51 |
Characterization and modeling of short channel effects in polycrystalline silicon thin-film transistorsChen, Shih-Ching 16 July 2003 (has links)
In this thesis, the poly-Si TFTs with different channel width and channel length are successfully fabricated and characterized. In particular, by using the T-gate structure and body contact, we can measure the substrate current and body voltage. Therefore, short channel effects in polycrystalline silicon thin-film transistors are investigated clearly. In order to study impact ionization effect and floating body effect more carefully, we measure and compare the electrical behaviors of device with different grain boundary trap density, grain size, and channel dimension. The influences of these factors on the short channel effects are also discussed and explained.
In this experiment, it is found that the devices with short channel length, exhibit improved normalized turn on current and smaller threshold voltage. But on the other hand the sever kink effect which generated by the impact ionization also observed. Moreover, the floating body under the channel region serve as a parasitic BJT as in silicon-on-insulator devices. The related single transistor latch-up is observed and discussed for short-channel devices with various channel width.
The severe impact ionization effects in polycrystalline silicon thin-film transistors are investigated and characterized. By directly measuring the substrate current from conventional TFTs with body contact, the impact-ionization effects can be characterized and analyzed very clearly. An anomalous substrate current under high gate voltage is observed. The parasitic tunneling effect between inversion region and body region is proposed to explain this phenomenon. Finally, a physically-based model is established and compared with the measured substrate current. Good agreements are found when the vertical field scattering effect is included into the maximum electric field impact ionization model.
|
52 |
The Study of Optical Properties of Nano Crystal SiliconLin, Yu-hsuan 26 July 2008 (has links)
In this thesis, using Micro-Photoluminescence (£g-PL), continuous-wave time-resolved photoluminescence (CWPL/TRPL) and Fourier transform infrared (FTIR) analysis, silicon rich nc-Si (nano-crystal Silicon) samples with various emission wavelength (760 30 nm and 390 10 nm) are investigated to understand the proper explanation of the emission mechanism. The model of increasing Si¡ÐO ¡ÐSi bondings during thermal process by enhancing the annealing or deposition time, induced blue shifts in PL spectrums and increased the rate of Schockley-Read-Hall recombination which resulted in the enhancement of its fluorescence is provided.
|
53 |
Phase Diagram Study of Zr-Al-Si ternary system at 800 ¢JChen, Kuo-min 16 July 2009 (has links)
none
|
54 |
Silicon-based Optical Waveguide Using Undercut Etching MethodShie, Jia-rung 09 September 2009 (has links)
In this work, a novel type of optical waveguide, namely two-step undercut-etching Si waveguide (TSUESW), fabricated in Si-substrate is proposed and demonstrated. All this waveguide processing is based on two step of SF6-based dry etching method. In the first step, an anisotropic etching by Reactive Ion Etching (RIE) is used to define the waveguide core. After that, an undercut etching through an isotropic etching processing Electron Cyclotron Resonance (ECR) is then utilized to decouple the optical light of the waveguide core from Si substrate.
In the measurement setup, an optical propagation loss coefficient of 2.89dB/cm is obtained by extracting from Fabry-Perot oscillation, suggesting the confined optical mode in TSUESW can be realized. A tapered optical waveguide is also designed and fabricated, where the core of tapered structure is defined as widths of from 20£gm to 6£gm for optical fiber coupler. A 4.13dB/cm of loss from 700£gm long waveguide is found in such tapered waveguide. Through the nonlinear properties of Si material, a Four-Wave Mixing (FWM) behavior is observed in tapered waveguide, further confirming the optical power can be highly confined in small core of TSUESW. It also should be noted that the waveguide technology template can be processed in a Si-substrate to realize CMOS-compatible processing, avoiding high-cost Silicon-On-Insulator (SOI) technology.
|
55 |
The rise of Ayudhya a history of Siam in the fourteenth and fifteenth centuries /Charnvit Kasetsiri. January 1973 (has links)
Thesis--Cornell University. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 229-247) and index.
|
56 |
Mokymo(si) proceso pedagoginio valdymo aspektai, vykdant mokymosi nesėkmių prevenciją / Aspects of pedagogical control in educational process implementing prevention of educational failureJankauskienė, Neringa 12 June 2006 (has links)
Pedagogical help for students which have difficulties in learning now occupies more important place in worldwide. Despite of numerous scientific researches and practical discussions associated with referred topic, this problem occurs. Therefore, not the phenomenon of failure should be analyzed, but prevention of it. The subject of thesis is organization of educational process in the aspect of educational failure.
|
57 |
Electromagnetic Variable Valve Timing on a Single Cylinder Engine in HCCI and SIMashkournia, Masoud Unknown Date
No description available.
|
58 |
Synthèse de couches ultra-minces de siliciures sur silicium cristallin et endommagé étudiée par microscopie et profilométrie en profondeurTurcotte-Tremblay, Pierre 03 1900 (has links)
Les siliciures métalliques constituent un élément crucial des contacts
électriques des transistors que l'on retrouve au coeur des circuits intégrés modernes.
À mesure qu'on réduit les dimensions de ces derniers apparaissent de graves
problèmes de formation, liés par exemple à la limitation des processus par la faible
densité de sites de germination. L'objectif de ce projet est d'étudier les mécanismes
de synthèse de siliciures métalliques à très petite échelle, en particulier le NiSi, et de
déterminer l’effet de l’endommagement du Si par implantation ionique sur la
séquence de phase. Nous avons déterminé la séquence de formation des différentes
phases du système Ni-Si d’échantillons possédant une couche de Si amorphe sur
lesquels étaient déposés 10 nm de Ni. Celle-ci a été obtenue à partir de mesures de
diffraction des rayons X résolue en temps et, pour des échantillons trempés à des
températures critiques du processus, l’identité des phases et la composition et la
microstructure ont été déterminées par mesures de figures de pôle, spectrométrie par
rétrodiffusion Rutherford et microscopie électronique en transmission (TEM). Nous
avons constaté que pour environ la moitié des échantillons, une réaction survenait
spontanément avant le début du recuit thermique, le produit de la réaction étant du
Ni2Si hexagonal, une phase instable à température de la pièce, mélangée à du NiSi.
Dans de tels échantillons, la température de formation du NiSi, la phase d’intérêt pour
la microélectronique, était significativement abaissée. / Currently metal silicide constitutes a crucial component in the formation of
electrical contacts for transistors that forms the heart of modern day integrated
circuits. As we reduce the dimensions of the latter, we are faced with serious
problems of formation, related for example to the process limitation due to the weak
density of germination sites. The objective of this project is to study at small scale
the synthesis mechanisms of metal silicide, in particular NiSi, and to determine the
effect of Si implantation damage on the phase sequence. We have determined the
different phase sequences of the Ni-Si system for samples composed of a 10 nm Ni
surface layer deposited on a-Si. These were obtained by time resolved x-ray
diffraction (TR-XRD) measurements. As for samples quenched at critical
temperatures we identified the different phases, their composition and their
microstructure were determined by pole figures, Rutherford back scattering (RBS)
spectrometry and transmission electron microscopy (TEM). We noted that for
approximately half the samples, a spontaneous reaction happened before annealing.
The result of the reaction was hexagonal Ni2Si, a phase unstable at room temperature,
mixed with NiSi. In theses samples, the temperature of formation for the phase of
interest, the NiSi, was lower.
|
59 |
Étude et optimisation de l'absorption optique et du transport électronique dans les cellules photovoltaïques à base de nanofils / Study and optimization of the optical absorptance and electrical transport in photovoltaic nanowire based solar cellsMichallon, Jérôme 26 January 2015 (has links)
La conversion photovoltaïque est un procédé très attractif pour la fourniture d’énergie propre et renouvelable. Cette filière est en plein essor grâce à une réduction constante des coûts de revient et des politiques incitatives de nombreux pays. Pourtant, l’ensemble des panneaux photovoltaïques installés ne produit qu’une faible part de la consommation mondiale en électricité. Les récents développements technologiques dans l’industrie photovoltaïque se sont surtout concentrés sur les cellules dites de seconde génération, à savoir les couches minces à base de CIGS, CdTe, a-Si, a-SiGe. Cette filière permet la fourniture d’électricité à coût inférieur à la technologie standard silicium, mais les rendements de conversion demeurent encore faibles, ce qui nécessite de larges surfaces disponibles. Il est à noter notamment que les cellules couches minces à base de matériaux semiconducteurs à gap direct comme le CIGS et le CdTe sont en plein essor puisqu’ils profitent en particulier d’une absorption accrue par rapport au silicium ; toutefois, ces matériaux sont présents en quantité limitée à la surface de la planète (In, Te). Dans ce contexte, les cellules à base de nanofils constituent une solution intéressante aux problèmes de l’absorption de la lumière, du transport et de la séparation des porteurs de charge photo-générés mais aussi de la quantité de matière utilisée. En effet, en utilisant une jonction radiale (i.e. entourant le nanofil), il est possible de séparer l’absorption de la lumière ( liée notamment à la longueur du nanofil) de la collecte des porteurs de charge (qui dépend du diamètre des nanofils). L’intérêt de ces structures réside également dans les propriétés de base des nanofils : la relaxation élastique favorable sur leur surface latérale ouvre le champ au dépôt de nanofils par hétéro-épitaxie sur tout type de substrat alors que la faible densité de défauts étendus en leur sein est propice à un transport efficace des porteurs de charges. Ainsi, la possibilité de réaliser des nanofils sur substrat souple en réduisant de manière importante la quantité de matière utilisée par rapport à une cellule en silicium cristallin massif peut être envisagée. Plusieurs laboratoires grenoblois ont déjà une expertise dans le domaine de la croissance des nanofils. Cette thèse a pour but de réaliser une analyse expérimentale approfondie des propriétés optoélectroniques des nanofils (par des mesures de réflectivité, de durée de vie des porteurs minoritaires et de recombinaisons en surface et aux interfaces) combinée à des simulations optiques (de type RCWA ou FDTD) et électriques (TCAD). L’objectif ultime étant de concevoir et de développer des cellules à base de nanofils de silicium et de ZnO/CdTe. Des démonstrateurs seront réalisés sur la base des simulations électro-optiques. Pour cela, les moyens d’élaboration, de caractérisation et de technologie des différents laboratoires et entités, ainsi que les compétences associées, seront mis en commun pour accompagner les travaux du doctorant. / Photovoltaic energy is a very attractive way to produce renewable energy. The current increase in the photovoltaic energy production mainly takes advantage of the continuous decrease in the solar cell cost as well as to incentive policy. However, installed photovoltaic panels only contribute to a very small part of the global electricity production. Therefore, important technological developments are dedicated to the second generation of solar cells (i.e. thin film solar cells) in order to reduce more their manufacturing cost despite the resulting lower conversion efficiency owing to a weaker structural and optical material quality. One alternative way to increase the solar cell efficiency is to fabricate nanowire-based solar cells since they may benefit from a higher light absorption and carrier collection efficiency. The light absorption is actually increased thanks to the high surface/volume ratio of nanowires but also to light trapping related to the nanowire length. Furthermore, the collection of minority charge carriers is more efficient in radial structures (i.e. core-shell structures) since the nanowire diameter is very small. This PhD thesis aims at investigating the optoelectronic properties of silicon and ZnO/CdTe nanowires (absorption, lifetime of minority charge carriers, bulk and surface recombination…) in order to design an optimised nanowire-based solar cell structure. Electromagnetic simulations will be first performed to define the best nanowire geometry for the absorbance, and then compared to experimental measurements of the absorption coefficient. Electrical characterisations (lifetime measurements, surface recombination…) will be also achieved to analyse the structural quality and to simulate the solar cell electrical properties. Some prototypes of optimised solar cells will eventually be fabricated.
|
60 |
The Sintering Behaviour of Al-Mg-Si-Cu-(Sn) Powder Metallurgy AlloysEnda Crossin Unknown Date (has links)
The current, commercially available, press and sinter Al-Mg-Si-Cu alloys are based on wrought or cast alloy compositions and have not been tailored for the press and sinter process. The limited development of the Al-Mg-Si-Cu alloys for the press and sinter process can be partly attributed to a poor understanding of the effects of processing conditions on the sintering behaviour. The primary objective of this work was to investigate and understand the effects of processing conditions on the sintering behaviour of Al-Mg-Si-Cu-(Sn) alloys. Dilatometry was used in conjunction with other experimental techniques to elucidate and understand the expansion and shrinkage events that occur during the liquid-phase sintering of Al-Mg-Si-Cu-(Sn) powder metallurgy alloys. Samples were uni-axially pressed from elemental metal powder blends, de-waxed, and then sintered in a horizontal push-rod dilatometer to record the dimensional changes in the pressing direction. The processing conditions examined included the alloy composition, temperature, green density and atmosphere. A liquid forms during heating due to reactions between the alloying elements and the aluminium. This liquid is initially non-wetting on the oxide layer of the aluminium particles, resulting in separation of the particles, which is manifested by expansion of the sample. The oxide is reduced as sintering progresses, alleviating the non-wetting conditions. When more liquid forms, further expansion occurs, despite the improved wetting conditions. It is proposed that atmospheric oxygen and/or nitrogen can react with the liquid, forming a solid phase (‘shell’) at the liquid-vapour interfaces. These shells prevent the liquid from wetting the particles, resulting in further expansion and preventing shrinkage. Unbalanced diffusivities (the Kirkendall effect) between the aluminium and silicon contribute to the expansion. A mechanism is proposed to account for the transition to shrinkage, whereby the shells at the liquid-vapour interface rupture when there is a rapid increase in the volume of contained liquid. The liquid then flows out and over the shells, onto the aluminium substrate, causing shrinkage. Magnesium and nitrogen delay the transition to shrinkage by facilitating nitride shell formation at the solid-liquid interface. Silicon and tin cause an earlier transition to shrinkage by increasing the liquid volume. In addition, tin promotes shrinkage by segregating to the liquid-vapour interfaces, limiting the thickness of the shells at the liquid-vapour interfaces. The two dominant liquid-phase shrinkage mechanisms during the sintering of Al-Mg-Si-Cu-(Sn) alloys are rearrangement and pore-filling. Contact-flattening is not a dominant shrinkage mechanism, but may occur concurrently with the other mechanisms. If contact flattening occurs, a decrease in the pressure of isolated pores increases the total shrinkage rate. Nitrogen increases the shrinkage rate during rearrangement by restricting grain-growth. Magnesium increases the shrinkage rate during rearrangement by reducing the solid-liquid interface energy. Magnesium and nitrogen are essential for the formation of nitride within isolated pores, which decreases the pore pressure and increases the contribution of contact-flattening on the total shrinkage rate. Silicon reduces the beneficial influence of magnesium during rearrangement by diluting the magnesium content in the liquid. Silicon increases the pore-filling rate due to an increase in the liquid volume. Magnesium increases the pore-filling rate by facilitating aluminium nitride formation within isolated pores and by increasing the pore-filling. Tin additions can decrease the pore-filling rate due to its segregation to the liquid-vapour interface, limiting the consumption of nitrogen within isolated pores.
|
Page generated in 0.0165 seconds