• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photochemical and Spectroscopic Studies of Ru(II) Complexes as Potential Photodynamic Therapy Agents

Sears, R. Bryan 15 December 2010 (has links)
No description available.
2

Synthèse et étude des propriétés photophysiques de complexes de Ru(II) dérivés de ligands 1,2,3-triazole et de ligands calix[4 et 6]aréniques: utilisation de calix[4]tétradiazoniums pour la modification de surfaces

Mattiuzzi, Alice 09 March 2012 (has links)
Notre recherche se divise en deux parties distinctes. La première est issue d’une collaboration avec le Laboratoire de Chimie Organique et Photochimie de l’ULB des Pr. A. Kirsch-De Mesmaeker et C. Moucheron. Les travaux de ce groupe consistent à utiliser des complexes de Ru(II) polyazaaromatiques comme drogues photoactivables ou comme agents de diagnostic dans des systèmes biologiques. Cependant à cause de leur grande hydrophilie, ces complexes de Ru(II) ne peuvent pas pénétrer les membranes cellulaires, ce qui complique leur utilisation comme drogues photoactivables. <p>Afin d’améliorer cette pénétration cellulaire, deux stratégies ont été développées dans le cadre de cette collaboration. La première consistait en la synthèse et l’étude de deux nouveaux complexes de Ru(II) possédant des N,N-ligands facilement fonctionnalisables :[Ru(TAP)2btz]2+ et [Ru(TAP)2pytz]²+. Les études électrochimiques et photophysiques ont montré que l’état ³MLCT de ces complexes était un excellent agent oxydant. Ces complexes pourraient donc photo-réagir avec une guanine pour former un photo-adduit. Néanmoins, une étude photophysique plus détaillée a montré que l’état excité du complexe [Ru(TAP)2pytz]²+ possédait une durée de vie plus longue que celui du [Ru(TAP)2btz]2+. Par ailleurs, le [Ru(TAP)2pytz]²+ est plus photostable dans l’eau que le [Ru(TAP)2btz]2+. Seul, le complexe de Ru(II) constitué de deux ligands TAP et d’un ligand pytz facilement fonctionnalisable pourrait donc être utilisé pour photo-réagir avec des biomolécules dans l’eau.<p>La deuxième stratégie concernait la synthèse et l’étude de complexes de Ru(II) à partir de ligands dérivés de calix[4 ou 6]arènes. Des stratégies de synthèses originales ont été mises au point pour greffer une unité phen ou pytz sur des calix[4 ou 6]arènes mono-fonctionnalisés. Par la suite, des antennes de reconnaissance cellulaire (sucres) ont été introduites sur les positions phénoliques restantes des calixarènes dans le but d’effectuer une vectorisation ciblée. Pour cela, l’alkylation des positions phénoliques par des groupes azido a été mise au point. Ces groupes azido ont alors été mis en réaction avec des sucres possédant une fonction alcyne afin d’obtenir des ligands multivalents. Après, une réaction de complexation avec les précurseurs métalliques de Ru(II), ces différents ligands ont conduit aux nouveaux complexes calix[4 ou 6]arène-Ru(II) désirés.<p>Les propriétés électrochimiques et photophysiques des différents complexes de Ru(II) ont ensuite été étudiées. L’état ³MLCT des différents complexes est un excellent agent oxydant. Cependant, l’étude des propriétés photophysiques a montré que seul le complexe [(TAP)2Rupytz’(diN3C6)2+ était un candidat potentiel pour photo-réagir avec des biomolécules. En effet, un quenching des durées de vie a été observé pour les complexes de Ru(II) possédant des groupes phénol. Il est probablement provoqué par un transfert d’électron intramoléculaire du phénol vers l’état excité du complexe. Un quenching de luminescence a également été observé avec le complexe [(TAP)2Ruphen’(trisN3C4)2+ qui est probablement dû à un TE intramoléculaire du complexe excité vers le groupe azido. Le complexe multivalent n’a pas pu être étudié dans le cadre de ce travail mais il devrait être intéressant pour photo-réagir avec une biomolécule. <p>La seconde partie de ce travail est le fruit d’une collaboration avec le Laboratoire de Matière Condensée et de Systèmes Electroactifs (équipe des Dr. P. Hapiot et C. Lagrost, UMR 6510, Université de RENNES 1) et avec le Pr. O. Reinaud (Laboratoire de Chimie et Biochimie pharmacologiques et toxicologiques, UMR 8610, Université Paris Descartes). <p>Our research is divided into two distinct parts. The first part was developed in collaboration with the Laboratory of Organic Chemistry and Photochemistry of the Professors Andrée De Mesmaeker and Cécile Moucheron (ULB). The research topic of this group consists in using polyazaaromatic Ru(II) complexes as potential drugs in anti-cancer therapy or as diagnostic agents in biological systems. However, because of their high hydrophilicity, these Ru(II) complexes can not penetrate cell membranes which prevents their use as photoreactive drugs.<p>In order to enhance the cellular uptake, two strategies have been developed in the frame of this collaboration. The first one has consisted in the synthesis and study of two new Ru(II) complexes from N,N-ligands that can be readily functionalized: [Ru(TAP)2btz]2+ and [Ru(TAP)2pytz]²+. The photophysical and electrochemical studies have shown that both complexes behave as excellent oxidizing agents in their ³MLCT state. Thus, these complexes could photo-react with a guanine to form a photo-adduct. However, a more detailed examination of the photophysical parameters has shown that the excited state lifetimes of the complex [Ru(TAP)2pytz]²+ is longer than that of [Ru(TAP)2btz]2+. Moreover, the [Ru(TAP)2pytz]²+ is more photostable in water than the [Ru(TAP)2btz]2+. So, the Ru(II) complex obtained by the combination of two TAP ligands and one functionalized pytz ligand is an attractive photoreagent for biomolecules.<p>The second strategy has involved the synthesis and study of Ru(II) complexes from ligands based on calix[4 or 6]arenes. Original strategies have been developed to graft one phen or pytz unit on mono-functionalized calix[4 or 6]arenes. Subsequently, cellular recognition subunits (sugars) were introduced on the phenolic positions of calixarenes in order to perform a targeted vectorization. For this, the alkylation of phenolic positions by azido groups has been developed. These azido groups were then reacted with alkyne-glycoside to obtain multivalent ligands. After a complexation reaction with Ru(II) precursors, these ligands have led to new calix [4 or 6] arene-Ru(II) complexes. <p>Then, the photophysical and electrochemical properties of the different Ru(II) complexes were studied. The various complexes are sufficiently oxydizing in their ³MLCT. However, the study of their photophysical properties has shown that only the complex [(TAP)2Rupytz'(diN3C6)2+ could be a potential candidate to photo-react with biomolecules. Indeed, a quenching of lifetimes has been observed for the Ru(II) complexes with phenolic groups. It is probably due to an intramolecular electron transfer from the phenolic groups to the excited state of the complex. A luminescence quenching was also observed with the complex [(TAP)2Ruphen'(trisN3C4)]2+ probably because of an intramolecular electron transfer from the excited complex to the azido group. The multivalent complex has not been studied but it should be a valuable candidate to photo-react with a biomolecule. <p>The second part of this work is the result of a collaboration with the Laboratory of Condensed Matter and Electroactive Systems (Doctors Philippe Hapiot and Corinne Lagrost team, UMR 6510, Université de Rennes 1) and With the Professor Olivia Reinaud (Laboratory of Chimie et Biochimie pharmacologiques et toxicologiques, UMR 8610, Université Paris Descartes). / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
3

Conceitos supramoleculares e morfologia interfacial em células solares de TiO2 / Supramolecular concepts and interfacial morphology in TiO2 solar cells

Parussulo, André Luis Araújo 18 February 2013 (has links)
Esta tese tem como objetivo contribuir para o conhecimento e desenvolvimento das células solares sensibilizadas por corantes, através da elaboração de novas espécies supramoleculares e de estudos fundamentais de caracterização do filme de TiO2-P25 e da interface TiO2-Corante pela técnica de microscopia Raman confocal. Os estudos de microcopia Raman confocal da distribuição das fases cristalinas rutilo e anatase em filmes de TiO2-P25 (Degussa) mostraram que a fase rutilo está presente em agregados de diferentes tamanhos (de 250 nm a 3 &#181;m) distribuídos na fase anatase e que estes agregados permaneceram mesmo após os processos de preparação da suspensão coloidal. Na presença do corante N3, verificou-se que a irradiação com laser em 532 nm, usando potência acima de 25 mW cm-2, provoca a absorção e posterior combustão do filme interfacial, com drásticas mudanças na morfologia visualizadas por microscopia Raman confocal, revelando a ocorrência da transformação de anatase em rutilo na região de incidência do feixe de laser. Outro ponto investigado nesta tese, foi a síntese e aplicação de novos sensibilizadores supramoleculares em células solares sensibilizadas por corante (DSC), visando diminuir os processos de recombinação e melhor aproveitamento do espectro solar através da estabilização do corante foto-oxidado e da transferência vetorial de elétron/energia. Além dos trabalhos com novas porfirinas supramoleculares, reproduzidas no apêndice, esta tese apresenta um estudo detalhado de uma série, formada por três espécies diméricas, constituídas pelas unidades [Ru(dcbH2)Cl]+ e [Ru(dmb)2Cl]+, unidas por ligantes ponte com dimensões lineares crescentes, isto é: bpy, bpe e bpeb (dcbH2= ácido-2,2\'-bipiridina-4,4\'-dicarboxílico, dmb= 4,4\'-dimetil-2,2\'- bipiridina, bpy= 4,4\'-bipiridina, bpe= trans-1,2-bis(4-piridil)-etileno e bpeb= trans-1,4- bis[2-(piridil)etenil]-benzeno). O rendimento global das DSCs correspondentes cresceram com o aumento do tamanho da ponte, passando de 2,78 % para o corante dim-Ru-bpy, para 2,89 e 3,25 % nos corantes dim-Ru-bpe e dim-Rbpeb, respectivamente. Foi observado que os valores de Jsc e &#951; têm correlação linear com a distância de separação do buraco e da superfície do eletrodo de TiO2, ratificando que o processo de retardação da recombinação de carga, causado pelo aumento da ponte, é um fator muito importante para esta classe de compostos. Os resultados de IPCE mostraram que a unidade [Ru(dmb)2Cl(P)]+ também é responsável pela fotoinjeção de elétrons no TiO2. Assim, a excitação de qualquer uma das unidades, sempre acaba formando a espécie TiO2(e-)-Ru-Ru(h+) no filme interfacial. Os resultados confirmam as expectativas esperadas no planejamento energético vetorial, no qual o HOMO foi centrado na unidade distante da superfície e o LUMO ficou sobre a dcbH2 diretamente ancorada no superfície do TiO2. / This thesis encompasses our efforts to improve the knowledge and contribute to the development of dye-sensitized solar cells, by focusing on supramolecular design of new dyes and on critical aspects of the morphology of the TiO2-P25 and TiO2-Dye interfaces, as probed by confocal Raman microscopy. According to Raman imaging of the crystalline phase distribution of TiO2-P25 (Degussa) rutile was present as aggregates of different sizes (from 250 nm to 3 &#181;m) dispersed in the 25 nm anatase powder, persisting even after applying criterious procedures for generating uniform colloidal suspensions. In addition, the irradiation of TiO2-P25 films containing adsorbed N3 dye, using a 532 nm laser (power over to 25 mW cm-2) led to the absorption and instantaneous combustion of the dye, promoting drastic local changes associated with the anatase to rutile conversion. The design and application of new supramolecular sensitizers in DSC has also been pursued, aiming an improvement of efficiency by slowing down the electron-hole recombination process, while enhancing the light harvesting effects in the visible range by means of vectorial electron/energy transfer. Studies concerning another efficient supramolecular porphyrin dye, have also been performed and published (Appendix). As the main subject, a series of dimeric species have been reported. They were based on the [Ru(dcbH2)Cl]+ and [Ru(dmb)2Cl]+ units connected by linear bridging ligands of increasing lengths, such as: bpy, bpe and bpeb (dcbH2= 2,2\'-bipyridine-4,4\'-dicarboxylic acid, dmb= 4,4\'-dimethyl-2,2\'-bipyridine, bpy= 4,4\'-bipyridine, bpe= trans-1,2-bis(4- pyridyl)-ethylene e bpeb= trans-1,4-bis[2-(4-pyridyl)ethenyl]-benzene). The overall yield of the corresponding DSCs increased with the bridging ligand length, from 2.78 % for dim-Ru-bpy, to 2.89 % and 3.25 % for dim-Ru-bpe and dim-Ru-bpeb, respectively. The electrochemical parameters associated with the short circuit current exhibited a linear correlation with the hole separation distance between the TiO2 electrode and the binuclear dye terminal, confirming that the retardation of charge recombination through the increasing distance is indeed a relevant factor for this series of compounds. The IPCE results indicated that the [Ru(dmb)2Cl(P)]+ unit is also involved in electron transfer, such that the dye excitation always leads the TiO2(e-)-Ru-Ru(h+) species. This conclusion confirmed the success of the supramolecular design and vectorial transfer strategy, in which the HOMO center was placed far away from the surface, but in communication with the LUMO center located at the dcbH2 group anchored on TiO2.
4

Conceitos supramoleculares e morfologia interfacial em células solares de TiO2 / Supramolecular concepts and interfacial morphology in TiO2 solar cells

André Luis Araújo Parussulo 18 February 2013 (has links)
Esta tese tem como objetivo contribuir para o conhecimento e desenvolvimento das células solares sensibilizadas por corantes, através da elaboração de novas espécies supramoleculares e de estudos fundamentais de caracterização do filme de TiO2-P25 e da interface TiO2-Corante pela técnica de microscopia Raman confocal. Os estudos de microcopia Raman confocal da distribuição das fases cristalinas rutilo e anatase em filmes de TiO2-P25 (Degussa) mostraram que a fase rutilo está presente em agregados de diferentes tamanhos (de 250 nm a 3 &#181;m) distribuídos na fase anatase e que estes agregados permaneceram mesmo após os processos de preparação da suspensão coloidal. Na presença do corante N3, verificou-se que a irradiação com laser em 532 nm, usando potência acima de 25 mW cm-2, provoca a absorção e posterior combustão do filme interfacial, com drásticas mudanças na morfologia visualizadas por microscopia Raman confocal, revelando a ocorrência da transformação de anatase em rutilo na região de incidência do feixe de laser. Outro ponto investigado nesta tese, foi a síntese e aplicação de novos sensibilizadores supramoleculares em células solares sensibilizadas por corante (DSC), visando diminuir os processos de recombinação e melhor aproveitamento do espectro solar através da estabilização do corante foto-oxidado e da transferência vetorial de elétron/energia. Além dos trabalhos com novas porfirinas supramoleculares, reproduzidas no apêndice, esta tese apresenta um estudo detalhado de uma série, formada por três espécies diméricas, constituídas pelas unidades [Ru(dcbH2)Cl]+ e [Ru(dmb)2Cl]+, unidas por ligantes ponte com dimensões lineares crescentes, isto é: bpy, bpe e bpeb (dcbH2= ácido-2,2\'-bipiridina-4,4\'-dicarboxílico, dmb= 4,4\'-dimetil-2,2\'- bipiridina, bpy= 4,4\'-bipiridina, bpe= trans-1,2-bis(4-piridil)-etileno e bpeb= trans-1,4- bis[2-(piridil)etenil]-benzeno). O rendimento global das DSCs correspondentes cresceram com o aumento do tamanho da ponte, passando de 2,78 % para o corante dim-Ru-bpy, para 2,89 e 3,25 % nos corantes dim-Ru-bpe e dim-Rbpeb, respectivamente. Foi observado que os valores de Jsc e &#951; têm correlação linear com a distância de separação do buraco e da superfície do eletrodo de TiO2, ratificando que o processo de retardação da recombinação de carga, causado pelo aumento da ponte, é um fator muito importante para esta classe de compostos. Os resultados de IPCE mostraram que a unidade [Ru(dmb)2Cl(P)]+ também é responsável pela fotoinjeção de elétrons no TiO2. Assim, a excitação de qualquer uma das unidades, sempre acaba formando a espécie TiO2(e-)-Ru-Ru(h+) no filme interfacial. Os resultados confirmam as expectativas esperadas no planejamento energético vetorial, no qual o HOMO foi centrado na unidade distante da superfície e o LUMO ficou sobre a dcbH2 diretamente ancorada no superfície do TiO2. / This thesis encompasses our efforts to improve the knowledge and contribute to the development of dye-sensitized solar cells, by focusing on supramolecular design of new dyes and on critical aspects of the morphology of the TiO2-P25 and TiO2-Dye interfaces, as probed by confocal Raman microscopy. According to Raman imaging of the crystalline phase distribution of TiO2-P25 (Degussa) rutile was present as aggregates of different sizes (from 250 nm to 3 &#181;m) dispersed in the 25 nm anatase powder, persisting even after applying criterious procedures for generating uniform colloidal suspensions. In addition, the irradiation of TiO2-P25 films containing adsorbed N3 dye, using a 532 nm laser (power over to 25 mW cm-2) led to the absorption and instantaneous combustion of the dye, promoting drastic local changes associated with the anatase to rutile conversion. The design and application of new supramolecular sensitizers in DSC has also been pursued, aiming an improvement of efficiency by slowing down the electron-hole recombination process, while enhancing the light harvesting effects in the visible range by means of vectorial electron/energy transfer. Studies concerning another efficient supramolecular porphyrin dye, have also been performed and published (Appendix). As the main subject, a series of dimeric species have been reported. They were based on the [Ru(dcbH2)Cl]+ and [Ru(dmb)2Cl]+ units connected by linear bridging ligands of increasing lengths, such as: bpy, bpe and bpeb (dcbH2= 2,2\'-bipyridine-4,4\'-dicarboxylic acid, dmb= 4,4\'-dimethyl-2,2\'-bipyridine, bpy= 4,4\'-bipyridine, bpe= trans-1,2-bis(4- pyridyl)-ethylene e bpeb= trans-1,4-bis[2-(4-pyridyl)ethenyl]-benzene). The overall yield of the corresponding DSCs increased with the bridging ligand length, from 2.78 % for dim-Ru-bpy, to 2.89 % and 3.25 % for dim-Ru-bpe and dim-Ru-bpeb, respectively. The electrochemical parameters associated with the short circuit current exhibited a linear correlation with the hole separation distance between the TiO2 electrode and the binuclear dye terminal, confirming that the retardation of charge recombination through the increasing distance is indeed a relevant factor for this series of compounds. The IPCE results indicated that the [Ru(dmb)2Cl(P)]+ unit is also involved in electron transfer, such that the dye excitation always leads the TiO2(e-)-Ru-Ru(h+) species. This conclusion confirmed the success of the supramolecular design and vectorial transfer strategy, in which the HOMO center was placed far away from the surface, but in communication with the LUMO center located at the dcbH2 group anchored on TiO2.
5

Mechanistic Insights Into Small Molecule (Amine-Boranes, Hydrogen, Methane, Formic Acid Carbon dioxide) Activation Using Electrophilic Ru(II)-Complexes

Kumar, Rahul January 2016 (has links) (PDF)
Current fossil fuels (Coal and Petroleum) based economy is not sustainable in the long run because of its dwindling resources, and increasing concerns of climate change due to excessive carbon dioxide (CO2) emission. To mitigate CO2 emission and climate change, scientists across the world have been looking for clean and sustainable energy sources. Among them hydrogen gas (H2) could be more promising because it is the most clean fuel and can be produced from cheap source (water) which is renewable and abundant. Nevertheless, the bottleneck for hydrogen economy is lying in the cost of hydrogen production from water. Still there are no any efficient systems developed which can deliver hydrogen from water in economically viable way. Meanwhile, recent research on old molecule ammonia-borane (H3N•BH3, AB) as hydrogen source has increased the hope towards the hydrogen economy, however, catalytic recycling (or efficient regeneration) of AB from the dehydrogenated product polyborazylene (PB or BNHx) is the biggest hurdle which prevents use of AB as practical hydrogen storage material. Therefore, it is imperative to understand the dehydrogenation pathways of ammonia-borane (or related amine-boranes) which lead to polymeric or oligomeric product(s). On the other hand, methane (CH4) is abundant (mostly untamed) but cleaner fuel than its higher hydrocarbon analogs. To develop highly efficient catalytic systems to transform CH4 into methanol (gas to liquid) is of paramount importance in the field of catalysis and it could revolutionize the petrochemical industry. Therefore, to activate CH4, it is crucial to understand its binding interaction with metal center of a molecular catalyst under homogenous condition. However, these interactions are too weak and hence σ–methane complexes are very elusive. In this context, σ-H2 and σ-borane complexes bear some similarities in σ-bond coordination (and four coordinated boranes are isoelectronic with methane) could be considered as good models to study σ-methane complexes. Studying the H−H and B−H bond activation in H2 and amine-boranes, respectively, would provide fundamental insights into methane activation and its subsequent functionalization. Moreover, the proposed methanol economy by Nobel laureate George Olah seems more promising because methanol can be produced from CH4 (CO2 as well). This in turn will gradually reduce the amount of two powerful greenhouse gases from the earth’s atmosphere. Thus, efficient and economic production of methanol from CH4 and CO2 is one of most challenging problems of today in the field of catalysis and regarded as the holy grails. Furthermore, very recently formic acid (HCOOH) is envisaged as a promising reversible hydrogen storage material because it releases H2 and CO2 in the presence of a suitable and efficient catalyst or vice versa under ambient conditions. Objective of the research work: Taking the account of the above facts, the research work in this thesis is mostly confined to utilize electrophilic Ru(II)-complexes for activation of small molecules such as ammonia-borane (H3N•BH3) [and related amine-borane (Me2HN•BH3)], hydrogen (H2), methane (CH4), formic acid (HCOOH) and carbon dioxide (CO2) and investigation of their mechanistic pathways using NMR spectroscopy under homogeneous conditions. Though these molecules are small, they have huge impacts on chemical industries (energy sector and chemical synthesis: drugs/natural products) and environment [CO2 and CH4 are potent green house gases] as well. However, they are relatively inert molecules, especially CH4 and CO2, and impose very tough challenges to activate and functionalize them into useful products under ambient conditions. The partial oxidation of the strong C−H bond in CH4 for its transformation into methanol under relatively mild condition using an organometallic catalyst is considered as a holy grail in the field of catalysis which is mentioned earlier. More importantly, to develop better and highly efficient homogeneous catalytic systems for the activation of these molecules, it is imperative to understand the mechanistic pathways using well defined homogeneous metal complexes. Thus, an understanding of the interaction of these inert molecules with metal center is obligatory. In this context, discovery of a σ-complex of H2 gave remarkable insights into H−H bond activation pathways and its implications in catalytic hydrogenation reactions. Subsequently, σ-borane complexes of amine-boranes were discovered and found to be relatively more stable because of stronger M−H−B interaction and hence act as good models to study the M−H−C interaction of elusive σ-methane complex. On the other hand, HCOOH, a promising hydrogen storage material and its efficient catalytic dehydrogenation/decarboxylation and CO2 hydrogenation back to HCOOH using well defined homogeneous catalysts could lead to a sustainable energy cycle. Therefore, it is quite significant to understand the mechanistic pathways of formic acid dehydrogenation/decarboxylation and carbon dioxide reduction to formic acid for the development of next generation efficient catalysts. Chapter highlights: Keeping all these in view, we carried out thorough studies on the activation of these small molecules by electrophilic Ru(II)-complexes. This thesis provides useful insights and perspective on the detailed investigation of mechanistic pathways for the activation of small molecules such as H3N•BH3 [and Me2HN•BH3], H2, CH4, HCOOH and CO2 using electrophilic Ru(II)-complexes under homogeneous conditions using NMR spectroscopy. In Chapter 1 we provide brief overview of small molecule activation using organometallic complexes. This chapter presents pertinent and latest results from literature on the significance of small molecule activation. Although there are several small molecules which need our attention, however, we have focused mainly on H3N•BH3 [and Me2HN•BH3], H2, CH4, HCOOH and CO2. In Chapter 2, we present detailed investigation of mechanistic pathways of B−H bond activation of H3N•BH3 and Me2HN•BH3 using electrophilic [RuCl(dppe)2][OTf] complex using NMR spectroscopy as a model for methane activation. In these reactions, using variable temperature (VT) 1H, 31P{1H} and 11B NMR spectroscopy we detected several intermediates en route to the final products at room temperature including a σ-borane complex. On the basis of elaborative studies using NMR spectroscopy, we have established the complete mechanistic pathways for dehydrogenation of H3N•BH3/Me2HN•BH3 and formation of B−H bond activated/cleaved products along with several Ru-hydride and Ru-(dihydrogen) complexes. Keeping the B−H bond activation of amine-boranes in view as a model for methane activation, we attempted to activate methane using [RuCl(dppe)2][OTf] complex. In addition, [Ru(OTf)(dppe)2][OTf] complex having better electrophilicity than [RuCl(dppe)2][OTf], was synthesized and characterized. The [Ru(OTf)(dppe)2][OTf] complex has highly labile triflate bound to Ru-metal and therefore its reactivity studies toward H2 and CH4 were carried out where H2 activation was successfully achieved, however, no any spectroscopic evidence was found for C−H bond activation of CH4. The Chapter 3 describes the synthesis and characterization of several Ru-Me complexes such as trans-[Ru(Me)Cl(dppe)2], [Ru(Me)(dppe)2][OTf], trans-[Ru(Me)(L)(dppe)2][OTf] (L = CH3CN, tBuNC, tBuCN, H2) with an aim to trap corresponding σ-methane intermediate at low temperature. However, interestingly, we observed spontaneous but gradual methane elimination and orthometalation of [Ru(Me)(dppe)2][OTf] complex at room temperature. We thoroughly investigated mechanistic details of methane elimination and orthometalation of [Ru(Me)(dppe)2][OTf] using VT NMR spectroscopy, NOESY and DFT calculations. Furthermore, H2 activation was confirmed unambiguously by [Ru(Me)(dppe)2][OTf] and Ru-orthometalated complexes using NMR spectroscopy under ambient conditions. An effort was also made to activate methane using Ruorthometalated complex in pressurized condition of methane in a pressure stable NMR tube. Moreover, preliminary studies on protonation reaction of [Ru(Me)(dppe)2][OTf] using VT NMR spectroscopy to trap σ-methane at low temperature was carried out which provided us some useful information on dynamics between proton and Ru-Me species. The Chapter 4 provides useful insights into the mechanistic pathways of dehydrogenation/decarboxylation of formic acid using [RuCl(dppe)2][OTf]. Catalytic dehydrogenation of HCOOH using [RuCl(dppe)2][OTf] was observed in presence of Hunig base (proton sponge). In addition, a complex [Ru(CF3COO)(dppe)2][OTf] was synthesized and characterized using NMR spectroscopy, and found to readily dehydrogenate HCOOH. Moreover, preliminary results on transfer hydrogenation of CO2 into formamide using [RuCl(dppe)2][OTf] as a precatalyst and tert-butyl amine-borane (tBuH2N•BH3) as secondary hydrogen source was confirmed using 13C NMR spectroscopy. The mechanisms were proposed for HCOOH dehydrogenation and transfer hydrogenation of CO2 based on our NMR spectroscopic studies. Furthermore, a few test reactions of transfer hydrogenation of selected alkenes such as cyclooctene, acrylonitrile, 1-hexene using [RuCl(dppe)2][OTf] as pre-catalyst and tert-butyl amine-borane (tBuH2N•BH3) as secondary hydrogen source showed quantitative conversion to hydrogenated products.
6

Targeted Delivery of Cytotoxic Metal Complexes into Cancer Cells with and without Macromolecular Vehicles

Mitra, Raja January 2013 (has links) (PDF)
Anticancer active metal complexes such as cisplatin are routinely used for treating various cancers since 1978. However, the side effects of cisplatin overwhelm its therapeutic potential, especially in the latter stages of treatment. The nonspecific cytotoxicity of drugs could be avoided if targeted delivery to cancer cells is achieved using two different methodologies namely, enhanced permeability and retention in solid tumors (EPR) and receptor mediated endocytosis using a homing agent (RME). Ru(II)-arene complexes which are delivered specifically into cancer cells by the transferrin enzyme are less toxic compared to other metal complexes. The thesis describes the synthesis and use of Ru(II)-η6cymene complexes with different ancillary ligands which modulates the anticancer activity and the utility of two macromolecular vehicles in directed drug delivery. Ru(II)-η6cymene complexes with different heterocyclic ancillary ligands are synthesized and their anticancer activity tested against various cancer cell lines. Ruthenium complexes with mercaptobenzothiazoles are found to be quite active against the H460 cell lines that overexpress transferrin receptors and non-cytotoxic to the normal cell line, HEL299. Biophysical studies show that complexes (H1 and H8) can unwind the pBR322 DNA and inhibit the Topo IIα enzyme. A unique biphasic melting curve of CT DNA is observed in the presence of H1 which is attributed to formation of a dinuclear species (H20). Half-sandwich complexes of 6-thioguanine (6-TG) have also been prepared to improve the delivery and efficacy of 6-TG which is used in spite of a deleterious photoreaction. The Ru complexes cytotoxic to several leukemia cell lines. As they are photostable and anticancer active, they are better than 6-TG. Anticancer activity exhibiting piazselenols are used as ancillary ligands to make Ru(II)-arene complexes. Unfortunately, 1H NMR spectra suggests that piazselenol complexes dissociate in solution. However, the nitro substituted piazselenol and its Ru complex show the greatest cytotoxicity (<0.1 µM) against the A2780 cell line. The utility of PAMAM dendrimers and hyper branched polymers (hybramers) conjugated with a homing agent to target cancer cells by EPR and RME is probed. A cytotoxic copper complex (CuATSM) is covalently attached to the macromolecules through a disulfide linker, cleaved in the presence of GSH. Targeting efficacy of the folic acid-dendrimer conjugates is checked against two glioma cell lines. The folic acid-dendrimer conjugate is more active compared to dendrimer conjugate without folic acid against folate-receptor-overexpressing LN18 cell line. Biotin conjugated dendrimer shows better accumulation in HeLa cells, which require high amounts of biotin for growth. In vivo studies demonstrate that the conjugate can cross the blood-brain barrier. These studies suggest that PAMAM dendrimer can be used as a targeted delivery vehicle for cytotoxic metal complexes. Hyperbranched polymers decorated with propargyl groups and hydrophilic OH terminated TEG groups are attached to biotin and a cytotoxic Cu complex. (CuATSM-SS-CONH-N3) through ‘click’ reactions and tested against the HeLa cell line. On the basis of the studies conducted, it is concluded that targeted delivery of cytotoxic metal complexes are possible in the case of Ru(II) half-sandwich complexes and macromolecular vehicles like dendrimers are suitable for specifically delivering copper complexes into cancer cells.
7

Développement et caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïque

Yvon-Bessette, André 09 1900 (has links)
Ce projet de recherche mené en collaboration industrielle avec St-Jean Photochimie Inc. / PCAS Canada vise le développement et la caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïque. La quête du récoltage des photons se situant dans le proche-infrarouge a été au centre des modifications structurales explorées afin d’augmenter l’efficacité de conversion des cellules solaires de type organique et à pigments photosensibles. Trois familles de composés intégrant le motif dipyrrométhène ont été synthétisées et caractérisées du point de vue spectroscopique, électrochimique, structural ainsi que par modélisation moléculaire afin d’établir des relations structures-propriétés. La première famille comporte six azadipyrrométhènes au potentiel de coordination tétradentate sur des centres métalliques. Le développement d’une nouvelle voie synthétique asymétrique combinée à l’utilisation d’une voie symétrique classique ont permis d’obtenir l’ensemble des combinaisons de substituants possibles sur les aryles proximaux incluant les noyaux 2-hydroxyphényle, 2-méthoxyphényle et 2- pyridyle. La modulation du maximum d’absorption dans le rouge a pu être faite entre 598 et 619 nm. De même, la présence de groupements méthoxyle ou hydroxyle augmente l’absorption dans le violet (~410 nm) tel que démontré par modélisation. La caractérisation électrochimique a montré que les dérivés tétradentates étaient en général moins stables aux processus redox que leur contre-parti bidentate. La deuxième famille comporte dix dérivés BODIPY fusionnés de façon asymétrique en position [b]. L’aryle proximal a été modifié de façon systématique afin de mieux comprendre l’impact des substituents riches en électron et de la fusion de cycles aromatiques. De plus, ces dérivés ont été mis en relation avec une vaste série de composés analogues. Les résultats empiriques ont montré que les propriétés optoélectroniques de la plateforme sont régies par le degré de communication électronique entre l’aryle proximal, le pyrrole sur lequel il est attaché et le noyau indolique adjacent à ce dernier. Les maximums d’absorption dans le rouge sont modulables entre 547 et 628 nm et la fluorescence des composés se situe dans le proche- infrarouge. L’un des composé s’est révélé souhaitable pour une utilisation en photovoltaïque ainsi qu’à titre de sonde à pH. La troisième famille comporte cinq complexes neutres de RuII basés sur des polypyridines et portant un ligand azadipyrrométhène cyclométalé. Les composés ont montré une forte absorption de photons dans la région de 600 à 800 nm (rouge à proche- infrarouge) et qui a pu être étendue au-delà de 1100 nm dans le cas des dérivés portant un ligand terpyridine. L’analyse des propriétés optoélectroniques de façon empirique et théorique a montré un impact significatif de la cyclométalation et ouvert la voie pour leur étude en tant que photosensibilisateurs en OPV et en DSSC. La capacité d’un des complexes à photo-injecter un électron dans la bande de conduction du semi-conducteur TiO2 a été démontré en collaboration avec le groupe du Pr Gerald J. Meyer à University of North Carolina at Chapel Hill, premier pas vers une utilisation dans les cellules solaires à pigments photosensibles. La stabilité des complexes en solution s’est toutefois avérée problématique et des pistes de solutions sont suggérées basées sur les connaissances acquises dans le cadre de cette thèse. / This research project carried out in industrial collaboration with Saint-Jean Photochemicals Inc. / PCAS Canada aims at the development and characterization of dipyrromethene derivatives for photovoltaic applications. The quest for harvesting near- infrared photons was the central focus and various structural modifications were explored to improve the power conversion efficiency of organic and dye-sensitized solar cells (OPV and DSSC, respectively). Three families of chromophores which embedded a dipyrromethene motif were synthesized and characterized through spectroscopy, electrochemistry, X-ray diffraction and computationnal modelization in order to establish their structure-properties relationship. The first family includes six azadipyrromethenes with potential for tetradentate coordination on metallic centers. The development of a new asymmetric synthetic route together with the classical symmetric one allowed access to all possible combinations of derivatives including 2-hydroxyphenyl, 2-methoxyphenyl and 2-pyridyl substituents in the proximal position of the dipyrromethene. Modulation of the absorption maxima in the red ranged between 598 and 619 nm. Also, having methoxy or hydroxy substituents provided an increase of the violet absorption (~410 nm) as established by modelization. Electrochemical characterization showed that the tetradentate azadipyrromethenes were generally less stable towards redox processes as compared to their bidentate counter- parts. The second family includes ten asymmetric benzo[b]-fused BODIPYs where the proximal aryl was systematically modified in order to assess the impact of electron-rich substituents and fused aromatic cycles. The derivatives were further compared to a wide series of related BODIPYs. Empirical results showed the optoelectronic properties are dictated by the extend of electronic communication between the proximal aryl, the pyrrol to which it is attached and the adjacent indolic moiety. Absorption maxima in the red were modulated between 547 nm and 628 nm and the fluorescence was in the near-infrared. One compound proved to be a potential candidate for photovoltaic and pH probe applications. The third family includes five neutral RuII polypyridine complexes bearing a cyclometalated azadipyrromethene ligand. The compounds exhibit strong light absorption in the 600 – 800 nm range (red to near-infrared) that tails beyond 1100 nm in the terpyridine-based adducts. Analysis of the optoelectronic properties showed a significant impact of this novel cyclometalation strategy for dipyrromethene derivatives and paved the way for further incorporation of the resulting complexes as photosensitizers in OPV and DSSC. In collaboration with the group of Pr Gerald J. Meyer at the University of North Carolina at Chapel Hill, the capacity of one compound to photo-inject its electron into the conduction band of the TiO2 semiconductor was established, a first step towards their use in dye-sensitized solar cells. The structural instability in solution of the complexes hindered their full potential for photovoltaic applications and suggestions to improve them are proposed based on the knowledge acquired in the course of this thesis.

Page generated in 0.3713 seconds