• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 46
  • 12
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 140
  • 117
  • 44
  • 35
  • 19
  • 18
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Synthesis and Characterization of Ordered Mesoporous Inorganic Nanocomposite Materials

Fulvio, Pasquale Fernando 30 November 2009 (has links)
No description available.
62

[pt] HIDROTRATAMENTO DE ÓLEO DE COCO COM CATALISADORES DE NI E PT SUPORTADOS EM SILICA-ALUMINA E SBA-15 PARA A OBTENÇÃO DE ÓLEO DIESEL / [en] HYDROTREATMENT OF COCONUT OIL USING NI AND PT CATALYSTS SUPPORTED ON SILICA-ALUMINA AND SBA-15 TO OBTAIN DIESEL OIL

NUBIA MARIA MORA ALVAREZ 30 April 2020 (has links)
[pt] Os catalisadores de platina, níquel e platina suportados em sílica-alumina e sílica mesoporosa (SBA-15) foram investigados para o hidrotratamento do óleo de coco para produção de bio-óleo. Os suportes foram carregados com 1 por cento de Pt e 5 por cento de Ni e os catalisadores resultantes foram caracterizados para determinar suas propriedades estruturais e de textura. Os catalisadores foram reduzidos e testados em um reator semi-descontínuo a 360 C sob 10 MPa de hidrogênio durante 4 horas. Foram obtidos 30-40 por cento de remoção de oxigênio. As curvas de destilação dos produtos e seu ponto de inflamação e gravidade específica (a 20 C) foram determinados pelos métodos oficiais ASTM e ABNT/NBR a serem comparados com o diesel derivado do petróleo. As curvas de destilação e as propriedades físico-químicas foram muito próximas das especificações estabelecidas pela legislação brasileira para o diesel comercial. Destilou-se 90 por cento do volume de cada produto na faixa de temperatura de 180-370 C, o ponto de inflamação ficou entre 76-81 e o número do índice de cetano foi calculado como 47-48, de acordo com as especificações do diesel comercial. Os produtos obtidos com os catalisadores Pt/SiO2Al2O3 e PtNi/SBA-15 também apresentaram gravidade específica dentro da faixa de especificação (865 e 860,0 kg/m3, respectivamente). Os catalisadores utilizados mostraram sua potencial aplicação para a produção de biocombustíveis na faixa de diesel de petróleo pelo processo de hidrotratamento de óleo de coco. / [en] Platinum, platinum nickel and nickel catalysts supported on silicaalumina and mesoporous silica (SBA-15) were investigated for hydrotreating of coconut oil to produce bio oil. The supports were loaded with 1 percent Pt and 5 percent Ni content and the resulted catalysts were caracterized to determine their strutural and textural properties. The catalysts were reduced and tested in a semi-batch reactor at 360 C under 10 MPa of hydrogen during 4 hours. It was obtainned 30-40 percent of oxygen removal. The distillation curves of products and their flash point and specific gravity (at 20 C) were determined by oficials ASTM, and ABNT/NBR methods to be compared with the petroleum-derived diesel. The distillation curves and physicochemical properties were very close to specifications stabilished by Brazilian legislation for comercial diesel. 90 percent of the volume of each product was distilled in the temperature range of 180-370 C, the flash point was between 76-81 and the cetane index number was calculated as 47-48 in agreement with the specifications for comercial diesel. The products obtainned using the Pt/SiO2Al2O3 and PtNi/SBA-15 catalysts also presented specific gravity within the specification range (865 e 860.0 kg/m3 respectively). The catalysts used showed their potential application for the production of biofuels in the petroleum diesel range by coconut oil hydrotreatment process.
63

[en] SYNTHESIS AND CARACTERIZATION OF IRON CATALYSTS SUPPORTED ON SILICA ALUMINA AND SBA-15 AND APPLICATION IN THE FISCHER-TROPSCH REACTION / [pt] SÍNTESE E CARACTERIZAÇÃO DE CATALISADORES DE FERRO SUPORTADOS EM SÍLICA ALUMINA E SBA-15 E APLICAÇÃO NA REAÇÃO DE FISCHER-TROPSCH

THIAGO VALEJO GOMES PEREIRA 23 December 2021 (has links)
[pt] A reação de síntese de Fischer-Tropsch tem despertado interesse pelo seu caráter tecnológico e científico uma vez que este processo é capaz de converter o gás natural em produtos de elevado valor agregado. No presente trabalho, catalisadores de ferro suportados em sílica alumina ou em SBA-15 foram sintetizados, caracterizados, ativados e empregados na síntese de Fischer Tropsch. Os catalisadores foram preparados via impregnação incipiente do ponto úmido utilizando cloreto de ferro III, obtendo-se catalisadores de porcentagem mássica próximos a 5%, 10% e, no caso da sílica alumina, 2% também. As amostras foram caracterizadas por análise termogravimétrica (ATG), por medidas de adsorção física de N2, difração de raios-X (DRX) e redução à temperatura programada (RTP). O teor de ferro foi determinado pela espectroscopia de raios X por dispersão de energia (EDX). A ativação dos catalisadores e, em seguida, os testes catalíticos foram conduzidos em um reator tubular de bancada e os produtos gasosos foram analisados através de cromatografia gasosa com detector por ionização de chama (CG-DIC), cuja análise mostrou a formação de hidrocarbonetos C1-C5. A adsorção física de N2 revelou que, a introdução de ferro nos suportes, diminuiu a área superficial específica e o volume de poro dos materiais. A difração de raios X foi realizada para os catalisadores após a calcinação, mostrando a presença das fases α-Fe2O3 e Fe3O4; após a ativação e após a reação, onde se encontrou Fe0 e carbetos de ferro Fe5C2 e Fe2C. Os testes catalíticos mostraram maior seletividade aos hidrocarbonetos C2-3 para os catalisadores suportados em SBA-15. / [en] The Fischer-Tropsch synthesis reaction has showed interest due to its technological and scientific character since the process is able to convert natural gas into high added value products. In the present work, iron catalysts supported on SBA-15 or silica doped alumina were synthesized, characterized, activated and employed in the Fischer Tropsch synthesis. The catalysts were prepared via incipient wetness impregnation method using iron III chloride, obtaining catalysts with a weight percentage of about 5%, 10% and, in the case of silica doped alumina, 20% as well. The samples were characterized by thermogravimetric analysis (ATG), with measurements of N2 physisorption, X-ray diffraction (DRX) and temperature programmed reduction (RTP). Iron content was determined by energy dispersive X-ray spectroscopy (EDX). The catalysts activation and, subsequently, their catalytic tests were conducted in a bench tubular reactor and the products were analyzed by gas chromatography with flame ionization detector (CG-DIC), where it was detected the formation of C1-C4 hydrocarbons. The N2 physisorption showed that the introduction iron in the supports decreased the specific surface area and the pore volume of the materials. X-ray diffraction was performed for catalysts after calcination, showing the presence of α-Fe2O3 and Fe3O4 phases, after activation and after reaction, where it was found crystals of Fe0 and iron carbides Fe5C2 and Fe2C. The catalytic tests showed greater C2-3 selectivity for SBA-15 supported catalysts.
64

COMPARISON OF THE GRAPH-OPTIMIZATION FRAMEWORKS G2O AND SBA

Victorin, Henning January 2016 (has links)
This thesis starts with an introduction to Simulataneous Localization and Mapping (SLAM) and more background on Visual SLAM (VSLAM). The goal of VSLAM is to map the world with a camera, and at the same time localize the camera in that world. One important step is to optimize the acquired map, which can be done in several different ways. In this thesis, two state-of-the-art optimization algorithms are identified and compared, namely the g2o package and the SBA package. The results show that SBA is better on smaller datasets, and g2o on larger. It is also discovered that there is an error in the implementation of the pinhole camera model in the SBA package.
65

FOUNDATION INITIATIVE 2010: THE FOUNDATION FOR RANGE INTEROPERABILITY

Rumford, George J., Vuong, Minh, Bachinsky, Stephen T., Powell, Edward T. 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Foundation Initiative 2010 (FI 2010) is a joint interoperability initiative of the Director, Operational Test and Evaluation. The vision of FI 2010 is to enable interoperability among ranges, facilities, and simulations in a timely and cost-efficient manner and to foster reuse of range assets and future range system developments. To achieve this vision, FI 2010 is developing and validating a common architecture with a common range object model, a core set of tools, inter-range communication capabilities, interfaces to existing range assets, interfaces to weapon systems, and recommended procedures for conducting synthetic test events and training exercises. During FY 01, the project is developing the second Test and Training ENabling Architecture (TENA) Middleware Prototype as a basis for range communication. FI 2010 will advance a simulation-based acquisition or a ‘distributed engineering plant’ methodology to streamline weapon system acquisition. Benefits from the FI 2010 products include cost effective replacement of customized data links, enhanced exchange of mission data, organic TENA-compliant capabilities at test sites to be leveraged for future test events, and instrumentation system reuse. Through FI 2010, future inter-range operations, instrumentation development, and range capability sustainment will cost less and incur less risk.
66

Enzyme immobilisation and catalysis in ordered mesoporous silica

Smith, Graham Murray January 2008 (has links)
A range of mesoporous materials based on SBA-15 have been prepared and characterised. The materials were templated by neutral block copolymer P123, and typically have a hexagonal (p6mm) pore structure, with high surface areas and narrow pore size distributions. The removal of the surfactant template by calcination and solvent extraction has been investigated. The aqueous stability of this material, and the hydrolysis of the surface was studied. Organic functional groups were incorporated into the silica surface by co-condensation, or by post synthesis grafting. A range of functional groups were incorporated, including amine, carboxy, allyl and thiol groups. The pore size of the materials was controlled by the addition of trimethoxybenzene during synthesis, which significantly increased the pore size and uptake capacity of the materials. The adsorption of CALB by SBA-15 was investigated, with support materials extracted by calcination or solvent extraction. Rapid uptake at high loading was observed, with a maximum loading of 450 mg g-1 measured. The leaching of the enzyme from the support was investigated, and found to be high with unfunctionalised supports. The leaching from functionalised supports incorporating sulfur groups was significantly reduced. The activity of the immobilised CALB was measured by tributyrin hydrolysis in aqueous media, and by enantioselective transesterification of (R)-1-phenylethanol in organic media. The effect of surface functionalisation for reusability and thermal stability in aqueous systems was investigated. Preliminary studies of supported CALB for dynamic kinetic resolution were carried out, with an investigation of acidic zeolites and a mesoporous supported catalyst for 1-phenylethanol racemisation. The encapsulation of immobilised CALB was investigated, and the activity and reusability of these systems studied.
67

Hidrodesoxigenação de bio-óleos utilizando catalisadores de níquel e molibdênio suportados em sílica mesoporosa SBA-15. / Hydrodeoxygenation of bio-oils using nickel and molybdenum catalysts supported on SBA-15 mesoporous silica.

Lima, Rubens William dos Santos 04 September 2017 (has links)
Uma das desvantagens dos bio-óleos precursores do biodiesel é a alta carga de compostos oxigenados que diminuem seu poder de combustão, reduzindo sua eficiência e inviabilizando seu uso em larga escala. Nesse contexto, o processo de hidrodesoxigenação (HDO) é relevante, dado que elimina esses compostos através de uma reação catalítica e, portanto, aumenta o poder calorífico do combustível. Neste trabalho, estudou-se a HDO do guaiacol (2-metoxifenol) como composto modelo dos bio-óleos derivados da biomassa e avaliou-se o desempenho de catalisadores de Ni e Mo no processo. Estudou-se a performance de um catalisador suportado em SBA-15 - um material mesoporoso de sílica de alta área superficial - em comparação a de um catalisador tradicional suportado em gama-alumina. Para tal, utilizou-se um sistema contínuo em fase gasosa e reator de leito fixo. Utilizaram-se técnicas de caracterização de catalisadores, como adsorção de N2, MEV, MET, DRX, TPR-H2, FTIR, TPO-O2, Raman e TGA. Através das análises DRX e MET, comprovou-se que se formaram partículas de NiO e MoO3 de menor tamanho e mais dispersas no caso do catalisador de SBA-15, devido à menor interação com o suporte e maior área superficial, o que resultou em um grau de redução de 91,6 % deste catalisador, em comparação a 73,4 % do outro, analisados por TPR-H2. Os testes catalíticos mostraram que o catalisador de NiMo/SBA-15 supera o de alumina em termos de conversão no intervalo de 200 a 300 °C, com ciclohexeno e ciclohexano como principais produtos, em face à maior seletividade a catecol e fenol no NiMo/?-Al2O3. A 300 °C, o catalisador suportado em sílica alcançou taxas de 66,5 % para a HDO e 35,3 % HDA (hidrodesaromatização), enquanto o de alumina obteve somente 30,8 e 2,7 %, respectivamente. Finalmente, comprovou-se que o SBA-15 teve uma taxa de desativação por coque de 1,14 mgcoque gcat-1 h-1, 31 % menor que a taxa do catalisador de alumina, cujos depósitos foram de carbono grafítico bem estruturado e irreversível. Em vista dos resultados obtidos, esta dissertação apresenta as rotas e mecanismos de reação do guaiacol nos catalisadores estudados, conhecimento que é relevante para o desenvolvimento e aprimoramento de futuros catalisadores da HDO. / A key disadvantage of the bio-oils precursors of biodiesel is the high load of oxygenated compounds that reduce their heat of combustion, dropping their efficiency and making them unfeasible on a large scale. In light of that, the hydrodeoxygenation process (HDO) is relevant, since it eliminates these compounds through a catalytic reaction, thus increasing the calorific value of the fuel. In this work, the HDO of guaiacol (2-methoxyphenol) as a model compound of the bio-oils derived from biomass was studied and the performance of Ni-Mo catalysts was evaluated. A catalyst supported on SBA-15 - a high surface area mesoporous silica material - was compared to a traditional gamma-alumina-supported catalyst. For this purpose, a continuous gas phase setup with fixed bed reactor was employed. The catalysts properties were identified by N2 adsorption, SEM, TEM, XRD, H2-TPR, FTIR, O2-TPO, Raman and TGA techniques. Through XRD and TEM, it was verified that smaller and more dispersed NiO and MoO3 particles were formed in the case of the SBA-15 catalyst, due to the lower interaction with the support and the greater surface area, which resulted in a degree of reduction of 91.6% for this catalyst, as opposed to 73.4% for the other one, both analyzed by H2-TPR. The catalytic tests showed that the NiMo/SBA-15 outperforms the alumina catalyst in terms of conversion in the range of 200 to 300 °C, with cyclohexene and cyclohexane as main products, in contrast with major selectivity to catechol and phenol on NiMo/?-Al2O3. At 300 °C, the silica-supported catalyst achieved rates of 66.5% for HDO and 35.3% for HDA (hydrodearomatization), whereas alumina reached only 30.8 and 2.7%, respectively. Finally, it was shown that the SBA-15 catalyst had a coke deactivation rate of 1.14 mgcoke gcat-1 h-1, 31% lower than the alumina catalyst, whose coke deposits consisted of well-structured irreversible graphitic carbon. In view of the results, this dissertation proposes the routes and reaction mechanisms of guaiacol on the studied catalysts, knowledge that is pertinent for the development and improvement of future HDO catalysts.
68

Compósitos de grafite a base poliuretana modificados com SBA-15 na determinação dos antioxidantes BHA e TBHQ em biodiesel / Polyurethane-based graphite composites modified with SBA-15 in the determination of antioxidants BHA and TBHQ in biodiesel

OLIVEIRA, Danielle Cristina Vasconcelos de 05 September 2017 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-10-06T16:33:36Z No. of bitstreams: 1 DanielleOliveira.pdf: 1130236 bytes, checksum: 83c34f9b54d583457ebfcfe859d26da1 (MD5) / Made available in DSpace on 2017-10-06T16:33:36Z (GMT). No. of bitstreams: 1 DanielleOliveira.pdf: 1130236 bytes, checksum: 83c34f9b54d583457ebfcfe859d26da1 (MD5) Previous issue date: 2017-09-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão / Due to the importance of the antioxidants to guarantee the quality of the biodiesel, by the parameters of its oxidative stability, analytical methodologies have been developed to quantitatively evaluate the antioxidants present in the biodiesel matrices. In this work SBA-15 and Ni- SBA-15 (nickel incorporated in the SBA-15) were synthesized by the hydrothermal method and characterized, being used as modifier (2.5%) in polyurethane graphite based electrochemical sensors to compare their Performance in determining the antioxidants BHA (3-tert-butyl-4-hydroxyanisole) and TBHQ (tert-butylhydroquinone). Among the sensors used, the GPU electrode modified with SBA-15 was the one that presented the best response in the determination of the antioxidants in the preliminary tests, being then applied in the determination of the antioxidants in the biodiesel sample, using the technique of Differential Pulse Voltammetry (DPV ), Using BR as buffer pH = 2 as the electrolyte. The proposed method presented a linear response in the antioxidant determinations (0.993, for TBHQ determinations and 0.977 for BHA determinations), good results for the limit of detection (LOD BHA = 1, (2.03 for determinations of TBHQ and 2.13 for determinations of BHA) and accuracy (102.5% for determinations of TBHQ and 98, 97% for BHA determinations). / Devido à importância dos antioxidantes para garantir a qualidade do biodiesel, pelos parâmetros de sua estabilidade oxidativa, metodologias analíticas têm sido desenvolvidas para avaliar quantitativamente os antioxidantes presentes nas matrizes de biodiesel. Neste trabalho, SBA-15 e Ni- SBA-15 (niquel incorporado na SBA-15) foram sintetizados pelo método hidrotermal e caracterizados, sendo utilizados como modificador (2,5%) em sensores eletroquímicos à base de grafite de poliuretano para comparar o seu desempenho na determinação dos antioxidantes BHA (3-terc-butil-4-hidroxianisol) e TBHQ (tercbutilhidroquinona). Dentre os sensores utilizados, o eléctrodo GPU modificado com SBA-15 foi o que apresentou a melhor resposta na determinação dos antioxidantes nos testes preliminares, sendo então aplicado na determinação dos antioxidantes na amostra de biodiesel, utilizando a técnica de Voltametria de Pulso Diferencial (DPV), usando como eletrólito suporte o tampão BR com pH = 2. O método proposto apresentou uma resposta linear nas determinações antioxidantes (0,993, para determinações TBHQ e 0,977 para determinações BHA), também apresentou bons resultados para o limite de detecção (LD BHA= 1,00 x 10 -5, LD TBHQ = 7, 76 X 10-6), Precisão (2,03 para determinações de TBHQ e 2,13 para determinações de BHA) e exatidão (102,5% para determinações de TBHQ e 98,97% para determinações de BHA).
69

Effect of pore diameter variation of FeW/SBA-15 supported catalysts on hydrotreating of heavy gas oil from Athabasca bitumen

Boahene, Philip Effah 24 June 2011
The pore diameter of a catalyst support controls the diffusion of reactant molecules to the catalytic active sites; thus, affecting the rates and conversions of the hydrotreating reactions. Desirable textural properties of SBA-15 makes it a potential alternative to the conventionally used γ-Al2O3 support due to the fact that its pore size can be manipulated via controlling the synthesis parameters, while maintaining relatively high surface area. Larger pore diameter SBA-15 supports may facilitate the diffusion of bulky molecules as that of the asphaltenes present in the heavy petroleum fractions, making it a potential catalyst support for hydrotreating operations. Considering the very sour nature of Canadas bitumen with high sulfur contents in the range of 2-6 wt %, the appreciably high sulfur contents particularly present in Athabasca derived heavy gas oils (about 4 wt % sulfur), the rising demand for cleaner fuels, and also the increasing stringency on environmental standards, the need for novel and improved hydrotreating catalysts cannot be overemphasized. By varying the molar ratio of hexane to ammonium fluoride, the pore channels of SBA-15 could be varied. Controlling the pore diameter of these supports via micelle swelling facilitated the production of larger pore diameter SBA-15-supported catalysts. In this project, four mesoporous silica SBA-15 catalyst supports with pore diameters in the range of 5-20 nm were synthesized in the preliminary phase using hexane as the micelle swelling agent and subsequently utilized for the loading of 2 wt.% Fe and 15 wt.% W catalyst metals, respectively. The hexagonal mesoscopic structure of these materials were characterized using powder small-angle X-ray scattering (SAXS), N2 adsorption-desorption isotherms, TEM and SEM images. Powder XRD analysis evidenced inhomogeneous metal dispersion on the largest pore diameter catalyst. An optimum pore diameter of 10 nm was found for Cat-B and subsequently used to obtain the optimum Fe and W loadings required to achieve the best hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities. The optimum catalyst was found to be Cat-H with metal loadings of 3 wt.% Fe and 30 wt.% W. At these loadings and temperatures of 375°C, 388°C, and 400°C, HDS activities of 53.4%, 64.1%, and 73.3% with corresponding HDN activities of 21.9%, 26.2%, and 38.3%, respectively, were recorded. Catalytic performance evaluations conducted on equal mass loading using a reference commercial γ-Al2O3-supported FeW catalyst offered HDS activities of 69.3%, 80.4%, and 89.1%, with corresponding HDN activities of 16.4%, 32.4%, and 49.3% at the same temperatures studied. However, no significant changes in HDS and HDN activities were observed for similar evaluations on volume percent metals loading basis. Kinetic studies performed with the optimum FeW/SBA-15 catalyst suggested activation energies of 147.2 and 150.6 kJ/mol for HDS and HDN, respectively, by the Langmuir-Hinshelwoods model. Similar results were predicted by the Power Law and Multi-parameter models for HDS (129.6 and 126.7 kJ/mol, respectively), which does not conclusively make the latter model clearly stand out as the best. Data fitting by the Power Law suggested reaction orders of 2 and 1.5 for HDS and HDN, which seem to be consistent for the hydrotreatment of heavy gas oil. Finally, a long-term deactivation study spanning a period of 60 days time-on-stream showed the optimum catalyst to be stable under hydrotreating experiments conducted in a downward flow micro-trickle bed reactor at temperature, pressure, liquid hourly space velocity (LHSV), and gas/oil ratio of 375400˚C, 8.8 MPa, 1h-1, and 600 mL/mL (at STP), respectively.
70

Effect of pore diameter variation of FeW/SBA-15 supported catalysts on hydrotreating of heavy gas oil from Athabasca bitumen

Boahene, Philip Effah 24 June 2011 (has links)
The pore diameter of a catalyst support controls the diffusion of reactant molecules to the catalytic active sites; thus, affecting the rates and conversions of the hydrotreating reactions. Desirable textural properties of SBA-15 makes it a potential alternative to the conventionally used γ-Al2O3 support due to the fact that its pore size can be manipulated via controlling the synthesis parameters, while maintaining relatively high surface area. Larger pore diameter SBA-15 supports may facilitate the diffusion of bulky molecules as that of the asphaltenes present in the heavy petroleum fractions, making it a potential catalyst support for hydrotreating operations. Considering the very sour nature of Canadas bitumen with high sulfur contents in the range of 2-6 wt %, the appreciably high sulfur contents particularly present in Athabasca derived heavy gas oils (about 4 wt % sulfur), the rising demand for cleaner fuels, and also the increasing stringency on environmental standards, the need for novel and improved hydrotreating catalysts cannot be overemphasized. By varying the molar ratio of hexane to ammonium fluoride, the pore channels of SBA-15 could be varied. Controlling the pore diameter of these supports via micelle swelling facilitated the production of larger pore diameter SBA-15-supported catalysts. In this project, four mesoporous silica SBA-15 catalyst supports with pore diameters in the range of 5-20 nm were synthesized in the preliminary phase using hexane as the micelle swelling agent and subsequently utilized for the loading of 2 wt.% Fe and 15 wt.% W catalyst metals, respectively. The hexagonal mesoscopic structure of these materials were characterized using powder small-angle X-ray scattering (SAXS), N2 adsorption-desorption isotherms, TEM and SEM images. Powder XRD analysis evidenced inhomogeneous metal dispersion on the largest pore diameter catalyst. An optimum pore diameter of 10 nm was found for Cat-B and subsequently used to obtain the optimum Fe and W loadings required to achieve the best hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities. The optimum catalyst was found to be Cat-H with metal loadings of 3 wt.% Fe and 30 wt.% W. At these loadings and temperatures of 375°C, 388°C, and 400°C, HDS activities of 53.4%, 64.1%, and 73.3% with corresponding HDN activities of 21.9%, 26.2%, and 38.3%, respectively, were recorded. Catalytic performance evaluations conducted on equal mass loading using a reference commercial γ-Al2O3-supported FeW catalyst offered HDS activities of 69.3%, 80.4%, and 89.1%, with corresponding HDN activities of 16.4%, 32.4%, and 49.3% at the same temperatures studied. However, no significant changes in HDS and HDN activities were observed for similar evaluations on volume percent metals loading basis. Kinetic studies performed with the optimum FeW/SBA-15 catalyst suggested activation energies of 147.2 and 150.6 kJ/mol for HDS and HDN, respectively, by the Langmuir-Hinshelwoods model. Similar results were predicted by the Power Law and Multi-parameter models for HDS (129.6 and 126.7 kJ/mol, respectively), which does not conclusively make the latter model clearly stand out as the best. Data fitting by the Power Law suggested reaction orders of 2 and 1.5 for HDS and HDN, which seem to be consistent for the hydrotreatment of heavy gas oil. Finally, a long-term deactivation study spanning a period of 60 days time-on-stream showed the optimum catalyst to be stable under hydrotreating experiments conducted in a downward flow micro-trickle bed reactor at temperature, pressure, liquid hourly space velocity (LHSV), and gas/oil ratio of 375400˚C, 8.8 MPa, 1h-1, and 600 mL/mL (at STP), respectively.

Page generated in 0.0254 seconds