• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 20
  • 16
  • 14
  • 12
  • 5
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 184
  • 82
  • 54
  • 47
  • 40
  • 30
  • 25
  • 20
  • 17
  • 16
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Distribution and Characteristics of Slow-Cycling Cells in Rat Vocal Folds / ラット声帯におけるスローサイクリング細胞の分布と特徴

Kawai, Yoshitaka 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20235号 / 医博第4194号 / 新制||医||1019(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 別所 和久, 教授 鈴木 茂彦, 教授 渡邊 直樹 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
102

Morphology-Retaining Carbonization of Helical Aromatic Conjugated Polymers and Their Characteristic Properties / ヘリカル芳香族共役ポリマーの形態保持炭素化とその特性評価

Bairu, Yan 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20408号 / 工博第4345号 / 新制||工||1673(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 赤木 和夫, 教授 古賀 毅, 教授 辻井 敬亘 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
103

Numerical Analysis on Seismic Response of Cantilever Retaining Wall Systems and Fragility Analysis on Motion Response

Zamiran, Siavash 01 December 2017 (has links) (PDF)
In this investigation, seismic response of retaining walls constructed with cohesive and cohesionless backfill materials was studied. Fully dynamic analysis based on finite difference method was used to evaluate the performance of retaining walls during the earthquake. The analysis response was verified by the experimental study conducted on a retaining wall system with cohesive backfill material in the literature. The effects of cohesion and free-field peak ground acceleration (PGA) on seismic earth thrust, the point of action of earth thrust, and maximum wall moment during the earthquake were compared with analytical and experimental solutions. The numerical results were compared with various analytical solutions. The motion characteristics of the retaining wall during the earthquake were also considered. The relative displacement of the walls with various backfill cohesions, under different ground motions, and free-field PGAs were investigated. Current analytical and empirical correlations developed based on Newmark sliding block method for estimating retaining wall movement during earthquakes were compared with the numerical approach. Consequently, fragility analyses were conducted to determine the probability of damage to the retaining walls. To evaluate the fragility of the studied models, specific failure criterion was chosen for retaining walls based on the suggested methods in practice. Using numerical approaches, the effects of soil-wall interaction and wall rigidity on the seismic response of retaining walls were also evaluated in earthquake conditions for both cohesive and cohesionless backfill materials. According to the findings, practical correlations were presented for conducting the seismic design of retaining walls.
104

Script-based design toolkit for digitally fabricated concrete applied to terrain-responsive retaining wall design

Abdel-Aziz, Nada 08 August 2023 (has links) (PDF)
The potential of digitally fabricated concrete (DFC) to produce terrain responsive designs has not been thoroughly investigated. Existing research indicates diverse benefits of DFC, such as the rapid fabrication of customized geometries. This research clarifies the advantages and design processes involved in creating site-specific DFC structures. Existing literature is analyzed to provide an overview of fabrication methods and their impacts and constraints on design. Parametric scripting is used to develop an interactive toolkit that integrates aesthetic, structural, and fabrication considerations into the design process. This toolkit specifically focuses on unreinforced retaining walls with interchangeable modules for terrain analysis, wall form generation, structural analysis, and fabrication analysis. The toolkit provides valuable feedback, such as identifying optimum wall proportions, and enables rapid design explorations. The findings affirm the value of exploratory design tools in managing fabrication complexities. Additionally, by recreating an existing amphitheater, the research indicates that DFC can create site-specific geometries that draw from the surrounding terrain.
105

Design Automation and Optimization of Retaining Walls : Environmental Impact and Investment Cost Optimization using Genetic Algorithm

Mulek, Arman January 2022 (has links)
This thesis explored the possibilities of incorporating automation and optimization inthe design process of cantilever retaining walls. The programming language Pythonhas been used to develop a program that given certain inputs performs the necessarydesign verifications according to Eurocodes and Swedish standards. The GeneticAlgorithm (GA) was chosen as optimization algorithm, where the objectives of theoptimization were defined as minimization of investment cost (IC) and environmentalimpact (EI).Optimized solutions from the program were compared with a previously designedretaining wall in a case study. Savings ranging between 15% and 30% could beobtained depending on the restrictions that were imposed on the optimization. Resultsalso indicate that the optimization algorithm tends to output retaining walls withhigher reinforcement content when optimizing for EI, leading to thinner structuralmembers in comparison to optimizations with respect to IC. A parametric analysis wasfurthermore performed to study the influence of varying heights and concrete classeson the optimized solutions.
106

A Field Study of Construction Deformations in a Mechanically Stabilized Earth Wall

Abele, Nathan Daniel January 2006 (has links)
No description available.
107

Optimization of reinforced concrete cantilever retaining walls considering environmental impact and investment cost

Schmied, Christofer, Karlsson, Viktor January 2021 (has links)
Today's civil engineering structures are most often designed through a trial anderror approach, which means that the designer tests a design solution andevaluates whether all requirements are met. If any of the requirements are notmet, changes are made to the design until a feasible solution is obtained. It is atime-consuming process where the  nal design is not always optimal concerningmaterial consumption. In this study, a program has been developed in MATLAB®for the design of reinforced concrete retaining walls and by using optimizationalgorithms, the design process has been made automated and time-ecient. Theuse of optimization algorithms also allows for  nding a solution that is not onlyfeasible but also optimal. The developed program utilizes two objective functions,minimizing environmental impact or investment cost based on materialconsumption. In addition, the design calculations are developed according toEurocode and additional national requirements of Swedish standards.This thesis presents the background to the study, fundamental optimization theoryand how the developed program is designed. A case study is also presented whereexisting retaining walls have been examined to evaluate what savings could havebeen made using optimization algorithms in the design process. Lastly, guidelinesare also presented for designers to facilitate the choice of cross-sectional dimensionsand reinforcement bar dimensions when designing retaining walls.The results obtained in the case study show that using optimization algorithms inthe design process can make signi cant savings (10-20%) on investment cost andenvironmental impact. Moreover, the results show that an optimized retaining wallconcerning environmental impact also leads to a substantial reduction ininvestment costs and vice versa.
108

Retaining Prison Staff: The Influence of Leader Emotional Intelligence on Employee Job Satisfaction

Gibson, Emily S. H. 20 July 2017 (has links)
Correctional leadership faces staffing challenges that potentially compromise safety and security and cause stress for remaining prison staff. Leadership is especially crucial in prisons due to threats of danger and stress. Leaders exhibiting emotional intelligence control their own emotions and manage interactions with others. Staffing shortfalls and the significance of prison leadership motivated a quantitative investigation of the relationship between leader emotional intelligence and employee job satisfaction. The researcher disseminated electronic surveys to prison staff in 5 southern states, which resulted in 1,174 surveys for analysis. Participants completed a survey that included the Genos Emotional Intelligence Inventory and the Job Satisfaction Survey. Results from a hierarchical linear regression revealed that both select demographic factors of prison employees and employee perception of their supervisor’s emotional intelligence are significantly predictive of prison employee job satisfaction. Findings provide both practical and theoretical implications for correctional leaders and support further research in the area of correctional leadership. / Doctor of Philosophy
109

Seismic Response Of Geosynthetic Reinforced Soil Wall Models Using Shaking Table Tests

Adapa, Murali Krishna 02 1900 (has links)
Use of soil retaining walls for roads, embankments and bridges is increasing with time and reinforced soil retaining walls are found to be very efficient even under critical conditions compared to unreinforced walls. They offer competitive solutions to earth retaining problems associated with less space and more loads posed by tremendous growth in infrastructure, in addition to the advantages in ease and cost of construction compared to conventional retaining wall systems. The study of seismic performance of reinforced soil retaining walls is receiving much attention in the light of lessons learned from past failures of conventional retaining walls. Laboratory model studies on these walls under controlled seismic loading conditions help to understand better how these walls actually behave during earthquakes. The objective of the present study is to investigate the seismic response of geosynthetic reinforced soil wall models through shaking table tests. To achieve this, wrap faced and rigid faced reinforced soil retaining walls of size 750 × 500 mm in plan and 600 mm height are built in rigid and flexible containers and tested under controlled dynamic conditions using a uni-axial shaking table. The effects of frequency and acceleration of the base motion, surcharge pressure on the crest, number of reinforcing layers, container boundary, wall structure and reinforcement layout on the seismic performance of the retaining walls are studied through systematic series of shaking table tests. Results are analyzed to understand the effect of each of the considered parameters on the face displacements, acceleration amplifications and soil pressures on facing at different elevations of the walls. A numerical model is developed to simulate the shaking table tests on wrap faced reinforced soil walls using a computer program FLAC (Fast Lagrangian Analysis of Continua). The experimental data are used to validate the numerical model and parametric studies are carried out on 6 m height full-scale wall using this model. Thus, the study deals with the shaking table tests, dynamic response of reinforced walls and their numerical simulation. The thesis presents detailed description of various features and various parts of the shaking table facility along with the instrumentation and model containers. Methodology adopted for the construction of reinforced soil model walls and testing procedures are briefly described. Scaling and stability issues related to the model wall size and reinforcement strength are also discussed. From the study, it is observed that the displacements are decreasing with the increase in relative density of backfill, increase in surcharge pressure and increase in number of reinforcing layers; In general, accelerations are amplified to the most at the top of the wall; Behaviour of model walls is sensitive to model container boundary. The frequency content is very important parameter affecting the model response. Further, it is noticed that the face displacements are significantly affected by all of the above parameters, while the accelerations are less sensitive to reinforcement parameters. Even very low strength geonet and geotextile are able to reduce the displacements by 75% compared to unreinforced wall. The strain levels in the reinforcing elements are observed to be very low, in the order of ±150 micro strains. A random dynamic event is also used in one of the model tests and the resulted accelerations and displacements are presented. Numerical parametric studies provided important insight into the behaviour of wrap faced walls under various seismic loading conditions and variation in physical parameters.
110

Socialsekreterares arbete med familjehemsplacerade barn : En kvalitativ studie om barns bibehållande av relationer med anhöriga och andra betydelsefulla närstående / Social worker’s work about foster children : A qualitative study about children’s continuous relationships with family members and other significant related

Pöllänen, Sandra, Malmsten, Rebecca January 2016 (has links)
The aim of this study was to understand how a social workers responsible for foster children within the municipal social services, is working with the children’s continuous relationships with family members and other significant related, as well as which knowledge formed the basis for their work practice. The study is based on interviews with eight social workers from three different municipalities. The results showed that the work is based on the law which causing interpretations, in which the individual assessment is in fact to be based on the child's needs- and best, but in practice are decisions made by and involving several parties. The study showed that the guardians and foster cares wills and opinions weigh heavily, often at the expense of the child perspective. As a strategy to assess the child's best, the social workers turn to their own quiet knowledge and colleagues and the organization's traditions to retrieve knowledge that supports the decisions, and to a lesser extent to scientific knowledge and evidence-based practice. The social workers also expressed a wish to work more with scientific underpinnings, but the organization does not work with routine gathering of scientific knowledge.

Page generated in 0.0801 seconds