91 |
Nanoscale organization and dynamics of SNARE proteins in the presynaptic membranesMilovanovic, Dragomir 05 October 2015 (has links)
No description available.
|
92 |
Characterization of neuronal SNAREs and interacting proteins / Charakterisierung von neuronalen SNAREs und interagierenden ProteinenPobbati Venkatesan, Ajaybabu 15 March 2006 (has links)
No description available.
|
93 |
Presynaptic Protein Interactions that Regulate Synaptic Strength at Crayfish Neuromuscular Junctions.Prashad, Rene Christopher 20 March 2014 (has links)
Synapses vary widely in the probability of transmitter release. For instance, in response to an action potential the phasic synapses of the crayfish have a 100-1000-fold higher release probability than tonic synapses. The difference in release probability is attributed to differences in the exocytotic machinery such as the degree of “zippering” of the trans-SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor) complex. I used physiological and molecular approaches to determine if the zippered state of SNAREs associated with synaptic vesicles and the interaction between the SNARE complex and Complexin influence the probability of release at the synapse.
I used three Botulinum neurotoxins which bind and cleave at different sites on VAMP to determine whether these sites were occluded by SNARE interaction (zippering) or open to proteolytic attack. Under low stimulation conditions, the light-chain fragment of botulinum B (BoNT/B-LC) but not BoNT/D-LC or tetanus neurotoxin (TeNT-LC) cleaved VAMP and inhibited evoked release at both phasic and tonic synapses. In addition, a peptide based on the C-terminal half of crayfish VAMP’s SNARE motif (Vc peptide) designed to interfere with SNARE complex zippering at the C-terminal end inhibited release at both synapses. The susceptibility of VAMP to only BoNT/B-LC and interference by the Vc peptide indicated that SNARE complexes at both phasic and tonic synapses were partially zippered only at the N-terminal end with the C-terminal end exposed under resting conditions.
I used a peptide containing part of the crayfish Complexin central α-helix domain to interfere with the interaction between Complexin and the SNARE complex. The peptide enhanced phasic evoked release and inhibited tonic evoked release under low stimulation but attenuated release at both synapses under intense stimulation. Therefore, Complexin appeared to exhibit a dual function under low synaptic activity but only promoted release under high synaptic activity.
The results showed that the zippered state of the SNARE complex does not determine initial release probability as a similar zippered SNARE complex structure under resting conditions is common to both phasic and tonic synapses. However, Complexin may have a role in influencing the initial release probability of a synapse. Therefore, the interaction between the SNARE complex and Complexin is important for release but other factors contribute more significantly to synaptic strength.
|
94 |
Presynaptic Protein Interactions that Regulate Synaptic Strength at Crayfish Neuromuscular Junctions.Prashad, Rene Christopher 20 March 2014 (has links)
Synapses vary widely in the probability of transmitter release. For instance, in response to an action potential the phasic synapses of the crayfish have a 100-1000-fold higher release probability than tonic synapses. The difference in release probability is attributed to differences in the exocytotic machinery such as the degree of “zippering” of the trans-SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor) complex. I used physiological and molecular approaches to determine if the zippered state of SNAREs associated with synaptic vesicles and the interaction between the SNARE complex and Complexin influence the probability of release at the synapse.
I used three Botulinum neurotoxins which bind and cleave at different sites on VAMP to determine whether these sites were occluded by SNARE interaction (zippering) or open to proteolytic attack. Under low stimulation conditions, the light-chain fragment of botulinum B (BoNT/B-LC) but not BoNT/D-LC or tetanus neurotoxin (TeNT-LC) cleaved VAMP and inhibited evoked release at both phasic and tonic synapses. In addition, a peptide based on the C-terminal half of crayfish VAMP’s SNARE motif (Vc peptide) designed to interfere with SNARE complex zippering at the C-terminal end inhibited release at both synapses. The susceptibility of VAMP to only BoNT/B-LC and interference by the Vc peptide indicated that SNARE complexes at both phasic and tonic synapses were partially zippered only at the N-terminal end with the C-terminal end exposed under resting conditions.
I used a peptide containing part of the crayfish Complexin central α-helix domain to interfere with the interaction between Complexin and the SNARE complex. The peptide enhanced phasic evoked release and inhibited tonic evoked release under low stimulation but attenuated release at both synapses under intense stimulation. Therefore, Complexin appeared to exhibit a dual function under low synaptic activity but only promoted release under high synaptic activity.
The results showed that the zippered state of the SNARE complex does not determine initial release probability as a similar zippered SNARE complex structure under resting conditions is common to both phasic and tonic synapses. However, Complexin may have a role in influencing the initial release probability of a synapse. Therefore, the interaction between the SNARE complex and Complexin is important for release but other factors contribute more significantly to synaptic strength.
|
95 |
Molecular and Morphological Correlates of Synaptic Vesicle PrimingImig, Cordelia 28 October 2013 (has links)
No description available.
|
96 |
A Unique Role for Sarcolemmal Membrane Associated Protein Isoform 1 (SLMAP1) as a Regulator of Cardiac Metabolism and Endosomal RecyclingDewan, Aaraf January 2016 (has links)
Altered glucose metabolism is the underlying factor in many metabolic disorders, including diabetes. A novel protein recently linked to diabetes through animal and clinical studies is Sarcolemmal Membrane Associated Protein (SLMAP) but its role in metabolism remains undefined. The data here reveals a novel role for SLMAP isoform1 in glucose metabolism within the myocardium. Neonatal cardiomyocytes (NCMs) harvested from hearts of transgenic mice expressing SLMAP1, presented with increased glucose uptake, glycolytic rate, as well as glucose transporter 4 (GLUT4) expressions with minimal impact on lipid metabolism. SLMAP1 expression markedly increased the machinery required for endosomal trafficking of GLUT4 to the membrane within NCMs, accounting for the observed effects on glucose metabolism. The data here indicates SLMAP1 as a unique regulator of glucose metabolism through endosomal regulation of GLUT4 trafficking and suggests it may uniquely serve as a target to limit cardiovascular disease in metabolic disorders such as diabetes.
|
97 |
Role of WRB protein in cardiac functionRivera Monroy, Jhon Erick 18 May 2017 (has links)
No description available.
|
98 |
Linguagem e interpretação do samba : aspectos rítmicos, fraseológicos e interpretativos do samba carioca aplicados em estudos de caixa clara / The vocabulary and interpretation of samba : snare drum studies and pieces based on rhythm, phrasing and interpretation of sambaCunha, Hélio Alexandrino Pacheco, 1982- 26 August 2018 (has links)
Orientador: Fernando Augusto de Almeida Hashimoto / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Artes / Made available in DSpace on 2018-08-26T13:09:49Z (GMT). No. of bitstreams: 1
Cunha_HelioAlexandrinoPacheco_M.pdf: 31557883 bytes, checksum: ef51be576b219e2cfcfa18422b33177a (MD5)
Previous issue date: 2014 / Resumo: Este trabalho parte da compreensão inicial de que o estudo da caixa é um fundamento da bateria. Dessa forma, propõe o estudo do ritmo e da interpretação do samba a partir de estudos e peças de caixa. O trabalho composicional é orientado por conceitos já desenvolvidos pela musicologia sobre a performance do samba em diálogo com os dados levantados pelo autor através das entrevistas aos sambistas cariocas, das transcrições e das experiências musicais vivenciadas pelo próprio pesquisador durante o processo de pesquisa. Ao final do trabalho os estudos e as peças relacionadas têm como principal objetivo explorar a forma de desenvolvimento fraseológico, de "manulação" dos toques e de exploração dos timbres da caixa a partir dos aspectos idiomáticos dos instrumentos de percussão característicos do samba / Abstract: This work starts from the initial understanding that the study of the snare drum is the foundation of the drum study. Thus, we propose the study of the rhythm and interpretation of samba by studies and pieces of snare drum. The compositional work is guided by concepts already developed by musicology on the performance of samba in dialogue with the data gathered by the author through interviews with carioca samba players, the transcriptions and the musical pratice experienced by the researcher during the research process. At the end of the work, studies and related pieces has as the main goals to explore the development of the phrasing, the sticking and the exploration of tones on the snare drum based on the idiomatic aspects of the samba characteristic instruments of percussion / Mestrado / Praticas Interpretativas / Mestre em Música
|
99 |
The Exocyst Subunit Sec6 Interacts with Assembled Exocytic Snare Complexes: A DissertationDubuke, Michelle L. 18 December 2015 (has links)
In eukaryotic cells, membrane-bound vesicles carry cargo between intracellular compartments, to and from the cell surface, and to the extracellular environment. Many conserved families of proteins are required for properly localized vesicle fusion, including the multi-subunit tethering complexes and the SNARE complexes. These protein complexes work together to promote proper vesicle fusion in other trafficking pathways. Contrary to these other pathways, our lab previously suggested that the exocyst subunit Sec6, a component of the exocytosis-specific tethering complex, inhibited Sec9:Sso1 SNARE complex assembly due to interactions in vitro with the SNARE protein Sec9 (Sivaram et al., 2005).
My goal for this project was to test the hypothesis that Sec6 inhibited SNARE complex assembly in vivo. I therefore chose to generate Sec6:Sec9 loss-of-binding mutants, and study their effect both in vitro and in vivo. I identified a patch of residues on Sec9 that, when mutated, are sufficient to disrupt the novel Sec6-SNARE interaction. Additionally, I found that the previous inhibitory role for Sec6 in SNARE assembly was due to a data mis-interpretation; my re-interpretation of the data shows that Sec6 has a mild, if any, inhibitory effect on SNARE assembly. My results suggest a potential positive role for Sec6 in SNARE complex assembly, similar to the role observed for other tether-SNARE interactions.
|
100 |
Untersuchungen zum Einfluss von neurotoxinhaltigen Kulturüberständen der Clostridium botulinum Toxovare A bis G auf eukaryote Degradierungssysteme am Modellorganismus Tetrahymena pyriformis GLStänder, Norman Martin 12 December 2006 (has links)
In der vorliegenden Arbeit sollte die Eignung von T. pyriformis GL für den Nachweis von Botulinumneurotoxinen als biologische Alternative zum Maus-Bioassay untersucht werden. Dazu wurden funktionelle Tests für die Quantifizierung der mutmaßlich SNARE-abhängigen Prozesse Phagozytose und Exozytose entwickelt. Die Botulinumneurotoxine wurden durch Kultivierung der C. botulinum-Toxovare A bis G in einem Caseinpepton-Glukose-Hefeextrakt-Medium mit und ohne Zusatz von Trypsin herge-stellt. Die Neurotoxinkonzentrationen wurden mit Hilfe des Maus-Bioassays bestimmt. Für den Phagozytosetest wurde E. coli K12 als Beutekeim gewählt. Es konnte gezeigt werden, dass die KbE/ml von E. coli K12 allein durch die Phagozytoseaktivität von T. pyriformis reduziert wurde. Für den Exozytosetest wurde die saure Phosphatase als Leitenzym gewählt. Die neurotoxinhaltigen Kulturüberstände wurden mit Neurotoxinendkonzentrationen von 1,50E+02 MLD/ml (Maus letale Dosis/ml) bei den trypsinisierten und nicht trypsinisierten Ansätzen der Toxovare A bis D, F und G bzw. von 1,50E+00 MLD/ml bei dem trypsinisierten Ansatz des Toxovars E in den entwickelten Tests eingesetzt und auf ihren Einfluss untersucht. Die eingesetzten Neurotoxinkonzentrationen erwiesen sich als nicht ausreichend. Zudem wurde eine erhebliche Anfälligkeit der Phagozytose- und Exozytoseleistung von T. pyriformis gegen die Proteinkonzentrationen der eingesetzten Kulturüberstände nachgewiesen. Aufgrund dessen ist die Eignung von T. pyriformis im Rahmen der entwickelten Tests für den Nachweis von Botulinumneurotoxinen aus Proben wie biologischen Substraten oder mit ähnlichen, komplexen Matrizes nicht gegeben.
|
Page generated in 0.0286 seconds