11 |
Assessment and Development of Advanced Power Saving and Supply Concepts For Small Automotive ElectronicsTARHAN, Muhammed Mustafa January 2013 (has links)
With rising fuel prices, increasing electrification, and imminent fines on CO2 emission within the EU, the requirement for energy and cost efficient supply concepts is becomingmore and more important in the automotive industry. This thesis presents an assessmentof, and improvement for energy and cost efficient power supply concepts for low-end automotiveand light e-mobility electronic control units, containing small µCs, and analogand logic components. Specifically, linear regulators, synchronous and non-synchronous buck converters, andswitched capacitor converters are investigated and assessed theoretically. The mostpromising concept, namely a discrete buck converter, is further studied using theoreticalassessment, experiment, and simulations. The key result of this work is a concept for replacing commonly used linear regulatorsin small electronic control units (ECUs) by a more efficient supply with only a smallcost adder. Specifically, since no low-end switched converter ICs are available today, wedeveloped a buck converter with discrete control circuit. This concept provides a cheap,yet efficient alternative to linear regulators for a wide range of applications. In addition,the application of this concept is supported by component selection criteria, and also bythe developed simulation models.
|
12 |
RC Snubber Design using Root-Loci Approach for Synchronous Buck SMPSChen, Yen-Ming January 2005 (has links)
This thesis presents an analytical approach using Root-Loci method for designing optimum passive series RC snubbers for continuous-current synchronous buck switch mode power supply (SMPS).
Synchronous buck SMPS is the most popular power converter topology found in modern consumer electronics. It offers relatively good efficiency to target the high-current and low-voltage requirements while it is also relatively inexpensive to implement.
Passive series RC snubbers are simple, efficient and cost-effective open-loop equalizer circuit for synchronous buck SMPS. Its purpose is to control and to balance between the rate of rise and the overshoots of transient switching waveform in order to optimize efficiency and reliability
Existing methods of RC snubber design are solely based on second-order approximation. It is investigated in this research that this approximation is highly inaccurate in SMPS applications because higher order equivalent models are required for the load path of the SMPS. The results using the RC snubbers obtained from existing method are shown to be unsatisfactory without correlation to the calculations and simulations based on second-order approximation. Optimum RC values obtained using Root-Loci approach presented in this thesis are shown to correlate to both Spice simulation and lab measurements.
|
13 |
Generation and Characterization of Nanoaerosols Using a Portable Scanning Mobility Particle Sizer and Electron MicroscopyMarty, Adam J. 14 November 2014 (has links)
The purpose of this research is to demonstrate the ability to generate and characterize a nanometer sized aerosol using solutions, suspensions, and a bulk nanopowder, and to research the viability of using an acoustic dry aerosol generator/elutriator (ADAGE) to aerosolize a bulk nanopowder into a nanometer sized aerosol. The research compares the results from a portable scanning mobility particle sizer (SMPS) to the more traditional method of counting and sizing particles on a filter sample using scanning electron microscopy (SEM). Sodium chloride aerosol was used for the comparisons. The sputter coating thickness, a conductive coating necessary for SEM, was measured on different sizes of polystyrene latex spheres (PSLS). Aluminum oxide powder was aerosolized using an ADAGE and several different support membranes and sound frequency combinations were explored.
A portable SMPS was used to determine the size distributions of the generated aerosols. Polycarbonate membrane (PCM) filter samples were collected for subsequent SEM analysis. The particle size distributions were determined from photographs of the membrane filters. SMPS data and membrane samples were collected simultaneously. The sputter coating thicknesses on four different sizes of PSLS, range 57 nanometers (nm) to 220 nm, were measured using transmission electron microscopy and the results from the SEM and SMPS were compared after accounting for the sputter coating thickness. Aluminum oxide nanopowder (20 nm) was aerosolized using a modified ADAGE technique. Four different support membranes and four different sound frequencies were tested with the ADAGE. The aerosol was collected onto PCM filters and the samples were examined using SEM.
The results indicate that the SMPS and SEM distributions were log-normally distributed with a median diameter of approximately 42 nm and 55 nm, respectively, and geometric standard deviations (GSD) of approximately 1.6 and 1.7, respectively. The two methods yielded similar distributional trends with a difference in median diameters of approximately 11 - 15 nm. The sputter coating thickness on the different sizes of PSLSs ranged from 15.4 - 17.4 nm. The aerosols generated, using the modified ADAGE, were low in concentration. The particles remained as agglomerates and varied widely in size. An aluminum foil support membrane coupled with a high sound frequency generated the smallest agglomerates.
A well characterized sodium chloride aerosol was generated and was reproducible. The distributions determined using SEM were slightly larger than those obtained from SMPS, however, the distributions had relatively the same shape as reflected in their GSDs. This suggests that a portable SMPS is a suitable method for characterizing a nanoaerosol. The sizing techniques could be compared after correcting for the effects of the sputter coating necessary for SEM examination. It was determined that the sputter coating thickness on nano-sized particles and particles up to approximately 220 nm can be expected to be the same and that the sputter coating can add considerably to the size of a nanoparticle. This has important implications for worker health where nanoaerosol exposure is a concern. The sputter coating must be considered when SEM is used to describe a nanoaerosol exposure. The performance of the modified ADAGE was less than expected. The low aerosol output from the ADAGE prevented a more detailed analysis and was limited to only a qualitative comparison. Some combinations of support membranes and sound frequencies performed better than others, particularly conductive support membranes and high sound frequencies. In conclusion, a portable SMPS yielded results similar to those obtained by SEM. The sputter coating was the same thickness on the PSLSs studied. The sputter coating thickness must be considered when characterizing nanoparticles using SEM. Finally, a conductive support membrane and higher frequencies appeared to generate the smallest agglomerates using the ADAGE technique.
|
14 |
Design of a Real-Time Scanning Electrical Mobility Spectrometer and its Application in Study of Nanoparticle Aerosol GenerationSingh, Gagan 2010 May 1900 (has links)
A real-time, mobile Scanning Electrical Mobility Spectrometer (SEMS) was designed using a Condensation Particle Counter (CPC) and Differential Mobility Analyzer (DMA) to measure the size distribution of nanoparticles. The SEMS was calibrated using monodisperse Polystyrene Latex (PSL) particles, and was then applied to study the size distribution of TiO2 nanoparticle aerosols generated by spray drying water suspensions of the nanoparticles. The nanoparticle aerosol size distribution, the effect of surfactant, and the effect of residual solvent droplets were determined.
The SEMS system was designed by integrating the Electrical System, the Fluid Flow System, and the SEMS Software. It was calibrated using aerosolized Polystyrene Latex (PSL) spheres with nominal diameters of 99 nm and 204 nm. TiO2 nanoparticle aerosols were generated by atomizing water suspensions of TiO2 nanoparticles using a Collison nebulizer. Size distribution of the TiO2 aerosol was measured by the SEMS, as well as by TEM. Furthermore, the effect of surfactant, Tween 20 at four different concentrations between 0.01mM and 0.80mM, and stability of aerosol concentration with time were studied. It was hypothesized that residual particles in DI water observed during the calibration process were a mixture of impurities in water and unevaporated droplets. Solid impurities were captured on TEM grids using a point-to-plane Electrostatic Precipitator (ESP) and analyzed by Energy Dispersive Spectroscopy (EDS) while the contribution of unevaporated liquid droplets to residual particles was confirmed by size distribution measurements of aerosolized DI water in different humidity conditions. The calibration indicated that the mode diameter was found to be at 92.5nm by TEM and 95.8nm by the SEMS for 99nm nominal diameter particles, a difference of 3.6%. Similarly, the mode diameter for 204nm nominal diameter particles was found to be 194.9nm by TEM and 191nm by SEMS, a difference of 2.0%. Measurements by SEMS for TiO2 aerosol generated by Collison nebulizer indicated the mode diameters of 3mM, 6mM, and 9mM concentrations of TiO2 suspension to be 197.5nm, 200.0nm and 195.2nm respectively. On the other hand, the mode diameter was found to be approximately 95nm from TEM analysis of TiO2 powder. Additionally, concentration of particles generated decreased with time. Dynamic Light Scattering (DLS) measurements indicated agglomeration of particles in the suspension. Furthermore, the emulation of single particle distribution was not possible even after using Tween 20 in concentrations between 0.01mM and 0.80mM. From the study of residual particles in DI water, it was found that residual particles observed during the aerosolization of suspensions of DI water were composed of impurities present in DI water and unevaporated droplets of DI water. Although it was possible to observe solid residual particles on the TEM grid, EDS was not able to determine the chemical composition of these particles.
|
15 |
Design of a DC/DC buck converter for ultra-low power applications in 65nm CMOS ProcessSafari, Naeim January 2012 (has links)
Switching mode DC/DC converters are critical building blocks in portable devices and hence their power efficiency, accuracy and cost are a major issue. The primary focus of this thesis is to address these critical issues.This thesis focuses on the different methods of feedback control loop which are employed in the switching mode DC/DC converters such as voltage mode control and current mode control. It also discusses about the structure of buck converter and tries to find an efficient solution for stepping-down the DC voltage level in ultra-low power applications. Based on this analysis, a 20 MHz voltage mode DC/DC buck converter with an on-chip compensated error amplifier in 65 nm CMOS process is designed and implemented.The power efficiency has been improved by sizing the power switches to have a low parasitic output and gate capacitances to reduce the capacitive and gate-drive losses. Also the error amplifier biasing current is chosen a small value (12.5 μA) to reduce the power dissipations in the control loop of the system. The maximum 84% power efficiency is achieved at 1.1 V to 500 mV conversion, above 81% efficiency can be achieved at load current from 0.5 mA to 1.26 mA. Due to wide bandwidth error amplifier and proper compensation network the fast transient response with settling time around 45 μs is achieved.
|
16 |
RC Snubber Design using Root-Loci Approach for Synchronous Buck SMPSChen, Yen-Ming January 2005 (has links)
This thesis presents an analytical approach using Root-Loci method for designing optimum passive series RC snubbers for continuous-current synchronous buck switch mode power supply (SMPS).
Synchronous buck SMPS is the most popular power converter topology found in modern consumer electronics. It offers relatively good efficiency to target the high-current and low-voltage requirements while it is also relatively inexpensive to implement.
Passive series RC snubbers are simple, efficient and cost-effective open-loop equalizer circuit for synchronous buck SMPS. Its purpose is to control and to balance between the rate of rise and the overshoots of transient switching waveform in order to optimize efficiency and reliability
Existing methods of RC snubber design are solely based on second-order approximation. It is investigated in this research that this approximation is highly inaccurate in SMPS applications because higher order equivalent models are required for the load path of the SMPS. The results using the RC snubbers obtained from existing method are shown to be unsatisfactory without correlation to the calculations and simulations based on second-order approximation. Optimum RC values obtained using Root-Loci approach presented in this thesis are shown to correlate to both Spice simulation and lab measurements.
|
17 |
Fine particle emissions from biomass cookstoves : Evaluation of a new laboratory setup and comparison of three appliancesGarcìa Lòpez, Natxo January 2017 (has links)
It is estimated that around three billion people globally rely on traditional usage of biomass to cover their daily energy needs, which causes health and social inequality problems and contributes to global warming. Thus, the study of particle emissions from cookstoves provides important information that can help improve global welfare. This study aims to (a) evaluate a new laboratory setup for measurement of particle emissions from cookstoves and (b) use this setup to compare the particle emissions from three cookstove appliances that cover the whole spectra of used technologies, namely a 3-stone fire, an improved cookstove and a gasifier stove. Emissions of total suspended particles (TSP), fine particles (≤ 2500 nm) and other emission components such as carbon dioxide were measured. Results from this study show that the new laboratory setup is appropriate to measure and investigate fine particle emissions from cookstoves as well as cookstove efficiency. Further, it also shows that the 3-stone fire was the cookstove with the highest emission factor of all, followed by the rocket stove and the gasifier stove respectively. The analysis of the data obtained from the transient particle measurement provided some information on the particle size and the soot and salt contained in the overall emitted particles. Finally, some suggestions such as continuous measurements of background particle and CO2 levels are recommended. Additionally, further research ideas are also proposed.
|
18 |
Elektronický světlík / Electronic skylightCoufal, Martin January 2021 (has links)
Theoretical part of this thesis describes LEDs and other circuitry used for LED light design. LED light is designed, manufactured and put into operation. This thesis examines possibilities of measuring exterior light and its key parameters. The device uses two sets of LEDs – warm white and cold white to create light with parameters dependent on exterior light. LEDs are driven by constant current sources that are designed, manufactured and examined in this thesis. The device is microprocessor-controlled, which allows to switch between multiple modes of operation. Flyback SMPS is used to power the microcontroller.
|
19 |
Elektromagnetická kompatibilita spínaných napájecích zdrojů / EMC of switched-mode power suppliesOlivík, Lukáš January 2012 (has links)
The goal of this thesis is to design flyback converter with given parameters complying with standards for electromagnetic compatibility. This thesis describes detailed design of the flyback converter. It summarizes the recommendations for PCB design. Knowledge from number of comparative measurements of the impact of component selection on conducted emission signature was applied during the flyback converter design. Big part of the thesis is aimed on conducted emission measurement and separation of common mode and differential mode emissions. The simple and fast Time domain measurement of conducted emission is described. Final measurement of designed converter was performed at the end of the thesis.
|
20 |
The Development of an Electric Tricycle and Buck-Topology-Based Battery Pack ChargerTaschner, Matthew John 15 December 2011 (has links)
No description available.
|
Page generated in 0.0303 seconds