• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 1
  • Tagged with
  • 20
  • 11
  • 11
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Wind Flow Induced Vibrations of Tapered Masts

Bani Hani, Ahmad 28 May 2009 (has links)
No description available.
12

EFFECT OF SLAB AND PIER CONNECTION ON TRANSVERSE CRACKING IN STRUCTURAL SLAB BRIDGES

Alzlfawi, Abdullah Hamoud 06 June 2018 (has links)
No description available.
13

Progressive Collapse: Simplified Analysis Using Experimental Data

Morone, Daniel Justin Reese 19 December 2012 (has links)
No description available.
14

Cost-benefit Analysis For Various Rehabilitation Strategies

Cetinceli, Serkan 01 February 2005 (has links) (PDF)
Over the last decade, six major earthquakes that occurred in Turkey dramatically demonstrated the poor performance of the buildings that were designed and constructed far from Turkish seismic code&rsquo / s requirements. The Marmara region, where most of the population and industry is located, is in the active seismic zone. With the rising cost of damages due to earthquakes, the necessity of the cost-benefit analysis for various rehabilitation strategies used in existing buildings has become a major concern for the decision makers who are in the position of making decisions on the building rehabilitation This study evaluates the performance of two different rehabilitation strategies applied to two five-story reinforced concrete buildings and assesses their cost-benefit analyses. These buildings were chosen to be representative of the typical residential To carry out the structural analysis of the buildings, three-dimensional models of the buildings were developed using SAP2000 [6]. Two alternative strengthening methods, insertion of reinforced concrete shear walls and application of Carbon Fiber Reinforced Polymers (CFRP) on hallow clay tile infill walls, were used for both of the buildings. While modeling infill walls strengthened with CFRP, two specific modeling attempts proposed by the researchers at Middle East Technical University were used. Pushover analyses were performed to evaluate seismic performance of the buildings. The Life Safety criterion was chosen as the rehabilitation objective. The global and component response acceptability limits were checked and the cost-benefit analysis was performed in order to determine the most attractive rehabilitation alternative. The results and comparisons given here illustrated that strengthening with shear wall had the most significant improvement on the seismic performance and cost effectiveness of the case study buildings. Outcomes of this study are only applicable to the buildings employed here and are bound by the assumptions made, approximations used and parameters considered in this study. The findings cannot be generalized for the buildings rehabilitated with CFRP due to lack of the consistent models for CFRP application. More research needs to be conducted to provide solid guidelines and reliable models applicable to the CFRP rehabilitated infill walls.
15

Detailed and Simplified Structural Modeling and Dynamic Analysis of Nuclear Power Plant Structures

Althoff, Eric C. 03 August 2017 (has links)
No description available.
16

[pt] OTIMIZAÇÃO DIMENSIONAL E DE FORMA DE TRELIÇAS ESPACIAIS MODELADAS COM CURVAS DE BÉZIER / [en] SIZE AND SHAPE OPTIMIZATION OF SPACE TRUSSES MODELED BY BÉZIER CURVES

WALDY JAIR TORRES ZUNIGA 18 December 2019 (has links)
[pt] Estruturas treliçadas espaciais são arranjos geométricos de barras amplamente utilizados em coberturas de edificações. Diversos fatores favorecem o seu uso, tais como a capacidade de vencer grandes vãos e a facilidade em assumir diversas formas. A busca pela geometria ótima é um objetivo importante no projeto de estruturas, onde o interesse principal é minimizar o custo da estrutura. O objetivo deste trabalho é apresentar um sistema computacional capaz de minimizar o peso de estruturas treliçadas cuja geometria é definida por curvas de Bézier. Portanto, os pontos de controle das curvas de Bézier são utilizados como variáveis de projeto. As áreas das seções transversais das barras e a altura da treliça também são consideradas como variáveis de projeto e restrições sobre a tensão de escoamento e a tensão crítica de Euler são impostas no problema de otimização. A estrutura é analisada por meio do método dos elementos finitos considerando a hipótese do comportamento linear físico e geométrico. Os algoritmos de otimização usados neste trabalho utilizam o gradiente da função objetivo e das restrições em relação às variáveis de projeto. O sistema computacional desenvolvido neste trabalho foi escrito em linguagem MATLAB e conta com uma integração com o SAP2000 por meio da OAPI (Open Application Programming Interface). Os resultados numéricos obtidos demonstram a eficiência e a aplicabilidade deste sistema. / [en] Spatial truss structures are geometrical arrangements of bars widely used in building roofs. Several factors favor their use, such as the ability to overcome large spans and the capability of assuming a variety of configurations. The search for optimal geometry is an important goal in the design of structures, where the main interest is to minimize the cost of the structure. The objective of this work is to present a computational system capable of minimizing the weight of truss structures whose geometry is defined by Bézier curves. Therefore, the control points of the Bézier curves are used as design variables. The cross-sectional areas of the bars and the truss height are also considered as design variables and constraints on the yield stress and Euler critical stress are imposed on the optimization problem. The structure is analyzed using truss elements considering the physical and geometric linear behavior. The optimization algorithms used in this work require the gradient of the objective function and constraints with respect to the design variables. The computational system developed in this work was written in MATLAB and has an integration with SAP2000 through the OAPI (Open Application Programming Interface). The obtained numerical results demonstrate the efficiency and applicability of the developed system.
17

Experimental and Analytical Collapse Evaluation of an Existing Building

Akah, Ebiji Anthony 15 October 2015 (has links)
No description available.
18

EXPERIMENTAL AND ANALYTICAL ASSESSMENT ON THE PROGRESSIVE COLLAPSE POTENTIAL OF EXISTING BUILDINGS

Song, Brian Inhyok 22 October 2010 (has links)
No description available.
19

A Risk Based Approach to Module Tolerance Specification

Shahtaheri, Yasaman 22 April 2014 (has links)
This research investigates tolerance strategies for modular systems on a project specific basis. The objective of the proposed research is to form a guideline for optimizing the construction costs/risks with the aim of developing an optimal design of resilient modular systems. The procedures for achieving the research objective included: (a) development of 3D structural analysis models of the modules, (b) strength/stability investigation of the structure, (c) developing the fabrication cost function, (e) checking elastic and inelastic distortion, and (f) constructing the site-fit risk functions. The total site-fit risk function minimizes the cost/risk associated with fabrication, transportation; alignment, rework, and safety, while maximizing stiffness in terms of story drift values for site re-alignment and fitting alternatives. The fabrication cost function was developed by collecting 61 data points for the investigated module chassis using the SAP2000 software while reducing the initial section sizes, in addition to the fabrication costs at each step (61 steps). With the reduction of the structural reinforcement, story drift values increase, therefore there will be a larger distortion in the module. This generic module design procedure models a trade-off between the amount of reinforcement and expected need for significant field alterations. Structural design software packages such as SAP2000, AutoCAD, and Autodesk were used in order to model and test the module chassis. This research hypothesizes that the influential factors in the site-fit risk functions are respectively: fabrication, transportation, alignment, safety, and rework costs/risks. In addition, the site-fit risk function provides a theoretical range of possible solutions for the construction industry. The maximum allowable modular out-of-tolerance value, which requires the minimum amount of cost with respect to the defined function, can be configured using this methodology. This research concludes that over-reinforced or lightly-reinforced designs are not the best solution for mitigating risks, and reducing costs. For this reason the site-fit risk function will provide a range of pareto-optimal building solutions with respect to the fabrication, transportation, safety, alignment, and rework costs/risks.
20

Seismic Retrofit of Load Bearing URM Walls with Internally Placed Reinforcement and Surface-Bonded FRP Sheets

Sabri, Amirreza 22 June 2020 (has links)
Concrete block masonry is a common building material used worldwide, including Canada. Reinforced masonry buildings, designed according to the requirements of recent building codes, may result in seismically safe structures. However, unreinforced masonry (URM) buildings designed and constructed prior to the development of modern seismic design codes are extremely vulnerable to seismic induced damage. Replacement of older seismically deficient buildings with new and seismically designed structures is economically not feasible in most cases. Therefore, seismic retrofitting of deficient buildings remains to be a viable seismic risk mitigation strategy. Masonry load bearing walls are the most important elements of such buildings, potentially serving as lateral force resisting systems. A seismic retrofit research program is currently underway at the University of Ottawa, consisting of experimental and analytical components for developing new seismic retrofit systems for unreinforced masonry walls. The research project presented in this thesis forms part of the same overall research program. The experimental component includes design, construction, retrofit and testing of large-scale load bearing masonry walls. Two approaches were developed as retrofit methodologies, both involving reinforcing the walls for strength and deformability. The first approach involves the use of ordinary deformed steel reinforcement as internally added reinforcement to attain reinforced masonry behaviour. The second approach involves the use of internally placed post-tensioning tendons to attain prestressed masonry behaviour. The analytical component of research consists of constructing a Finite Element computer model for nonlinear analysis of walls and conducting a parametric study to assess the significance of retrofit design parameters. The results have led to the development of a conceptual retrofit design framework for the new techniques developed, while utilizing the seismic provisions of the National Building Code of Canada and the relevant CSA material standards.

Page generated in 0.0227 seconds