• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 81
  • 57
  • 30
  • 25
  • 23
  • 22
  • 20
  • 20
  • 20
  • 18
  • 16
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Toward Fault Adaptive Power Systems in Electric Ships

Laktarashani, Maziar Babaei 04 May 2018 (has links)
Shipboard Power Systems (SPS) play a significant role in next-generation Navy fleets. With the increasing power demand from propulsion loads, ship service loads, weaponry systems and mission systems, a stable and reliable SPS is critical to support different aspects of ship operation. It also becomes the technology-enabler to improve ship economy, efficiency, reliability, and survivability. Moreover, it is important to improve the reliability and robustness of the SPS while working under different operating conditions to ensure safe and satisfactory operation of the system. This dissertation aims to introduce novel and effective approaches to respond to different types of possible faults in the SPS. According to the type and duration, the possible faults in the Medium Voltage DC (MVDC) SPS have been divided into two main categories: transient and permanent faults. First, in order to manage permanent faults in MVDC SPS, a novel real-time reconfiguration strategy has been proposed. Onboard postault reconfiguration aims to ensure the maximum power/service delivery to the system loads following a fault. This study aims to implement an intelligent real-time reconfiguration algorithm in the RTDS platform through an optimization technique implemented inside the Real-Time Digital Simulator (RTDS). The simulation results demonstrate the effectiveness of the proposed real-time approach to reconfigure the system under different fault situations. Second, a novel approach to mitigate the effect of the unsymmetrical transient AC faults in the MVDC SPS has been proposed. In this dissertation, the application of combined Static Synchronous Compensator (STATCOM)-Super Conducting Fault Current Limiter (SFCL) to improve the stability of the MVDC SPS during transient faults has been investigated. A Fluid Genetic Algorithm (FGA) optimization algorithm is introduced to design the STATCOM's controller. Moreover, a multi-objective optimization problem has been formulated to find the optimal size of SFCL's impedance. In the proposed scheme, STATCOM can assist the SFCL to keep the vital load terminal voltage close to the normal state in an economic sense. The proposed technique provides an acceptable post-disturbance and postault performance to recover the system to its normal situation over the other alternatives.
32

Transient Stability Analysis of Power Systems with Energy Storage

WENG, CHIYUAN 12 March 2013 (has links)
No description available.
33

Modeling and Simulation of Parallel D-STATCOMs with Full-Wave Rectifiers

Brinsfield, Jason 01 May 2014 (has links) (PDF)
In recent years, both a significant increase in electrical demand and a large influx of intermittent renewable energy sources have put a considerable stress on the nation’s electrical grid. Conventional power flow control techniques such as capacitor banks and tap-changing transformers are incapable of adequately handling the rapid fluctuations in power supply and demand that today’s grid experiences. Flexible AC Transmission System (FACTS) controllers are a practical way to compensate for such rapid power fluctuations. One type of shunt FACTS controller is the Static Synchronous Compensator (STATCOM), which uses fully controllable switches to source or sink reactive power to a point on the grid, thus reducing voltage fluctuations due to load changes. The purpose of this thesis is to model and simulate the operation of two Distribution STATCOMs (D-STATCOMs) operating on the same point on the grid. These D-STATCOMs also utilize parallel full-wave rectifiers that directly connect the ac grid to the dc capacitor of the D-STATCOMs. Parameters such as power loss, reaction time, stability, and THD are measured for several test scenarios. Results from this thesis show that two D-STATCOMs operating on the same point can be stable and effective under a wide range of conditions. This thesis also concludes that the inclusion of parallel rectifiers with the D-STATCOMs results in no performance improvement of the D-STATCOMs.
34

Mitigating SSCI in a hybrid wind and PV farm utilizing PV-STATCOM : A Swedish case study

Löfgren, Isabelle January 2022 (has links)
The share of electricity generation in the power system being based on power electronics is increasing, which will impact the system in different ways, such as an increased risk for undesired interactions. An example is doubly fed induction generator (DFIG) based windfarms which have been shown to present negative resistance in (parts of) the sub-synchronous range (i.e., below the system frequency of 50 or 60 Hz). If such a wind farm is radially connected (deliberately or not) to a series compensated line, undamped or poorly damped sub-synchronous oscillations could occur due to sub-synchronous resonance. One possible cause of such interactions is related to the wind farm control system, and in such cases, the interaction between the wind farm and system leading to sub-synchronous oscillations is referred to as sub-synchronous control interaction (SSCI). This thesis aims to describe different types of so-called sub-synchronous oscillations, with a focus on SSCI. An investigation is performed to find out under what circumstances there is a risk of SSCI, and how one can evaluate this risk. Different methods of obtaining the impedance of non-linear systems (e.g., a wind farm) are discussed, with the method used in this thesis being a dynamic impedance scan. The dynamic impedance scan is implemented in PSCAD and uses a voltage (or current) perturbation of one frequency at a time and measures the current (or voltage) response at that frequency, subsequently giving the impedance as the voltage/current ratio. Combined with the impedance of the grid, screening studies were performed to identify the risk of SSCI under different conditions. A 200 MW photovoltaic (PV) farm is designed and implemented in PSCAD. The PV farm is connected to the same bus as a 200 MW DFIG wind farm, resulting in a hybrid wind and PV farm. The hybrid wind and PV farm is in turn connected to a series compensated transmission system made to resemble a typical Swedish system. Functionality is added to the PV farm that enables it to act as a static synchronous compensator (STATCOM) to damp sub-synchronous oscillations if needed. Simulations are performed in PSCAD showing that the PV farm is able to damp the sub-synchronous oscillations occurring when the wind farm is radially connected with the series compensated line due to a fault, thereby avoiding disconnection or damage to equipment. One of the main conclusions is that assessing the risk of SSCI (screening) is not an exact science, but a highly complex matter. This conclusion is drawn due to contradictory implications given when analysing the measured grid and wind farm impedances. For example, a series resonance point in the combined reactance (grid + wind farm) would suggest that there would be oscillations at this frequency during a fault, but this may not always be the case. The opposite also occurred, i.e., oscillations of a certain frequency occurred even though no series-resonance point was seen in the combined impedance. Nonetheless, the screening method did manage to identify risk cases based on a set of criteria listed in the thesis, although electromagnetic transient analysis (EMT) time-domain simulations should always be performed for verification. The other main conclusion is that a PV farm installed at the point of common coupling (PCC) of a wind farm, i.e., a hybrid wind and PV farm, is able to damp sub-synchronous oscillations by acting as a PV-STATCOM. The use of combined assets, such as utilizing a PV farm to counteract SSCI in a wind farm, means that additional investments, for example in the form of a STATCOM, for this purpose could be avoided.
35

Advanced Semiconductor Device and Topology for High Power Current Source Converter

Xu, Zhenxue 08 December 2003 (has links)
This dissertation presents the analysis and development of an innovative semiconductor device and topology for the high power current source converter (CSC). The CSC is very attractive in high power applications due to its lower output dv/dt, easy regeneration capability and implicit short-circuit protection. Traditionally, either a symmetrical gate turn-off (GTO) thyritor or an asymmetrical GTO in series with a diode is used as the power switch in the CSC. Since the GTO has a lower switching speed and requires a complicated gate driver, the symmetrical GTO based CSC usually has low dynamic response speed and low efficiency. To achieve high power rating, fast dynamic response speed and low harmonics, an advanced semiconductor device and topology are needed for the CSC. Based on symmetrical GTO and power MOSFET technologies, a symmetrical emitter turn-off (ETO) thyristor is developed that shows superior switching performance, high power rating and reverse voltage blocking capability. The on-state characteristics, forced turn-on characteristics, forced turn-off characteristics and the load-commutated characteristics are studied. Test results show that although the load-commutation loss is high, the developed symmetrical ETO is suitable for use in high power CSC due to its low conduction loss, fast switching speed and reverse voltage blocking capability. The snubberless turn-on capability is preferred for a semiconductor device in a power conversion system, and can be achieved for devices with forward biased safe operation area (FBSOA). The FBSOA of the ETO is investigated and experimentally demonstrated. The ETO device has excellent FBSOA due to the negative feedback provided by the emitter switch. However, the FBSOA for a large area ETO is poor. A new ETO concept is therefore proposed for future development in order to demonstrate the FBSOA over a large area device. To improve the turn-on performance of the large area ETO, a novel concept, named the transistor-mode turn-on, is proposed and studied. During the transistor-mode turn-on process, the ETO behaves like a transistor instead of a thyristor. Without a snubber, the transistor-mode turn-on for the ETO is hard to achieve. Through the selection of a proper gate drive and di/dt snubber, the transistor-mode turn-on can be implemented, and the turn-on performance for the ETO can be dramatically improved. To increase the power rating of the CSC without degrading the utilization of power semiconductor devices, a novel multilevel CSC, named the parallel-cell multilevel CSC, is proposed. Based on a six-switch CSC cell, the parallel-cell multilevel CSC has the advantages of high power rating, low harmonics, fast dynamic response and modularity. Therefore, it is very suitable for high power applications. The power stage design, modeling, control and switching modulation scheme for a parallel-cell multilevel CSC based static var compensator (STATCOM) are analyzed and verified through simulation. / Ph. D.
36

Electromagnetic Transient and Dynamic Modeling and Simulation of a StatCom-SMES Compensator in Power Systems

Arsoy, Aysen 28 April 2000 (has links)
Electromagnetic transient and dynamic modeling and simulation studies are presented for a StatCom-SMES compensator in power systems. The transient study aims to better understand the transient process and interaction between a high power/high voltage SMES coil and its power electronics interface, dc-dc chopper. The chopper is used to attach the SMES coil to a StatCom. Following the transient study, the integration of a StatCom with SMES was explored to demonstrate the effectiveness of the combined compensator in damping power oscillations. The transient simulation package PSCAD/EMTDC has been used to perform the integrated modeling and simulation studies. A state of the art review of SMES technology was conducted. Its applications in power systems were discussed chronologically. The cost effective and feasible applications of this technology were identified. Incorporation of a SMES coil into an existing StatCom controller is one of the feasible applications, which can provide improved StatCom operation, and therefore much more flexible and controllable power system operation. The SMES coil with the following unique design characteristics of 50MW (96 MW peak), 100 MJ, 24 kV interface has been used in this study. As a consequence of the high power/ high voltage interface, special care needs to be taken with overvoltages that can stress the insulation of the coil. This requires an investigation of transient overvoltages through a detailed modeling of SMES and its power electronics interface. The electrical model for the SMES coil was developed based on geometrical dimensions of the coil. The interaction between the SMES coil and its power electronics interface (dc-dc chopper for the integration to StatCom) was modeled and simulated to identify transient overvoltages. Transient suppression schemes were developed to reduce these overvoltages. Among these are MOV implementation, surge capacitors, different configurations of the dc-dc chopper. The integration of the SMES coil to a StatCom controller was developed, and its dynamic behavior in damping oscillations following a three-phase fault was investigated through a number of simulation case studies. The results showed that the addition of energy storage to a StatCom controller can improve the StatCom-alone operation and can possibly reduce the MVA rating requirement for the StatCom operating alone. The effective location selection of a StatCom-SMES controller in a generic power system is also discussed. / Ph. D.
37

Analys av reaktiv effektinmatning till överliggande nät samt optimal kondensatordrift / Analysis of reactive power input to the higher-level grid and optimal operation of capacitor banks

Sundström, Göran January 2017 (has links)
Bakgrunden till detta projekt är att Vattenfall Eldistribution AB (nedan kallat Vattenfall) kommer att införa ett avgiftssystem för inmatning av reaktiv effekt till sitt elnät. Avgiften införs till följd av problem på elnätet som orsakas av reaktiv effekt. Umeå Energi Elnät AB (nedan kallat Umeå Energi) har historiskt matat in reaktiv effekt vilket motiverade detta arbete som utreder den reaktiva effekten på Umeå Energis elnät samt bidrar med information om två alternativa tillvägagångssätt att bemöta avgiften. Alternativ 0 är att kompensationsutrustning inte installeras, utan att ett abonnemang på inmatning av reaktiv effekt upprättas. Alternativ 1 är att kompensationsutrustning installeras. För att utreda den reaktiva effekten erhölls och behandlades data på reaktiv effekt i Umeå Energis nät. Historisk kondensatordrift togs fram för år 2016 ur händelsehistoriken hos Umeå Energis driftcentral. Kondensatordriften år 2015 kunde enbart erhållas från ett tidigare arbete på Umeå Energi eftersom ett begränsat antal händelser lagras i händelsehistoriken. Genom att subtrahera kondensatorernas produktion från den reaktiva effekten i Umeå Energis anslutningspunkter som uppmätts av Vattenfall erhölls data som mer representerade underliggande fenomen på nätet. Utan kondensatordrift beräknades inmatningen enligt Vattenfalls definition uppgå till cirka 34 MVAr utifrån data från 2015 och 2016. För åren 2018 till och med 2023 beräknades ändringar i reaktiv effekt till följd av förändringar på Umeå Energis nät. Vid beräkningarna försummades ledningarnas induktiva karaktär, vilket gav ett tomgångsscenario med maximal produktion av reaktiv effekt. År 2023 beräknades inmatningen ska ha ökat till 59 MVAr till följd av förändringar på Umeå Energis nät. Med antagandet att Umeå Energi inte kommer att drifta kondensatorbatterierna så att inmatningen höjs föreslogs för alternativ 0 val av abonnemang på inmatning av reaktiv effekt för åren 2018 till och med 2023 utifrån de 34 MVAr som nämnts ovan och inverkan från förändringarna på nätet. År 2019 föreslogs ett abonnemang på 41 MVAr, och 2023 föreslogs ett på 59 MVAr. Kostnaderna för dessa beräknades enligt Vattenfalls tariff till 820 000 kr respektive 1 187 000 kr. Kostnaden för eventuell överinmatning av reaktiv effekt beräknades med tariffen för överinmatning årligen uppgå till maximalt 76 000 kr med 95 % sannolikhet enligt den korrigerade standardavvikelsen hos inmatningen utan kondensatordrift åren 2015 och 2016. Optimal kondensatordrift beräknades för åren 2015 och 2016 genom att addera den produktion av reaktiv effekt från befintliga kondensatorbatterier som gav minst absolutvärde i reaktiv effekt. Beroende på hur ofta kondensatordriften justerades erhölls olika resultat. En undersökning av störningar till följd av kondensatorkopplingar rekommenderas för att få en förståelse för förutsättningarna för optimal kondensatordrift. Det bedömdes inte ekonomiskt motiverbart med mer avancerad kompensationsteknik såsom statiska VAr-kompensatorer då variabla reaktorer kan kompensera dygns- och säsongsvariationer i reaktiv effekt. Den reaktiva effektproduktionen i ledningar är störst på 145 kV-nivån och kommer öka i framtiden på denna nivå. Det är därför sannolikt här kompensationsutrustning såsom reaktorer först bör installeras. För att kunna ta så bra beslut som möjligt angående den reaktiva effekten rekommenderas att snarast möjligt ingå ett arbetssätt som om avgiftssystemet redan tagits i bruk och utöka ett representativt dataunderlag. / The background of this project is that Vattenfall Eldistribution AB (hereinafter referred to as Vattenfall) will establish a system of fees for input of reactive power. This will be done due to problems in the grid caused by reactive power. Umeå Energi Elnät AB (hereinafter referred to as Umeå Energi) has historically input reactive power, motivating this work which investigates the reactive power in the grid of Umeå Energi and provides information on two alternative approaches to responding to the fee. Alternative 0 entails no installation of compensation technology, and that a subscription for reactive power input is established instead. Alternative 1 entails that compensation technology is installed. To investigate the reactive power, data on reactive power in the grid of Umeå Energi were obtained and processed. Historical operations of capacitor banks for the year 2016 were obtained from the history of events of the control center at Umeå Energi. The operations of the capacitor banks during 2015 could only be obtained from an earlier work at Umeå Energi since the number of events stored in the history is limited. By subtracting the capacitor banks’ production from the reactive power measured by Vattenfall in the connections of Umeå Energi, data more representative of underlying phenomena were obtained. Without capacitor production of reactive power, the input was calculated according to the definition of Vattenfall to about 34 MVAr, by using data from 2015 and 2016. For the years 2018 through 2023, changes in reactive power due to changes in the grid of Umeå Energi were calculated. These calculations did not consider inductances, and thus yielded zero-load scenarios with maximum reactive power production. By the year of 2023, the input was calculated to have increased to 59 MVAr due to changes in the grid of Umeå Energi. Assuming that Umeå Energi will not operate the capacitors so that the input is increased, for alternative 0 subscriptions for input of reactive power were suggested for the years 2018 through 2023 by considering the abovementioned 34 MVAr and the changes in the grid. Subscriptions of 41 MVAr and 59 MVAr were suggested for the years 2019 and 2023 respectively. The costs of these were calculated with the fee specified by Vattenfall to SEK 820,000 and SEK 1,187,000 respectively. Calculations with the applicable fee yielded that the yearly cost of possible over-input could amount to a maximum of SEK 76,000 with a 95 % probability, using the corrected standard deviation of the input without capacitor production of reactive power for the years 2015 and 2016. Optimal capacitor bank operations were calculated for the years 2015 and 2016 by adding the production of reactive power from existing capacitor banks which yielded the minimum absolute reactive power. Depending on how often the capacitors were operated different results were obtained. An investigation of power quality disturbances due to capacitor bank operations is recommended to achieve an understanding of the conditions for optimal capacitor bank operations. It was not deemed economically justifiable to install more advanced compensation technologies such as static VAr compensators since variable reactors are able to compensate daily and seasonal variations in reactive power. The production of reactive power in cables is the largest on the 145 kV level and will increase in the future on this level. It is therefore likely here compensation technologies such as reactors should be installed first. To be able to make as good decisions as possible concerning the reactive power, it is recommended to as soon as possible commence a working method as if the fee system had already come into effect; thus increasing the amount of representative data.
38

Utvärdering av faskompenseringsmetoder för ett småskaligt vattenkraftverk : Genomgång av kondensatorbatteri, aktiv och passiv reglering, övermagnetiserad synkronmaskin, SVC och STATCOM på Fröslida kraftverk / Evaluation of power factor correction methods for a small scale hydropower plant : Review of a capacitor bank, passive and active regulation, overexcited synchronous generator, SVC, and STATCOM on Fröslida power plant

Göker, Fuat, Hedberg, Christoffer January 2018 (has links)
Småskalig vattenkraft är en stor användare av reaktiv effekt då de ofta har asynkrongeneratorer. Det gör att det finns ett reellt behov för faskompensering, dels för att minska distorsion i nätet samt för att förbättra deras ekonomiska ställning, då elbolag ofta tar ut en avgift för överskridande användning av reaktiv effekt. Det ligger också i allmänhetens intresse att ha en god elkvalitet och hålla störningar och avbrott nere, vilket kan erhållas med faskompensering och filtrering av övertoner. Det finns olika tekniker för faskompensering med sina respektive för- och nackdelar som specificeras efter anläggningens krav och förhållanden. Dessa tekniker är ett kondensatorbatteri, passiv och aktiv reglering, övermagnetiserad synkronmaskin, static var compensator (SVC) och static synchronous compensator (STATCOM). Med hjälp av simuleringar och ekonomisk kalkylering har deras egenskaper och investeringspotential analyserats. Det har resulterat i att ett kondensatorbatteri är en ekonomiskt god investering men med nackdelen att det blir en stor transient vid inkoppling. Aktiv reglering bistår med en snabb, kontinuerlig faskompensering men har större driftkostnader och en kortare livslängd. Övermagnetiserad synkronmaskin har en god ekonomisk framtidsutsikt men med en något långsammare reaktionstid. SVC och STATCOM är mer applicerbar på större anläggningar, eller för nät som har en större nytta av dess flexibilitet. / Small scale hydropower is a big user of reactive power, mainly because of their use of asynchrounous generators. Power companies are charging their customers a fee for an extensive use of reactive power. Which gives rise to a need of correction of the power factor as well as reduction of distorsion in the network. It is also in the interest of the general public to acquire a good electric quality in terms of keeping distorsion and interruptions in the network to a minimum. This can be achieved by using different methods for power factor correction and filtration of harmonics. These methods have their own inherent advantages and disadvantages described after the facility’s specific needs and requirements. These methods are a capacitor bank, passive and active regulation, overexcited synchronous machine, static var compensator (SVC) and static synchronous compensator (STATCOM). Simulations and economical calculations have been used to determine these properties. A capacitor bank has been proven to be a good economical investment, but it has high transients during switching conditions. Active regulation also shows a good profitability and provides a fast, continuous regulation of the reactive power, though it has higher operating costs and low life expectancy. The overexcited synchronous generator has a positive outlook in economic terms, with the drawback of a slower response time. SVC and STATCOM are more applicable to larger facilities or weak networks.
39

Διερεύνηση λειτουργίας/ελέγχου και προσομοίωση αιολικού συστήματος επαγωγικής γεννήτριας με STATCOM

Βεντούρης, Νικόλαος 13 October 2013 (has links)
Σκοπός της παρούσας διπλωματικής εργασίας είναι η διερεύνηση λειτουργίας και ελέγχου ανεμογεννήτριας σταθερών στροφών, που αποτελείται από επαγωγική γεννήτρια βραχυκυκλωμένου κλωβού (SCIG) συνδεδεμένη στο δίκτυο με στατικό αντισταθμιστή (STATCOM). Η διάταξη περιλαμβάνει εκτός από την ανεμογεννήτρια και τον STATCOM, μια συστοιχία πυκνωτών (με αντιστάσεις συνδεδεμένες παράλληλα) σε συνδεσμολογία αστέρα πάνω στον κοινό κόμβο διασύνδεσης της ανεμογεννήτριας και του STATCOM, φίλτρο τύπου R-L στην έξοδο του STATCOM και ισοδύναμη αναπαράσταση της ωμικο-επαγωγικής γραμμής μεταφοράς του δικτύου και της τάσης του. Η ανάλυση του μοντέλου γίνεται μεταφέροντας τις εξισώσεις στο σύστημα των d-q αξόνων με χρήση του μετασχηματισμού Park. Στη συνέχεια γίνεται υλοποίηση του μοντέλου στο πρόγραμμα Simulink και πραγματοποιούνται προσομοιώσεις. / The purpose of this thesis is to investigate the use of a static synchronous compensator (STATCOM) to mitigate the voltage fluctuations and improve power quality of a wind turbine with squirrel cage induction generator (SCIG). The simulated system contains a wind turbine with a fixed-speed SCIG connected at the same point with a STATCOM (including an R-L filter), a capacitor bank (with a resistive load) connected in star and the transmission line for grid connection. System’s equations are transformed into the d-q synchronous reference frame using Park’s trans-formation and the complete model is presented in its state-space form. Finally, the system is simulated in Matlab/Simulink and the responses are presented.
40

Modelling and methodology apllied to evaluate multi-infeed performance of HVDC transmission systems. / Modelagem e metodologia aplicadas a avaliação da performance de sistemas mult-infeed de transmissão HVDC.

Pedroso, Felipe Rocha Velloso de Almeida 30 August 2017 (has links)
The Brazilian transmission system covers a large area, with a high concentration of consumer centres in the Southeast region and abundant hydro generation in the North. To connect these regions, some of the transmission lines might reach 2500 km length, creating a challenging situation. In this context, system planners have been defining the use of HVDC systems as the most feasible choice of transmission investment. It is so, recognized that the connections of power plants in the Northern region to the load centres in the Southeast will require a significant number of bipoles and, until the present moment, all the operational and planned HVDC lines are based on the converter technology known as LCC (Line Commutated Converter) and consequently subject to commutation failure. Currently, the Brazilian system has four LCC bipoles, with two other bipoles under construction. Although the Southeast grid is strong, the connection of two additional bipoles is a concern as the interaction between these inverters may cause strong effects on one another, a phenomenon known as multi-infeed interaction. In such a situation, the assessment of the system operation, possible outages and possible mitigation methods are of paramount importance. This document presents a different methodology for the analysis of the multi-infeed system mentioned and focuses on its validation by analysing operation under normal conditions and with the implementation of established mitigation methods. The investigation was carried out with EMT, power flow, short-circuit and electromechanical softwares in a very large AC system composed by 100 buses on EMT and full Brazilian system on the rest. The effects of faults were analysed and the areas containing the buses where a fault leads to multiple commutation failures were identified. / O sistema de brasileiro de transmissão abrange uma área ampla, com uma alta concentração de consumo na região Sudeste e abundante geração hidrelétrica no Norte. Para conectar essas regiões, algumas das linhas de transmissão podem alcançar comprimentos de 2500 km, criando uma situação desafiadora. Neste contexto, os planejadores de sistemas têm definido o uso de sistemas HVDC como a escolha mais viável de investimento em transmissão. É então reconhecido que as conexões de usinas na região Norte aos centros consumidores no Sudeste exigirão um número significativo de bipolos e, até o momento presente, todas as linhas HVDC operacionais e planejadas são baseadas na tecnologia de conversão conhecida como LCC (Line Commutated Converter) e consequentemente sujeito a falha de comutação. Atualmente, o sistema brasileiro tem quatro bipolos LCC, com outros dois bipolos em construção. Embora a rede do Sudeste seja considerada forte, a conexão de dois bipolos adicionais é uma preocupação, pois a interação entre esses inversores pode causar efeitos danosos uns sobre os outros, um fenômeno conhecido como interação multi-infeed. Em tal situação, a avaliação da operação do sistema, possíveis interrupções e possíveis métodos de mitigação são de suma importância. Este documento apresenta uma metodologia diferente para a análise do sistema multi-infeed mencionado e foca em sua validação, analisando a operação em condições normais e com a implementação de métodos de mitigação conhecidos. A investigação foi realizada com softwares EMT, de curto circuito, fluxo de potência e estabilidade eletromecância em um sistema CA muito grande composto por 100 barras em EMT e sistema brasileiro completo no resto. Os efeitos das falhas foram analisados e as áreas que contêm as barras onde uma falha leva a múltiplas falhas de comutação foram identificadas.

Page generated in 0.1478 seconds