible. AIS can be a suitable choice for various robotic applications requiring reactive and/or deliberative control. This research aims to translate modern trends in immunology, to develop an immunity-based framework, to control a team of heterogenous robots on varying levels of task allocation and mutual interactions. The presented framework is designed to work as a multi-agent system in which safe environment is treated reactively through innate immunity, whereas unsafe situations invoke adaptive part of immune system, simultaneously. Heterogeneity is defined in terms of different sensing and/or actuation capabilities as well as in terms of different behavior-sets robot(s) possess. Task allocation ranges from primitive to advanced behaviors. Mutual interactions, on the other hand, range from simpler one-to-one interaction to mutual coordination. In this context, a new immunity-based algorithm has been developed & tested, combining innate and adaptive immunities, to regulate cell populations and corresponding maturations, along with internal health indicators, in order to effectively arbitrate behaviors/robots in a heterogenous robotic system, in environments that are dynamic and unstructured. / text
|
5 |
Robot data and control server for Internet-based training on ground robotsKalyadin, Dmitry 01 June 2007 (has links)
To facilitate the emerging need for remote robot training and reach back, this thesis describes a system that allows for convenient web browser based robot operation over the Internet, while providing the means for recording and playback of all video, data and user actions. Training of first responder personnel on rescue robots is hindered by the fact that these devices are very expensive and are only affordable by a few specialized organizations that make them available by request at the time of a disaster. The system described in this thesis will allow first responders to practice on the robots without having to be physically present at same location. Having these capabilities of remote presence, the system can also be used in a real world response to transmit robot video and data to persons not present at the site of the incident, such as structural engineers or medical doctors.
The recording capability will be used as an aid during training and to help resolve accountability issues in the real world scenario. Similar demands in the area of network video surveillance are met by the use of a network DVR that records and relays video and controls between IP cameras and Internet clients. The server implemented in this thesis is unique in that it extends these capabilities to include data from various robot sensors. All of the mentioned above video, data, and controls are combined into a convenient web browser based graphical user interface. The server was implemented and tested using rescue robots, but could be tailored to any other distributed robot architecture where reliable and convenient web browser based robot operation over the Internet is desired.
System testing validated server capabilities of remote multi user robot operation, as well as its unique ability to store and play back external camera view along with robot video and data, to help with situation awareness. Conclusions drawn from the experiments indicate that this system can indeed be used for Internet robot training, as well as for other robotics research such as bandwidth regulation techniques or human-robot interaction studies by non computer science researchers who do not have physical access to robots.
|
6 |
Design Of A Mobile Robot To Move On Rough TerrainKirmizigul, Ugur 01 December 2005 (has links) (PDF)
In this thesis work, a mobile robot is designed to be used in search and rescue
operations to help the human rescue workers. The difficult physical conditions in the
ruins obstruct the movement. Therefore, it is aimed to design a search and rescue robot
which can move easily on rough terrain and climb over the obstacles. The designed
robot is made up of three modules. A connecting unit is designed that is situated
between each module. This connecting unit which is composed of two universal
and one revolute joint gives 5 DOF relative motions to the modules. On the other
hand, the wheel&rsquo / s continuous contact with the ground is important while moving on
rough terrain. In order to increase the adaptation of the robot to the rough terrain the
rear axle is connected to the body with a revolute joint. Besides, skid steering system
is used in the design of the robot to attain a compact and light solution which requires
few parts.
In the study, kinematic equations and dynamic equations of the robot are obtained
to be used by the control program. The dynamic equations are obtained by using
the Newton &ndash / Euler formulation. The forces, which are transmitted by the connecting
unit to the modules, and the reaction forces formed between the wheels and
the ground are derived by using these equations.
&ldquo / Follow-the-Leader approach&rdquo / is used as a control strategy to make the
modules move in formation and to reduce the tracking problem. In this approach, the
first module is the leader and the second and third modules follow it. A Matlab program
is written to control the robot by using the constructed mathematical model of
the robot. The reaction forces between the wheels and the ground are calculated
through using the Matlab program written. Moreover to make the simulations of the
robot for some cases, a model is constructed in ADAMS program.
|
7 |
Motion Design and Control of a Snake Robot in Complex Environments Based on a Continuous Curve Model / 複雑環境におけるヘビ型ロボットの連続曲線モデルを用いた動作設計と制御Takemori, Tatsuya 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23505号 / 工博第4917号 / 新制||工||1768(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 松野 文俊, 教授 泉田 啓, 教授 小森 雅晴 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
8 |
A Whegs Robot Featuring a Passively Compliant, Actively Controlled Body JointBoxerbaum, Alexander Steele 17 May 2010 (has links)
No description available.
|
9 |
Fuzzy Actor-critic Learning Based Intelligent Controller For High-level Motion Control Of Serpentine RobotsAri, Evrim Onur 01 November 2005 (has links) (PDF)
In this thesis, an intelligent controller architecture for gait selection of a serpentine robot intended to be used in search and rescue tasks is designed, developed and simulated. The architecture is independent of the configuration of the robot and the robot is allowed to make different kind of movements, similar to grasping. Moreover, it is applicable to parallel processing in several aspects and it is an implementation of a controller network on robot segment network. In the architecture several behaviors are defined for each of the segments. Every behavior is realized in the form of Fuzzy Actor-Critic Learning agents based on fuzzy networks and reinforcement learning. Each segment controller determines the next suitable position in the sensory space acquired using ultrasound sensors, a genetic algorithm implementation then tries to find the change of the joint angles to achieve the desired movement in a given amount of time. This allows optimization on different criteria, during motion. Simulations are performed and presented to introduce the efficiency of the developed controller architecture. Moreover a simplified mathematical analysis is performed to gain insight of the controller dynamics.
|
Page generated in 0.1106 seconds