Spelling suggestions: "subject:"fram"" "subject:"eram""
1 |
SiOx-based resistive switching memory integrated in nanopillar structure fabricated by nanosphere lithographyJi, Li, active 21st century 30 September 2014 (has links)
A highly compact, one diode-one resistor (1D-1R) SiOx-based resistive switching memory device with nano-pillar architecture has been achieved for the first time using nano-sphere lithography. The average nano-pillar height and diameter are 1.3 μm and 130 nm, respectively. Low-voltage electroforming using DC bias and AC pulse response in the 50ns regime demonstrate good potential for high-speed, low-energy nonvolatile memory. Nano-sphere deposition, oxygen-plasma isolation, and nano-pillar formation by deep-Si-etching are studied and optimized for the 1D-1R configurations. Excellent electrical performance, data retention and the potential for wafer-scale integration are promising for future non-volatile memory applications. / text
|
2 |
Design, fabrication, and characterization of nano-scale cross-point hafnium oxide-based resistive random access memoryEllis, Noah 27 May 2016 (has links)
Non-volatile memory (NVM) is a form of computer memory in which the logical value (1 or 0) of a bit is retained when the computer is in its’ powered off state. Flash memory is a major form of NVM found in many computer-based technologies today, from portable solid state drives to numerous types of electronic devices. The popularity of flash memory is due in part to the successful development and commercialization of the floating gate transistor. However, as the floating gate transistor reaches its’ limits of performance and scalability, viable alternatives are being aggressively researched and developed. One such alternative is a memristor-based memory application often referred to as ReRAM or RRAM (Resistive Random Access Memory). A memristor (memory resistor) is a passive circuit element that exhibits programmable resistance when subjected to appropriate current levels. A high resistance state in the memristor corresponds to a logical ‘0’, while the low resistance state corresponds to a logical ‘1’. One memristive system currently being actively investigated is the metal/metal oxide/metal material stack in which the metal layers serve as contact electrodes for the memristor with the metal oxide providing the variable resistance functionality. Application of an appropriate potential difference across the electrodes creates oxygen vacancies throughout the thickness of the metal oxide layer, resulting in the formation of filaments of metal ions which span the metal oxide, allowing for electronic conduction through the stack. Creation and disruption of the filaments correspond to low and high resistance states in the memristor, respectively. For some time now, HfO2 has been researched and developed to serve as a high-k material for use in high performance CMOS MOSFETs. As it happens, HfO2-based RRAM devices have proven themselves as viable candidates for NVM as well, demonstrating high switching speed (< 10 ns), large OFF/ON ratio (> 100), good endurance (> 106 cycles), long lifetime, and multi-bit storage capabilities. HfO2-based RRAM is also highly scalable, having been fabricated in cells as small as 10 x 10 nm2 while still maintaining good performance. Previous work examining switching properties of micron scale HfO2-based RRAM has been performed by the Vogel group. However, a viable process for fabrication of nano-scale RRAM is required in order to continue these studies. In this work, a fabrication process for nano-scale cross-point TiN/ HfO2/TiN RRAM devices will be developed and described. Materials processing challenges will be addressed. The switching performance of devices fabricated by this process will be compared to the performance of similar devices from the literature in order to confirm process viability.
|
3 |
Fabrication and investigation of GaOx and InGaOx insulator for nonvolatile resistance memoryYang, Jyun-bao 22 July 2010 (has links)
Recently, the development of nonvolatile memory (NVM) is influence by scaling
down. When the device is miniaturized continuously, the tunnel oxide layer of the
floating gate will get thinner. In consequence the charges could leak into the substrate
and lead to loss all of stored information. In order to enhance the performance of the
non-volatility memory, the new generation non-volatile memories have been
developed. Advantages of the resistive random access memory (RRAM) are simple
structure, lower consumption of energy, higher operating speed and higher endurance.
RRAM might be expected to replace the memory of traditional floating gate. However,
the mechanisms of RRAM were controversial and more investigations were needed.
The aim of this study is to develop new material and theory by using the
insulator of GaOx and IGO (InGaOx, IGO). The bottom electrode (TiN) was deposited
on the substrate of Si2O3. The GaOx (300Å) and IGO (300Å) thin film were deposited
on the bottom electrode of TiN by Multi-Target Sputter. Then, the top electrode (Pt)
was deposited on the insulator. The sandwiched structure of Pt/GaOx/TiN and
Pt/IGO/TiN device was completed. Based on electrical measuring, the resistance
switching feature of Pt/GaOx/TiN is bipolar. The resistance switching features of
Pt/IGO/TiN are both bipolar and unipolar. The reliability of the device of
Pt/GaOx/TiN and Pt/IGO/TiN were maintained by retention at 85¢XC and 104 cycles
endurance. In order to study the device switching mechanisms, we measured the
resistance of the Rlow state and Rhigh state and observed the change of the resistance in
different temperature.
In the similar process, we sputter GaOx and IGO target with Ar gas mixes O2 gas,
in order to decrease the defect of thin film. By XPS analyzing, the thin film was stable
because the insulator sputter with Ar gas mixed O2 gas has sufficient oxygen. Based
on electrical measuring, the resistance switching of Pt/GaOx/TiN and Pt/IGO/TiN
which was sputter with Ar gas mixes O2 gas was stable.
We succeeded to find new material of RRAM which is GaOx and IGO. They
have the characteristics of stable resistance switching. Wide application of In and Ga
in modern optoelectronic semiconductor industry. These fabrication techniques can be
applied to the manufacture process of semiconductor industry.
|
4 |
Étude des mémoires résistives (RRAM) à base d’HfO2 : caractérisation et modélisation de la fiabilité des cellules mémoire et des nouveaux dispositifs d'accès (Sélecteurs) / Investigation of HfO2 based Resistive Random Access Memory (RRAM) : characterization and modeling of cell reliability and novel access deviceAlayan, Mouhamad 24 April 2018 (has links)
L'écart de vitesse entre le processeur et la mémoire vive est devenu un point faible pour les performances des systèmes. En raison de ces limitations, de nombreuses mémoires émergentes ont été proposées comme solutions alternatives à ces problèmes existant dans la hiérarchie mémoire. Les mémoires résistives (RRAM) sont considérées comme des candidats pour la « storage class memory » (SCM), les mémoires non volatiles embarquées (eNVM), et les systèmes neuromorphique. Cependant, les problèmes de fiabilité tels que la rétention de données sont encore en cours d'amélioration. De plus, pour obtenir des matrices mémoires de grande densité, la RRAM a besoin des sélecteurs qui seront intégrer en série avec elle dans une architecture un-sélecteur une-résistance (1S1R). Le sélecteur est nécessaire avec le point mémoire pour éliminer les problèmes des courants de fuite, qui gênent le bon fonctionnement de la matrice mémoire dans des architectures crossbar et verticales 3D.Dans cette thèse, notre objectif principal est de traiter les défis ci-dessus. Notre travail peut être divisé en deux parties principales : i) l'étude de la fiabilité des cellules RRAM basées sur HfO2 et ii) la caractérisation des opérations de base et des performances des cellules RRAM basées sur HfO2 et qui sont co-intégrées avec deux types différents des sélecteurs. Pour la partie fiabilité, nous avons étudié les effets du dopage aluminium (Al) sur la rétention de données des cellules RRAM à base de HfO2. Des dispositifs à simple et double couche avec différentes concentrations d'aluminium ont été fabriqués et testés. A partir des comportements électriques macroscopiques, comme la dégradation du diélectrique en fonction du temps (TDDB) et l’opération de forming avec des rampes de tension, on a extrait des propriétés microscopiques des matériaux tels que l'énergie d'activation nécessaire pour la rupture d’une liaison chimique à champ nul et le moment dipolaire des liaisons dans les matériaux testés. En utilisant ces paramètres microscopiques nous avons effectué tout au long de ce travail des simulations physiques pour comprendre les dynamiques de l’opération de forming ainsi que les mécanismes physiques impliqués pendant les opérations du dispositif mémoire. Deuxièmement, nous avons étudié l'immunité aux rayonnements de la RRAM à base de HfO2 pour les applications spatiales. Nos dispositifs RRAM ont été exposés à une énergie de 266 MeV d'ions lourds d'iode. Des analyses pré- et post-exposition ont été effectuées sur les états de la mémoire et les tensions de programmation pour étudier les effets de l'irradiation sur les caractéristiques du dispositif mémoire.Dans la partie des dispositifs d’accès, nous avons évalué deux types différents des sélecteurs. Une forte non-linéarité dans les caractéristiques courant / tension est obligatoire pour effectuer une lecture précise et une écriture à faible consommation. Dans le premier dispositif étudié, la sélectivité est introduite en ajoutant une couche d'oxyde dans l’empilement mémoire et qui agit comme une barrière tunnel. Le principal avantage de cette méthode est la facilité d’intégration de la barrière tunnel, par contre elle souffre d'une faible sélectivité (~ 10) et d'un faible courant de programmation qui dégrade la rétention de données. Deuxièmement, on a co-intégré avec l’RRAM un sélecteur OTS et le dispositif 1S1R a été entièrement caractérisé. Le sélecteur OTS offre une plus grande sélectivité par rapport à la barrière tunnel avec les possibilités d'augmenter fortement cette sélectivité par l'ingénierie des matériaux chalcogénures. Plus de 106 cycles de lecture ont été obtenu pour les dispositifs 1S1R en utilisant une stratégie de lecture innovante que nous avons suggérée pour éviter les lectures perturbatrices et réduire la consommation d'énergie. / The performance gaps in nowadays memory hierarchy on the first hand between processor and main memory, on the other hand between main memory and storage have become a bottleneck for system performances. Due to these limitations, many emerging memories have been proposed as alternative solutions to fill out such concerns. The emerging non-volatile resistive random-access memories (RRAM) are considered as strong candidates for storage class memory (SCM), embedded nonvolatile memories (eNVM), enhanced solid-state disks, and neuromorphic computing. However, reliability challenges such as RRAM thermal stability and resistance variability are still under improvement processes. In addition, to achieve high integration densities the RRAM needs two terminal selector devices in one-selector one-resistor (1S1R) serial cell. The BEOL selector device enables suppression of the parasitic leakage paths, which hinder memory array operation in crossbar and vertical 3D architectures.In this PhD, our main focus is to address and treat the above challenges. Here, the work can be divided into two main parts: i) the investigation of the reliability of HfO2 based RRAM cells and ii) the characterization of the basis memory operations and performances of HfO2 based RRAM cells co-integrated with two different back end of line (BEOL) selector technologies.For the reliability part, we have investigated the effects of aluminum (Al) doping on data retention of HfO2 based RRAM cells. Single and double layer devices with different aluminum concentration were fabricated and tested. From macroscopic electrical characteristics, like time dependent dielectric breakdown (TDDB) and ramped voltage forming, microscopic properties of the materials such as the activation energy to break a bond at zero field and the dipole moment of the bond were extracted. These parameters have been used to shed new light on the mechanisms governing the forming process by means of device level simulations. Second, we have addressed the radiation immunity of HfO2 based RRAM for possible space applications as well. Our RRAM devices were exposed to 266 MeV Iodine heavy ions energy. Pre- and post-exposure analysis were carried out on the memory states and the programming voltages to study the effects of the irradiation on the memory characteristics. Throughout this work, we have performed physics based simulations to understand the dynamics of the forming process as well as the physical mechanisms involved during the memory operations.For the access devices part, we have evaluated two different types of selectors. For accurate reading and low power writing a strong selectivity in the current/voltage characteristics is required. In the first studied device, the selectivity is introduced by adding an oxide tunnel barrier. The main advantage of this strategy is that it is easy to integrate, however it suffers of low selectivity (~10) and low programming current. Second, an OTS based selector co-integrated with HfO2 based RRAM was fully characterized. OTS selector provides higher selectivity compared to the oxide tunnel barrier with the possibilities to strongly increase this selectivity by material engineering. Over 106 read cycles have been achieved on our 1S1R devices using an innovative read strategy that we have suggested to prevent disruptive read and to reduce the power consumption.
|
5 |
Electron Microscopy Based Characterization of Resistive SwitchesKwon, Jonghan 01 September 2016 (has links)
Random Access Memory (RRAM) has emerged as a leading candidate for nonvolatile memory storage. RRAM devices typically consist of a metal/insulator/metal (MIM) structure and exhibit switching of the device resistivity state (low-to-high, highto- low) by application of electrical bias. It is now widely accepted that shunting and rupturing of local conductive paths (filaments) directly determines the resistance state. The size and composition of these filaments are very much an open question, but are usually attributed to high local concentrations of oxygen vacancies. Although there has been a huge body of research conducted in this field, the fundamental nature of the conductive path and basic switching/failure mechanisms are still under debate. This is largely due to a lack of structural analysis of existing filament size and composition in actual devices. Since the non-volatile nature and device reliability issues (i.e. retention and endurance) are directly related to the irreversible structural transformations in the device, microstructural characterization is essential for eventual commercialization of RRAM. In this study, I investigated oxygen vacancy defect dynamics under electric filed essential for resistive switching and aim to identify size, location, and chemical nature of the conductive filaments in RRAM devices by using a variety of devices and materials characterization methods: in situ transmission electron microscopy (TEM), highresolution TEM (HRTEM), scanning TEM (STEM)-electron energy loss spectroscopy (EELS), electron holography, rapid thermal annealing (RTA), transient thermometry, and electro-thermal simulation. I adopt an in situ electrical biasing TEM technique to study microstructural changes occurring during resistive switching using a model TiO2-based RRAM device, and confirmed the device is switchable inside of the TEM column. I observed extension and contraction of {011} and {121}-type Wadsley defects, crystallographic shear faults, associated with resistive switching. More specifically, emission and adsorption of oxygen vacancies under different polarity of electrical biases at the fault bounding dislocations were identified. The motion of Wadsley defects was used to track oxygen vacancy migration under electric field. Also, the microstructural changes that occur when the device experiences low electric field (~104 V/cm) was reported, akin to read disturb. Crossbar type RRAM device stacks consisting of TiN/a-HfAlOx/Hf/TiN were investigated to estimate filament size, filament temperature, and its chemical footprint using HRTEM, transient thermometry and numerical simulation. In each of the switched devices, a single crystallite ~ 8-16 nm in size embedded in an amorphous HfAlOx matrix was found. The HfAlOx crystallization temperature (Tc) of 850 K was determined by combining RTA and HRTEM imaging. In parallel, the filament size has been determined by transient thermometry. The temperature profile extracted from these measurements suggested that the peak filament temperature was > 1500 K at the center, with the hot zone (T > Tc = 850 K) extending to a radius of 7 nm around the filament. These results were consistent with the HRTEM observations of the crystallite size. The potential filament location (crystallite) in the switching devices was analyzed by STEM-EELS and identification of the filament chemical nature identification has been attempted.
|
6 |
Conception de cellules bipolaires commutables pour la technologie « Resistive Random Access Memory »Valverde, Lucas January 2014 (has links)
Avec le développement des technologies portables, les mémoires de type flash sont de plus en plus utilisées. Les compétences requises pour répondre au marché florissant augmentent chaque année. Cependant, les technologies actuelles sont basées sur l’intégration de transistors. Leurs performances impliquent un long temps d’écriture et des tensions d’opérations importantes.
La technologie Resistive Random Access Memory (RRAM) permet de répondre aux problématiques liées aux mémoires de type flash. La simplicité de fabrication de ces mémoires permet une forte densité d’intégration à faible coût. Également, les performances attendues par cette technologie dépassent les performances actuelles de Dynamic Random Access Memory (DRAM).
Les études réalisées actuellement au sein de la communauté scientifique permettent de déterminer les meilleures performances selon le choix des matériaux. Les premières études se concentraient sur l’oxyde de titane TiO2 en tant qu’isolant, puis avec l’augmentation de l’intérêt envers cette technologie le nombre d’oxydes étudiés s’est élargi. Les dispositifs conventionnels utilisent une couche d’oxyde comprise entre deux électrodes métalliques. En augmentant la densité de dispositifs dans des circuits en matrices croisées, l’isolation entre les points mémoires n’est pas garantie et les courants de fuites deviennent un facteur limitant. Pour éviter ces problèmes, le contrôle de chaque cellule est réalisé par un transistor, on parle d’architecture 1T1R avec n transistors nécessaires pour n points mémoires.
En 2008 Dubuc[1] propose un nouveau procédé de fabrication: le procédé nanodamascène. En adaptant ce procédé, et en disposant deux cellules dos à dos, nous créons un composant qui ne nécessite plus de transistor de contrôle [2]. Cela permet, en outre, de réduire les courants de fuite et simplifie l’adressage de chaque cellule. Les dispositifs sont incorporés dans une couche offrant une surface planaire. Il n’y a pas de limite technique à la superposition des couches, ce qui permet une haute densité d’intégration dans le Back-end-of-line du CMOS (Complementary Metal Oxyde Semiconductor), offrant de nouveaux horizons à la technologie RRAM.
Suivant les éléments précédents, mon projet de maîtrise a pour objectif de démontrer la possibilité de fabriquer des cellules RRAM en utilisant le procédé nanodamascène. Ce développement implique la fabrication, pour la première fois, de dispositifs micrométriques de type croisés et planaires en utilisant des architectures dont la fabrication est maîtrisée au sein du laboratoire. Cela permettra de mettre au point les différentes procédés de fabrication pour les deux types de dispositifs, de se familiariser avec les techniques de caractérisation électrique, d’acquérir des connaissances sur les matériaux actifs, et proposer des premiers dispositifs RRAM.
|
7 |
Research on Fabrication and Physical Mechanisms of Next-Generation Novel Nonvolatile Resistive Memory DevicesSyu, Yong-En 17 July 2012 (has links)
Resistive Random Access Memory (RRAM) is considered as the most promising candidate for the next-generation nonvolatile memories due to their superior properties such as low operation voltage, fast operation speed, non-destructive read, simple metal-insulator-metal (MIM) sandwich structure, good scale-down ability. The main targets of this research are to clarify the corresponding physical mechanism, develop the potential material and structure of RRAM and stabilize the resistive switching characteristics, in which clarifying the physical mechanism will be the key factor for RRAM into production in the future.
Recent research has suggested that variation of the low and high resistance states in RRAM could be caused due to the by instability in the formation and /disruption of the filament. In addition, the endurance and stability of RRAM may be related to the dissipation of oxygen ions in the switching layer. In this study, new material (Si Introduced) and structure (oxygen confined layer) are employed to improve RRAM performance and to clarify the physical mechanism. Furthermore, constant switching energy results can be used to select the optimal materials and structures also can be used to correctly allocate voltage and time to control RRAM.
The detail physical mechanism is studied by the stable RRAM device (Ti/HfO2/TiN) which is offered from Industrial Technology Research Institute (ITRI). The switching process is proved as the formation/disruption of the filament. Furthermore, the dynamic switching behaviors during reset procedure in RRAM were analyzed by the sequential experimental design to illustrate the procedure of atomic quantized reaction at the ultra-cryogenic temperature.
|
8 |
Study of Reflection Coefficient in Different Resistive States of HfO2-based RRAMNguyen, Thinh H. January 2018 (has links)
No description available.
|
9 |
Electrical Characterization of Memristors for Neuromorphic ComputingShallcross, Austin David 06 January 2022 (has links)
No description available.
|
10 |
Optimisation technologique et caractérisation électrique de mémoires résistives OxRRAM pour applications basse consommation / Technological optimization and electrical characterization of oxide based resistive memories (OxRRAM) for low power applicationsCabout, Thomas 19 December 2014 (has links)
Aujourd'hui, le marché des mémoires non-volatile est dominé par la technologie Flash. Cependant, cette technologie est en passe d'atteindre ses limites de miniaturisation. Ainsi, dans le but de poursuivre la réduction des dimensions, de nouveaux concepts mémoires sont explorés. Parmi les technologies émergentes, la mémoire résistive OxRRAM basée sur la commutation de résistance d’une structure Métal/Isolant/Métal, cette technologie présente des performances prometteuses, supporte une réduction de ses dimensions critiques et offre une bonne compatibilité avec les filières CMOS. Toutefois, cette technologie mémoire n'en est qu'au stade du développement et se heurte à une compréhension que partielle des mécanismes de commutation de résistance.Ce travail de thèse s'intègre dans ce contexte et vise à apporter une contribution supplémentaire au développement de cette technologie. La première partie est consacrée à la sélection du meilleur couple électrodes/matériau actif. A l’aide d’une analyse des caractéristiques électriques de commutation, l’empilement TiNHfO2Ti est retenu pour être intégré dans une structure 1T1R. Une seconde partie présente la caractérisation électrique avancée de l’architecture mémoire 1T1R. L'influence des différents paramètres de programmation est analysée et les performances électriques sont évaluées. La dernière partie apporte des éléments d'analyse et de compréhension sur les mécanismes de commutation de résistance. La mesure, en fonction de la température, des caractéristiques électriques de commutation a permis d'analyser l'influence de la température et du champ électrique sur les mécanismes physiques à l'origine du changement de résistance. / Today, non-volatile memory market is dominated by charge storage based technologies. However, this technology reaches his scaling limits and solutions to continue miniaturization meet important technological blocks. Thus, to continue scaling for advanced nodes, new non-volatile solutions are developed. Among them, oxide based resistive memories (OxRRAM) are intensively studied. Based on resistance switching of Metal/Isolator/Metal stack, this technology shows promising performances and scaling perspective but isn’t mature and still suffer from a lake of switching mechanism physical understanding.Results presented in this thesis aim to contribute to the development of OxRRAM technology. In a first part, an analysis of different materials constituting RRAM allow us to compare unipolar and bipolar switching modes and select the bipolar one that benefit from lower programming voltage and better performances. Then identified memory stack TiNHfO2Ti have been integrated in 1T1R structure in order to evaluate performances and limitation of this structure. Operating of 1T1R structure have been carefully studied and good endurance and retention performances are demonstrated. Finally, in the last part, thermal activation of switching characteristics have been studied in order to provide some understanding of the underling physical mechanisms. Reset operation is found to be triggered by local temperature while retention performances are dependent of Set temperature.
|
Page generated in 0.0449 seconds