• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchung neurotroper Determinanten des Masernvirus an Gehirnschnittkulturen von Lewis Ratten

Busch, Johannes 06 December 2021 (has links)
Für die Bekämpfung sowie Behandlung einer Krankheit ist das vollständige Verständnis ihrer Pathogenese eminent. Die Masern werden durch das Masernvirus (MV) verursacht. Die Folge der Erkrankung kann nicht nur eine mehrerer Jahre anhaltende Schwächung des Immunsystems sein, ebenso können fatale neurologische (Spät-) Komplikationen auftreten. Die Mechanismen der Neuroinvasion, des Neurotropismus und der Neurovirulenz sind jedoch noch nicht vollständig verstanden, sodass es an spezifischen Behandlungsmöglichkeiten mangelt. Mit der vorliegenden Arbeit soll, unter Zuhilfenahme des reversen genetischen Systems und Gehirnschnittkulturen der Ratte, die Neuroadaptation des Masernvirus näher untersucht werden. Die Grundlagen bilden Mutationen des Matrix-, Fusions- und Polymerase-Gens welche von Dr. Soroth Chey und Prof. Dr. med. Uwe G. Liebert in Masernvirusisolaten aus Rattengehirnen nachgewiesen wurden. Untersucht wurden dabei zwei verschiedene MV-Isolate: das „MV-Isolat 1“ besitzt je eine Punktmutation des Matrix- und des Fusionsgens, während das „MV-Isolat 4“ eine Punktmutation des Matrixgens sowie vier Punktmutationen des Polymerase-Gens aufweist. Jede dieser Veränderungen bedingt einen Aminosäureaustausch. Separat und kombiniert wurden diese Substitutionen in der vorliegenden Arbeit in ein wildtypisches Masernvirus eingebracht. Die Nomenklatur dieser Virusklone ergab sich aus der Nummer des MV-Isolats und dem betroffenen Gen: „M1“, „F1“, „M1F1“, „M4“, „L4“ und „M4L4“. Mittels mutagener Primer erfolgte die Amplifikation und simultane Punktmutationsgenese eines, das Maserngenom-codierenden Plasmids. In dem hierfür verwendeten reversen genetischem System wird der Ribonukleoprotein-Komplex artifiziell in einer Helferzelllinie nachgebildet. Unter der Kontrolle des T7-Promotors wird in diesen Zellen auf Grundlage der mutierten Plasmide das virale Genom und Antigenom transkribiert. Die generierten Viren wurden in der Folge näher charakterisiert. So konnte gezeigt werden, dass alle generierten MV-Klone ebenso wie das parentale MV-IC323 in SLAM-exprimierenden Vero-Zellen unter Ausbildung von maserntypischen Synzytien replizieren. In Vero-Zellen mit und ohne den SLAM-Rezeptor bewirkt die M4 Mutation (R293Q) eine signifikant erhöhte Replikation gegenüber dem parentalen Virus. Ebenso ist das Auftreten der F1-Mutation (I225M) mit Synzytienbildung in SLAM-negativen Zellen korreliert. In unpolaren Zellen scheint demnach die C-terminal gelegene M4-Mutation die Bildung infektiöser Viruspartikel zu begünstigen. Die F1-Mutation scheint hingegen Synzytienbildung zu ermöglichen – dies, möglicher Weise unabhängig von der Bindung des H-Proteins an einen Rezeptor wildtypischer Masernviren. Für eine genauerer Untersuchung dieser Charakteristika in Bezug auf den eventuell induzierten Neurotropismus, wurden Gehirnschnitte der Lewis Ratte mit den generierten Masernviren infiziert. Es konnte gezeigt werden, dass 28 Tage nach der Infektion mit den Virus-Mutanten MV-F1 und MV-M1F1 signifikant mehr neuronale Zellen infiziert sind als im Vergleich zu allen anderen verwendeten Virusstämmen. Mittels des Gehirnschnitt-Kulturmodells konnte somit der Neurotropismus des „MV-Isolats 1“ ursächlich der F(I225M)-Mutation zugeordnet werden. Durch die hier gewonnenen Erkenntnisse wurde eine Grundlage zum Verständnis des Neurotropismus des MV gelegt sowie ein Modellsystem vorgestellt, welches ohne transgene Tiere die Analyse der neuronalen Adaptation des MV zulässt.
2

Molecular requirements of influenza virus hemagglutinin for site-specific S-­acylation and virus replication

Brett, Katharina 04 August 2015 (has links)
Das Hämagglutinin (HA) des Influenzavirus ist post-translational durch S-Acylierung von drei Cysteinen modifiziert. Zwei davon befinden sich in seiner zytoplasmatischen Domäne (CD) und enthalten Palmitat und eines am Cytosol-zugewandten Ende der Transmembranregion (TMR) wird bevorzugt mit Stearat acyliert. Es wird vermutet, dass entweder die Aminosäureumgebung der Acylierungsstelle oder dessen Lage relativ zur Membran bestimmt welcher Fettsäuretyp angeheftet wird. Diese Acylierungstellen sind zudem essentiell für die Virusreplikation. Ob auch andere Aminosäuren der CD essentiell sind, ist nicht bekannt. Nach einem umfangreichen Sequenzvergleich zur Identifikation konservierter Aminosäuren wurden rekombinante Viren mit Aminosäureaustauschen in der Nähe der drei Acylierungstellen hergestellt. Diese Austausche enthielten Punktmutationen, Verschieben des TMR Cysteins in die CD sowie die Deletion der gesamten CD. Viren ohne CD und ein Austausch neben einem acylierten Cystein verhinderten die Virusreplikation. Eine konservative Substitution derselben Position, andere Austausche in TMR und CD sowie das Schieben des TMR-Cysteins in die CD dagegen beeinflussten das Viruswachstum nur schwach. Einige der mutierten Codons revertierten zur ursprünglichen oder einer neuen Aminosäure. Rekombinante Viren wurden in MDCK-Zellen und embryonierten Hühnereiern vermehrt und mittels Massenspektrometrie analysiert. Es wurden keine unteracylierten Peptide detektiert, und selbst die zwei Letalmutationen behielten die Acylierung. Punktmutationen beeinträchtigten nur mäßig den Stearat-Gehalt, wogegen die Verlagerung des TMR-Cysteins in die CD die Stearylierung praktisch eliminierte. Mehr Stearat wurde angeheftet, wenn humane Viren in Säugerzellen im Vergleich zu aviären Zellen angezüchtet wurden. Die Position einer Acylierungsstelle repräsentiert relativ zur TMR-Spanne das Hauptsignal der Stearylierung während der Sequenzkontext und der Zelltyp das Fettsäuremuster modulieren. / Influenza virus’s hemagglutinin (HA) is post-translationally modified by S-acylation of three cysteines. Two are located in its cytoplasmic tail (CT) and contain palmitate and one at the end of the transmembrane region (TMR) is acylated primarily with stearate. It is hypothesized that either the acylation site’s amino acid environment or its location relative to the membrane determines which type of fatty acid is attached. Additionally, these acylation sites are essential for virus replication. Whether other amino acids in the CT are required for virus replication, is not known. Based on a comprehensive sequence comparison to identify conserved amino acids, recombinant viruses with amino acid substitutions in the vicinity of HA’s acylation sites were created. These substitutions included point mutations, shifting of a TMR cysteine to the CT and the deletion of the entire tail. The truncated tail mutation and a substitution adjacent to an acylated cysteine disabled virus replication. In contrast, a conservative substitution at this position, other exchanges in TMR and CT and moving the TMR cysteine to the CT had only subtle effects on virus growth. Yet, some of the mutated codons reverted to the original or other amino acids. Recombinant viruses were propagated in MDCK cells and embryonated chicken eggs and analyzed by mass spectrometry. No under-acylated peptides were detected, even the two lethal mutations did not abolish acylation. Point mutations only moderately affected the stearate content, while relocating the TMR cysteine to the CT virtually eliminated attachment of stearate. More stearate was attached if human viruses were grown in mammalian compared to avian cells. Hence, the location of an acylation site relative to the TMR represents the principal signal for stearate attachment, while the sequence context and the cell type modulate the fatty acid pattern.
3

Towards functional assignment of Plasmodium membrane transport proteins: an experimental genetics study on four diverse proteins

Korbmacher, François 15 July 2021 (has links)
Etliche Membran Transport Proteine (MTP) sind essentiell in den Plasmodium Blutstadien, und geraten zunehmend in den Fokus der Wirkstoffentwicklung. Die physiologischen Rollen der Transporter sind jedoch oft ungeklärt. In dieser Arbeit wurden mittels experimenteller Genetik funktionelle Charakteristika der MTPs untersucht. Am Maus Parasiten Plasmodium berghei und der Plasmodium falciparum Blutstadien-Kultur wurden vier MTPs ausgewählt: ein konservierter Folat Transporter (FT2), sowie eine P. falciparum-spezifisches P-Typ ATPase und zwei essentielle MTPs (CRT und ATP4). Diese Auswahl verkörpert ein breites Spektrum an MTP Kandidaten und reflektieren zudem das Potenzial und die Grenzen funktioneller Analysen von Plasmodium MTPs mittels reverser Genetik. Für den Folat Transporter 2 (FT2) wurde eine Kombination von transgenen Strategien auf P. berghei angewandt. Durch ein endogenes tag von FT2 wurde die Lokalisierung im Apicoplast, sowie dessen Expression über fast den kompletten Zyklus hinweg gezeigt. Nach der Deletion von FT2, wiesen die Parasiten einen Defekt während der Sporulation auf. Demzufolge bilden sich nur nicht infektiöse Sporozoiten, was letztendlich zur Unterbrechung des Lebenszyklus der Parasiten führt. Eine Aminophospholipid P-Typ ATPase, wurde mittels CRISPR/Cas9 in P. falciparum genetisch deletiert und die Mutante analysiert. Im Gegensatz zu den meisten vitalen P-Typ ATPasen erweist sich das Gen in den asexuellen Blutstadien als entbehrlich. Des Weiteren bilden die MTPs ATP4 und CRT einen einflussreichen Faktor bei Malaria-Therapien. Eine umfassende Analyse von räumlichen und zeitlichen Expressionsmustern von transgenen Parasiten mit mCherry-getaggten Proteinen zeigt ein Expression der beiden MTPs über die Blutstadien hinaus, was auf zusätzliche Funktionen in den jeweiligen Stadien verweist. Diese Studie trägt, basierend auf Lokalisation, Expression und funktioneller Deletion, zur funktionellen Entschlüsselung der vier untersuchten MTPs bei. / Many membrane transport proteins (MTP) are essential for Plasmodium infection and gain importance as candidate drug targets in malaria therapy, whereas the physiological functions often remain enigmatic. In this thesis, we applied experimental genetics to determine key characteristics of four Plasmodium MTPs. We employed the murine malaria model parasite Plasmodium berghei and in vitro blood cultures of Plasmodium falciparum. We selected one conserved MTP called FT2, which was previously shown to transport folate, a P-type ATPase that is specific for P. falciparum as well as two essential MTPs, CRT and ATP4. These targets exemplify the range of druggable candidates and illustrate the potential and limitations of reverse genetics to decipher their physiological roles. A combination of transgenic and knockout strategies was applied to the P. berghei folate transporter 2 (FT2). We show that endogenously tagged FT2 localises to the apicoplast membranes, and is broadly expressed throughout the parasite’s life cycle. Analysis of FT2-deficient parasites revealed a severe sporulation defect in the vector; the vast majority of ft2– oocysts form large intracellular vesicles which displace the cytoplasm. Very few sporozoites are generated and these are non-infectious to the mammalian host, resulting in a complete arrest of Plasmodium transmission. A candidate aminophospholipid P-type ATPase, was assessed by a CRISPR/Cas9-mediated gene disruption. Compared to many vital P-type ATPases this gene is dispensable for asexual blood replication. Two MTPs, ATP4 and CRT are prime targets for antimalarial therapies. A comprehensive spatio-temporal expression analysis of transgenic parasites expressing mCherry-tagged proteins revealed expression beyond blood infection, indicative of functions in additional parasite stages. The findings of this study contribute towards a better understanding of the roles of the four MTPs based on localisation, expression and functional deletion.
4

Die Proteine HA und M2 von Influenzaviren

Siche, Stefanie 12 May 2016 (has links)
Die Assemblierung von Influenzaviren erfolgt an Rafts der apikalen Wirtszellplasmamembran mit denen das Hämagglutinin (HA) über Acylierungen im C-Terminus und hydrophobe Aminosäuren seiner Transmembrandomäne (TMD) interagiert. M2 besitzt eine cytoplasmatische amphiphile Helix (AH), die ebenso potenzielle Raft-Motive aufweist: Eine Acylierung und Cholesterol-Bindemotive. In dieser Arbeit wurde per Konfokalmikroskopie an polarisierten Zellen, die fluoreszenzmarkierte M2-Varianten exprimierten, gezeigt, dass diese M2-Motive nicht für den apikalen Transport, der vermutlich durch Raft-ähnliche Vesikel erfolgt, benötigt werden. Messungen des Förster-Resonanzenergietransfers über Fluoreszenz-Lebenszeit-Mikroskopie (FLIM-FRET) in der Plasmamembran lebender Zellen, die fluoreszenzmarkiertes HA und M2 koexprimierten, ergaben, dass diese Motive auch nicht für die Interaktion mit den durch HA, in Abhängigkeit von dessen Raft-Motiven, stabilisierten Raft-Domänen notwendig sind. Mittels reverser Genetik konnten infektiöse WSN-Viren mit fehlender Acylierung am Ende der HA-TMD, nicht jedoch Viren ohne die zwei cytoplasmatischen Acylierungen hergestellt werden. Weiterhin ergaben Wachstumsanalysen, dass die Acylierung von HA und M2 für den gleichen Schritt des viralen Replikationszyklus von Bedeutung sind. Für die M2-AH wurde postuliert, dass sie die Membrankrümmung detektiert und durch Insertion in die Wirtszellmembran die Virusabschnürung bewirkt. Infektiöse Viren ohne M2 oder ohne die AH konnten ebenso wie Viren mit M2 mit einer Helix mit reduzierter Amphiphilität in dieser Arbeit nicht hergestellt werden. Allerdings führte die Substitution der AH durch typische krümmungsdetektierende oder modulierende Helices zu Viren, deren Wachstum um zwei bis vier Titerstufen im Vergleich zum Wildtyp reduziert war. Die Helix-Amphiphilität scheint wichtig zu sein, aber auch die Sequenz oder bestimmte Aminosäuren sind offenbar für eine effiziente Virusreplikation notwendig. / The assembly of influenza virus particles occurs at the apical plasma membrane of the host cell at membrane rafts which the hemagglutinin (HA) interacts with via acylations in its C-terminal region and via hydrophobic amino acids in the transmembrane domain (TMD). M2 possesses a cytoplasmic amphiphilic helix (AH) that also contains potential raft motifs: an acylation and cholesterol-binding motifs. In this work, confocal microscopy of polarised cells, which were expressing fluorescently labelled M2-variants, demonstrated that these motifs of M2 are not required for apical transport, which is assumed to be mediated by raft-like vesicles. Furthermore, FLIM-FRET (Förster resonance energy transfer measured via fluorescence lifetime imaging microscopy) analyses, performed in the plasma membrane of living cells coexpressing fluorescently labelled HA and M2, revealed that these M2-motifs are not required for association with the large coalesced raft phase organised by HA. In contrast, deleting HA’s raft-targeting features clearly reduced clustering with M2. While the removal of the two cytoplasmic acylations prevented the rescue of infectious virus by reverse genetics, a mutant virus without acylation in the HA-TMD could be rescued. Moreover, growth analyses revealed that the acylations of HA and M2 are important for the same step in the viral replication cycle. It has been postulated that the M2-AH detects membrane curvature and accomplishes membrane scission by inserting into the host cell membrane. Viruses without M2, without the M2-AH or with M2 containing a helix with reduced amphiphilicity could not be produced in this work. However, substituting the AH by typical curvature-sensing or -generating helices led to viruses with two to four orders of magnitude reduced growth as compared to wildtype virus. The amphiphilicity of the helix seems to be important, but also the sequence or specific amino acids appear to be necessary for an efficient virus replication.
5

Klonierung der Genomsegmente des Oropouche-Virus und Charakterisierung der Interferon-antagonistischen Aktivität des S-Segment-kodierten NSs-Proteins / Cloning of the genome segments of Oropouche virus and characterization of the interferon-antagonistic activity of the S segment-encoded NSs protein.

Keisers, Katharina 04 February 2015 (has links)
No description available.

Page generated in 0.0902 seconds