71 |
Modelling and control of a line-commutated HVDC transmission system interacting with a VSC STATCOMFischer de Toledo, Paulo January 2007 (has links)
The interaction of an HVDC converter with the connected power system is of complex nature. An accurate model of the converter is required to study these interactions. The use of analytical small-signal converter models provides useful insight and understanding of the interaction of the HVDC system and the connected system components. In this thesis analytical models of the HVDC converters are developed in the frequency-domain by calculating different transfer functions for small superimposed oscillations of voltage, current, and control signals. The objective is to study the dynamic proprieties of the combined AC-DC interaction and the interaction between different HVDC converters with small signal analysis. It is well known that the classical Bode/Nyquist/Nichols control theory provides a good tool for this purpose if transfer functions that thoroughly describe the 'plant' or the 'process' are available. Thus, there is a need for such a frequency-domain model. Experience and theoretical calculation have shown that voltage/power stability is a very important issue for an HVDC transmission link based on conventional line-commutated thyristor-controlled converters connected to an AC system with low short circuit capacity. The lower the short circuit capacity of the connected AC system as compared with the power rating of the HVDC converter, the more problems related to voltage/power stability are expected. Low-order harmonic resonance is another issue of concern when line-commutated HVDC converters are connected to a weak AC system. This resonance appears due to the presence of filters and shunt capacitors together with the AC network impedance. With a weak AC system connected to the HVDC converter, the system impedances interact through the converter and create resonances on both the AC- and DC-sides of the converter. In general, these resonance conditions may impose limitations on the design of the HVDC controllers. In order to improve the performance of the HVDC transmission system when it is connected to a weak AC system network, a reactive compensator with a voltage source converter has been closely connected to the inverter bus. In this thesis it is shown that the voltage source converter, with an appropriate control strategy, will behave like a rotating synchronous condenser and can be used in a similar way for the dynamic compensation of power transmission systems, providing voltage support and increasing the transient stability of the converter. / QC 20100708
|
72 |
On Power-system Benefits, Main-circuit Design, and Control of StatComs with Energy StorageXie, Hailian January 2009 (has links)
Static synchronous compensation (StatCom) is an application that utilizes a voltage source converter (VSC) to provide instantaneous reactive power support to the connected power system. Conventionally, StatComs are employed for reactive power support only. However, with the integration of energy storage (ES) into a StatCom, it can provide active power support in addition to the reactive power support. This thesis deals with the integration of ES into StatComs. The investigation involves the following aspects: possible benefits for power systems, main circuit design, and control strategies. As the basis of the investigation, a control scheme is proposed for two-level VSCs. It is a novel flux modulation scheme combined with the well-known deadbeat current control. The current controller is capable of controlling the positive sequence, the negative sequence, and the offset components of the converter current. With flux modulation, all the three above-mentioned components of the bus flux are controllable. This differs from the conventional voltage modulation scheme, in which only the positive and negative sequence components of the bus voltage are controllable. The difference between the proposed flux modulation scheme and the voltage modulation scheme is investigated regarding saturation of transformers in the connected system during fault recovery. The investigation shows that by controlling the offset component of the bus flux, the transformer saturation problem can be mitigated to a certain extent. The possible benefits of the additional active power support of StatComs are investigated through several case studies. Different active power compensation schemes are proposed. First, active power compensation for sudden load changes in weak systems is investigated. The proposed control strategies are verified through computer simulations and through experiments in a real-time simulator. It is shown that with active power compensation, both the phase jumps and magnitude variations in the voltage at the PCC can be reduced significantly. Secondly, the power compensation of cyclic loads is investigated. The results show that the power quality at the connection point can be improved regarding both phase jumps and magnitude variations. In the third case study, the fault-recovery performance of an example system is investigated, showing that improved performance can be achieved by the additional active power support. ES devices such as capacitors, supercapacitors, and batteries exhibit considerable variation in the terminal voltage during a charging/discharging cycle. A direct connection of ES devices to the dc side of a VSC requires a higher voltage rating of the VSC. Thus, the cost of the VSC has to be increased. In this thesis, a dual thyristor converter topology is proposed to interface ES devices with the dc side of the VSC. First, a cost comparison is performed to compare the total cost of the whole system with and without the proposed interface topology. A cost comparison between various types of ES is also presented, providing a guideline for the choice of ES at energy levels where several alternatives exist. Then, the dynamics of systems with the proposed interface topology are investigated. Control strategies are proposed and verified by computer simulations. Two different control methods for the dual-thyristor converter are compared. / QC 20100819
|
73 |
Adaptive and Nonlinear Control of a Voltage Source ConverterMilasi, Rasoul M. Unknown Date
No description available.
|
74 |
Modélisation et Commande de structures FACTS : (Flexible Alternative CUITent Transmission System) Application au STATCOM (STATic COMpensator)Petitclair, Patrice 16 July 1997 (has links) (PDF)
Le problème de la maîtrise du transport de l'énergie électrique a donné naissance au projet FACTS (Flexible Alternative Current Transmission System ! Pour améliorer la flexibilité des réseaux de transport existants. Le ST A TCOM (ST ATic COMD*~ n s ator) est un dispositif FACTS dédié à la compensation d'énergie réactive transitant sur le réseau . L'évolution des composants d'électronique de puissance a apporté des solutions technologiques pour la réalisation des structures onduleurs du STATCOM. En tenant compte des diverses structures présentées, un modèle dynnamique est construit en utilisant la théorie du modèle moyen généralisé. Il est ensuite validé avec le modèle topologique, lequel décrit le comportement fin de l'onduleur. Afin d' avoir un contrôle robuste du courant réactif du dispositif, une loi de commande non linéaire est élaborée à partir de la théorie de la linéarisation par bouclage. La linéarisation est obtenue au détriment des comportements dynamiques du courant actif et de la tension continue de l' onduleur. Une optimisation de la loi de conunande est proposée afin de maîtriser le comportement dynamique de toutes les variables du dispositif. Cette loi de commal1de est validée sur le modèle topologique après avoir abordé le problème des filtres de mesure. La mise en place de la linéarisation par bouclage nécessite une connaissance des valeurs des composants de la structure. Une estimation ainsi qu'une correction de l'erreur commise sur ces grandeurs sont alors proposées. Le modèle du ST A TCOM avec ses lois de commande est ensuite inséré dans un logiciel destiné à l' étude du comportement dynamique de réseaux (EUROSTAG). A cet effet, le modèle mis au point prend en compte le comportement dynamique de la structure du ST A TCOM, et apporte une richesse supplémentaire pour l 'étude dynamique des réseaux. L'intérêt de la loi de commande optimisée est nus en évidence comparativement aux solutions classiques.
|
75 |
Investigations On Small Signal Stability Of Power Systems Affected By FACTS Supplementary Modulation ControllersSaikumar, H V 09 1900 (has links) (PDF)
No description available.
|
76 |
Performance Evaluation Of Distance Relays For FACTS Compensated Transmission LinesMaturu, Suresh 03 1900 (has links) (PDF)
With limited enhancement or expansion of the transmission infrastructure, the contemporary power systems are operating under more stressed conditions. It becomes important to fully utilize the existing transmission system to supply load demand as much as possible, thus eliminating or reducing the need for new transmission investment.
Flexible AC Transmission System (FACTS) technology provides an alternative to fully utilize the existing transmission lines as well as new and upgraded lines, by controlling power and also enhancing the power transfer capability of transmission lines. However, the implementation of FACTS controllers in the transmission system has introduced new power system dynamics that must be addressed in the area of power system protection, such as rapid changes in line impedance, power angle, line currents, transients introduced by the occurrence of fault and associated control action of the FACTS controller. Therefore, the performance of the protection system must be carefully analyzed in the presence of FACTS controllers.
The thesis aims at evaluating the performance of distance relays when different types of FACTS controllers, in particular Voltage Source Converter (VSC) based FACTS controllers, are incorporated at the midpoint of the transmission system to achieve voltage profile improvement and power transfer capability. The detailed models of these controllers and their control strategies are described. The presence of FACTS controllers in the loop affects both steady state and transient components of voltage and current signals. The rapid response of FACTS controllers to different power system configurations significantly affects the apparent impedance seen by distance relays. The apparent impedance seen by distance relays would be different from that of the system without FACTS controller. Due to this, the distance relay may malfunction, resulting in unreliable operation of the power system during faults. Furthermore, the effect of FACTS controllers on distance relay operation depends on the type of FACTS controller used, the application for which it has been installed and its location in the power system. The distance relay is evaluated for different loading conditions and for various fault conditions. Simulation studies are carried out using PSCAD/EMTDC based transient simulation package.
|
77 |
Posouzení možností regulace napětí v distribučních sítích nn / Evaluation of possibilities for voltage control in a LV distribution networkBolgár, Robert January 2013 (has links)
This paper deals with possible ways of voltage regulation. Theoretical part includes a search of published methods and the available voltage regulators. Acquired theoretical knowledge has been applied in the development of mathematical models of two selected controllers applied to the testing network. The result of this work is a summary of the outcomes of dynamic simulations with two selected regulators at various locations in testing network. Comparing the results of dynamic simulation for two selected states was chosen the most appropriate regulator and its optimal location in testing network.
|
78 |
Voltage Source Converters with Energy Storage CapabilityXie, Hailian January 2006 (has links)
This project deals with voltage source converters with energy storage capability. The main objective is to study the possible benefits of energy storage to a power system with a VSC as the interface between them. First of all, a converter control system is proposed for a two level VSC. In the conventional converter control, the control system usually takes the voltage measured at the point where the converter is connected and calculates the reference voltage for the converter; with a modulation system the converter then produces the required 'average voltage'. In this project, a novel flux modulation scheme, combined with the deadbeat current control strategy, is proposed. The current controller is capable of controlling both positive and negative sequence current components. With flux modulation, the control system measures the bus flux and commands the converter to generate the required flux. Based on the proposed control strategies, several application studies have been carried out. The first application study investigates the effect of energy storage on the power quality at the point of common coupling when a system is subject to load disturbances. The voltage at PCC in a weak network is very sensitive to load changes. A sudden change in active load will cause both a phase jump and a magnitude fluctuation in the bus voltage, whereas reactive load changes mainly affect the voltage magnitude. With the addition of energy storage to a StatCom, it is possible to compensate for the active power change as well as providing reactive power support. In this thesis, some effective active power compensation schemes are proposed. Simulations and experiments have been performed to verify the compensation schemes. The results show that a StatCom with energy storage can significantly reduce phase jumps and magnitude deviations of the bus voltage. pact of the energy storage on the performance of weak systems under fault conditions has been investigated. The investigation was done by studying an example system. The system model was established based on a real system, in which some induction motors driving pumps along a pipeline are fed from a radial transmission line. Studies show that for a weak system with induction motor loads, a StatCom with certain energy storage capacity will effectively improve the system recovery after faults. Although this incurs extra cost for the increasing dc voltage rating and size of the dc side capacitor, the overall rating of the converter can be reduced by utilization of the proposed active power compensation scheme. The last case study investigates the possible use of a StatCom with energy storage to improve the power quality at the point of common coupling where a cyclic load is connected. Studies show that by providing both fast reactive and fast active power support to the network, not only the voltage magnitude can be well controlled, but also the voltage phase jump can be reduced significantly. / QC 20101124
|
79 |
Investigation of the application of UPFC controllers for weak bus systems subjected to fault conditions. An investigation of the behaviour of a UPFC controller: the voltage stability and power transfer capability of the network and the effect of the position of unsymmetrical fault conditions.Jalboub, Mohamed K. January 2012 (has links)
In order to identify the weakest bus in a power system so that the Unified Power Flow Controller could be connected, an investigation of static and dynamic voltage stability is presented. Two stability indices, static and dynamic, have been proposed in the thesis. Multi-Input Multi-Output (MIMO) analysis has been used for the dynamic stability analysis. Results based on the Western System Coordinate Council (WSCC) 3-machine, 9-bus test system and IEEE 14 bus Reliability Test System (RTS) shows that these indices detect with the degree of accuracy the weakest bus, the weakest line and the voltage stability margin in the test system before suffering from voltage collapse.
Recently, Flexible Alternating Current Transmission systems (FACTs) have become significant due to the need to strengthen existing power systems. The UPFC has been identified in literature as the most comprehensive and complex FACTs equipment that has emerged for the control and optimization of power flow in AC transmission systems. Significant research has been done on the UPFC. However, the extent of UPFC capability, connected to the weakest bus in maintaining the power flows under fault conditions, not only in the line where it is installed, but also in adjacent parallel lines, remains to be studied. In the literature, it has normally been assumed the UPFC is disconnected during a fault period. In this investigation it has been shown that fault conditions can affect the UPFC significantly, even if it occurred on far buses of the power system. This forms the main contribution presented in this thesis. The impact of UPFC in minimizing the disturbances in voltages, currents and power flows under fault conditions are investigated. The WSCC 3-machine, 9-bus test system is used to investigate the effect of an unsymmetrical fault type and position on the operation of UPFC controller in accordance to the G59 protection, stability and regulation. Results show that it is necessary to disconnect the UPFC controller from the power system during unsymmetrical fault conditions. / Libyan Government
|
80 |
Small Signal Stability Analysis of a Power System with a Grid Connected Wind Powered Permanent Magnet Synchronous Generator (PMSG)Balibani, Siva Kumar January 2015 (has links) (PDF)
Small signal oscillation has been always a major concern in the operation of power systems. In a generator, the electromechanical coupling between the rotor and the rest of the system causes it to behave in a manner similar to a spring mass damper system. Following any disturbance, such as sudden change in loads, actuations in the output of turbine and faults etc. it exhibits an oscillatory behaviour around the equilibrium state. The use of fast acting high gain AVRs and evolution of large interconnected power systems with transfer of bulk power across weak transmission links have further aggravated the problem of these low frequency oscillations. Small oscillations in the range of about 0.1Hz to 3.5Hz can persist for long periods, limiting the power transfer capability of the transmission lines. These oscillations can be reduced by incorporating auxiliary controllers on generator excitation system.
Power System Stabilizers (PSSs) were developed to produce additional damping by modulating the generator excitation voltage. Designing effective PSS for all operating conditions especially in large interconnected power systems still remains a difficult and challenging task.
More and more power electronic based controllers have been and will be used in power systems. Many of these controllers such as Static Var Compensators (SVCs), Static Synchronous Compensators (STATCOMs) and Unified Power Flow Controllers (UPFCs) etc., are incorporated in power transmission networks to improve its operational capability. In addition, some of the energy storage systems such as Battery Energy Storage systems (BESS), Super conducting Magnetic Energy Storage System (SMES) as well large non-conventional energy sources are also increasingly being integrated with the power grid. With large integration of these devices, there is a significant impact on system stability, more importantly on small signal oscillatory instability of the power system.
This thesis primarily focuses on impact of such devices on small signal oscillatory stability of the power systems. More specifically in this thesis small signal stability analysis of a Single Machine Infinite Bus (SMIB) system with a grid connected wind powered Permanent Magnet Synchronous Generator (PMSG) has been presented. A SMIB system has been purposely chosen so that general conclusions can be obtained on the behaviour of the embedded STATCOM/Energy Source (ES) system on system stability. With a better understanding of the impact of such a system it would be probably possible to analyze more complicated multimachine power system and their impact on system stability. Small signal model of the complete system which comprises the generator, transmission network, inter connecting STATCOM, the wind power generator and all associated controllers has been developed. The performances of the system following a small disturbance at various operating conditions have been analyzed.
To obtain quantitative estimates of the damping and synchronizing torques generated in the system, expressions for damping and synchronizing torque clients have been developed.
With these analyses, the relative impact of the STATCOM and STATCOM with ES on system performance have been assessed. It is shown that with active and reactive power modulation capabilities effective and efficient control of small signal oscillations in power systems can be achieved.
|
Page generated in 0.0263 seconds