• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 282
  • 62
  • 37
  • 28
  • 26
  • 25
  • 24
  • 23
  • 21
  • 16
  • 10
  • 7
  • 7
  • 3
  • 2
  • Tagged with
  • 661
  • 146
  • 62
  • 41
  • 40
  • 40
  • 38
  • 33
  • 33
  • 32
  • 32
  • 31
  • 31
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Le soleil comme laboratoire des pratiques scientifiques / The Sun as laboratory of scientific practices

Beaubois, Francis 27 June 2014 (has links)
Cette thèse analyse la manière dont l'émergence d'un nouvel objet de science, le Soleil, entraîne une réorganisation des champs disciplinaires ainsi que la transformation des pratiques scientifiques et leurs interactions. Ce travail couvre une période suffisamment longue afin de mieux restituer cette évolution complexe, allant de 1820 à 1930. Il ressort qu'une véritable physique du Soleil n'a pu émerger qu'avec la constitution de la thermodynamique. Elle rend ainsi possible de penser physiquement le Soleil. Avant cela, les sciences étaient encore séparés selon leurs objets et leur méthode. Mais ce nouvel objet se trouve avec un statut hybride, suspendu entre le domaine des sciences d'observation et des sciences d'expérimentation. La physique solaire se développe néanmoins à partir du milieu du XIXe siècle selon le rythme des découvertes et des innovations techniques. Dans les années 1860, Hervé Faye et Angelo Secchi proposent de vastes synthèses, représentatives d'un style typiquement humboldtien. Cependant, ces théories globales et qualitatives montrent leur limite au début du XXe siècle. Les progrès théoriques et instrumentaux, notamment avec la mise au point du bolomètre de Samuel Langley, aboutissent à l'apparition de la notion de modèle mathématique chez Eddington, et signe l'émergence d'une nouvelle approche théorique en astrophysique, et conjointement dans d'autres secteurs comme la cosmologie. Cette nouvelle approche fait plus que légitimer l'extrapolation des lois physiques aux astres, elle en fait de véritables laboratoires naturelles. Ainsi, au terme de cette période, nous passons du Soleil hors du laboratoire au Soleil comme laboratoire. / This thesis provides an analysis of the processes that led to the emergence of a new scientific object, the Sun. It underscores, over a long period from 1820 to 1930, how these processes led to a reorganization of scientific disciplines and to the corresponding transformation of scientific practices. We argue that thermodynamics provided the first theoretical framework in which a genuine solar physics could be developed. Before that, the status of this new scientific object remained ill-defined, suspended between experimental sciences and observational sciences, due to the division of scientific disciplines according to their objects and their method. On the basis of many observational and experimental techniques developed in the first part of the century, Hervé Faye and Angelo Secchi respectively offered, in the 1860s, the first rational syntheses about the physical constitution of the Sun. These holist and qualitative theories, representative of a Humboldtian style, soon appeared to lead to a dead-end. Progress in instrumentation, especially with the work of Samuel Langley and his bolometer, pursued in the laboratory through the physics of black body, led Arthur Eddington to a new approach based on mathematical model. His work gave the impetus to a new branch of theoretical astrophysics. At this time, this new approach not only legitimated the extrapolation of the laws of physics to the stars, but also transformed the stars into genuine natural laboratories. Thus, through the complex history, we follow how the Sun, once thought as being outside of the laboratory's reach, became itself construed as a laboratory.
182

The evolution of solar sigmoidal active regions

Savcheva-Tasseva, Antonia Stefanova January 2013 (has links)
Thesis (Ph.D.)--Boston University / The formation, evolution and eruption of solar active regions is a main theme in solar physics. Ultimately the goal is predicting when, where and how an eruption will occur, which will greatly aid space weather forecasting. Special kinds of S-shaped active regions (sigmoids) facilitate this line of research, since they provide conditions that are easier to disentangle and have a high probability for erupting as flares and/or coronal mass ejections (CME). Several theories have been proposed for the formation, evolution, and eruption of solar active regions. Testing these against detailed models of sigmoidal regions can provide insight into the dominant mechanisms and conditions required for eruption. This thesis explores the behavior of solar sigmoids via both observational and magnetic modeling studies. Data from the most modern space-based solar observatories are utilized in addition to state-of-the-art three-dimensional data-driven magnetic field modeling to gain insight into the physical processes controlling the evolution and eruption of solar sigmoids. We use X-ray observations and the magnetic field models to introduce the reader to the underlying magnetic and plasma structure defining these regions. By means of a large comprehensive observational study we investigate the formation and evolution mechanism. Specifically, we show that flux cancellation is a major mechanism for building the underlying magnetic structure associated with sigmoids, namely magnetic flux ropes. We make use of topological analysis to describe the complicated magnetic field structure of the sigmoids. We show that when data-driven models are used in sync with MHD simulations and observations we can arrive at a consistent picture of the scenario for CME onset, namely the positive feedback between reconnection at a generalized X-line and the torus instability. In addition we show that topological analysis is of great use in analyzing the post-eruption flare- and CME-associated observational features. Such analysis is used to extend the standard 2D flare/CME models to 3D and to find potentially large implications of topology to understanding 3D reconnection and the seed populations of energetic particles in CMEs.
183

Characterization of the Effects of a Sun-Synchronous Orbit Slot Architecture on the Earth's Orbital Debris Environment

Noyes, Connor David 01 June 2013 (has links)
Low Earth orbit represents a valuable limited natural resource. Of particular interest are sun-synchronous orbits; it is estimated that approximately 44% of low Earth satellites are sun-synchronous. A previously developed sun-synchronous orbit slot architecture is considered. An in-depth analysis of the relative motion between satellites and their corresponding slots is performed. The long-term evolution of Earth's orbital environment is modeled by a set of coupled ordinary differential equations. A metric for quantifying the benefit, if any, of implementing a sun-synchronous architecture is developed. The results indicate that the proposed slot architecture would reduce the frequency of collisions between satellites in sun-synchronous orbits.
184

Using hydrogen energetic neutral atoms to study the heliosphere

Kornbleuth, Marc Zachary 07 February 2021 (has links)
The interaction between the solar wind and the partially ionized gas of the local interstellar medium (ISM) creates a bubble known as the heliosphere. Classically, the shape of the heliosphere has been regarded as comet-like, with a long tail pointed in the direction opposite the Sun’s motion through the ISM. In this view, the solar magnetic field was assumed to have a negligible effect on the global structure of the heliosphere. Recent advances in numerical modeling have revealed the importance of the solar magnetic field in its ability to confine and collimate the solar wind plasma, and the shape of the heliosphere has been called into question. Energetic neutral atoms (ENAs) are created throughout the heliosphere via charge exchange. The separate contributions of the solar magnetic field topology and the solar wind structure to ENA observations is largely unexplored. The Interstellar Boundary Explorer (IBEX) has been providing a global perspective of the heliosphere through ENA maps with energies ranging from 0.2 to 6 keV. In this dissertation, three-dimensional magnetohydrodynamic simulations of the heliosphere are used as input to an ENA model designed to produce synthetic ENA maps. I compare modeled ENA maps with IBEX observations to investigate how different heliospheric conditions and properties affect ENAs created in the heliosphere, and therefore how ENA observations can be used to understand the heliosphere. First, I investigate the effect of the solar wind collimation by the solar magnetic field on ENA maps in the case of a solar wind without latitudinal variation. I find that even in the absence of variations of the solar wind, two lobes of strong ENA flux form at high latitudes, similar to what is observed by IBEX at high energies. Second, I test the effect of a latitudinally-varying solar wind on ENAs both with and without the inclusion of the solar magnetic field. I show that the latitudinal variations of the solar wind during solar minimum creates a structured ENA profile with latitude, corresponding to the profile observed at 1 AU, but that the solar magnetic field significantly enhances ENA flux in the region where the solar wind is confined. Lastly, I investigate the effect of the solar cycle on ENAs and how changing solar wind conditions (e.g. density, temperature, velocity) affect the heliosphere over time. I demonstrate that, given changes in the solar cycle, there is a significant evolution in the modeled ENA flux due to the changes in the solar wind profile and the solar magnetic field, which is also seen by ENA observations.
185

Neutrinos from Dark Matter Annihilation in the Sun

Hansen, Fredrik, Holmgren, Erik January 2013 (has links)
Dark Matter (DM) is believed to consist ofWeakly Interactive Massive Particles (WIMPs) which interact only through gravity and the weak nuclear force. These particles can become trapped in gravitational wells such as the Sun and a theoretical value of the capture rate can be calculated. At high particle density the WIMPs annihilating spontaneously into Standard Model (SM) particles. Due to particle equilibrium the total annihilation rate can be related to the capture rate by a simple expression. This report will focus on calculating the capture rate and the related annihilation rate as well as calculating the neutrino  ux of the Sun. At rst we will give a brief introduction to cosmology and a theoretical argument for the WIMPs as the prime DM candidate. Then we will look at the theoretical background and the mechanism through which WIMPs become trapped and evaporate or annihilate. Finally we will perform a numerical analysis of the WIMP cycle within the Sun and calculate the capture rate for a variety of theoretical WIMP masses. We will look at the capture rate due to scattering both by hydrogen nucleii and by more massive elements. The Scattering by hydrogen will be the prime contributor to the total capture rate and is the only spin dependent contribution.
186

Energetická rovnováha a teplotní struktura ve slunečních protuberancích / Energy balance and temperature structure in solar prominences

Beck, Dominik January 2021 (has links)
Time evolutions of relaxation of temperature profiles during the cooling of solar prominences are examined based on MALI 1D slab model code written by Petr Heinzel in Fortran. The relaxation is investigated under the assumption of partial redistribution in H, CaII and MgII lines. The effect of conduction and ambipolar diffusion on the slab relaxation is also studied. 1
187

A New Species of Exbucklandia (Hamamelidaceae) From the Pliocene of China and Its Paleoclimatic Significance

Wu, Jingyu, Sun, Bainian, Liu, Yu Sheng, Xie, Sanping, Lin, Zhicheng 01 May 2009 (has links)
Eight fossil leaves identified as Exbucklandia tengchongensis sp. nov. (Hamamelidaceae) were collected from the Pliocene Mangbang Formation in Tengchong, Yunnan Province, Southwest China. The fossil leaves are characterized by the overall rounded lamina with entire margin, actinodromous venation, and cyclocytic stomata, which suggest the affinity within the genus Exbucklandia, particularly with E. populnea. A survey on the cuticles of the sun and shade leaves of modern E. populnea indicates that the shade leaves generally possess more pronounced undulate anticlinal cell walls and a much lower stomatal density than the sun leaves. Two morphotypes, i.e. sun vs. shade types, of the fossil leaves were therefore recognized. The distribution of the modern Exbucklandia suggests that the genus lives under a warm climate with a mean annual temperature (MAT) from 13 °C to 27 °C and a mean annual precipitation (MAP) from 800 mm to 2500 mm. Hence, E. tengchongensis might also live under a similar climatic condition in the Pliocene. Leaf margin analysis on the Tengchong flora supports this result. The little change of Neogene MAT in Southwest China is therefore supported.
188

Origin of solar surface activity and sunspots

JABBARI, SARAH January 2014 (has links)
In the last few years, there has been significant progress in the development of a new model for explaining magnetic flux concentrations, by invoking the negative effective magnetic pressure instability (NEMPI) in a highly stratified turbulent plasma. According to this model, the suppression of the turbulent pressure by a large-scale magnetic field leads to a negative contribution of turbulence to the effective magnetic pressure (the sum of non-turbulent and turbulent contributions). For large magnetic Reynolds numbers the negative turbulence contribution is large enough, so that the effective magnetic pressure is negative, which causes a large-scale instability (NEMPI). One of the potential applications of NEMPI is to explain the formation of active regions on the solar surface. On the other hand, the solar dynamo is known to be responsible for generating large-scale magnetic field in the Sun. Therefore, one step toward developing a more realistic model is to study a system where NEMPI is excited from a dynamo-generated magnetic field. In this context, the excitation of NEMPI in spherical geometry was studied here from a mean- field dynamo that generates the background magnetic field. Previous studies have shown that for NEMPI to work, the background field can neither be too weak nor too strong. To satisfy this condition for the dynamo-generated magnetic field, we adopt an “alpha squared dynamo” with an α effect proportional to the cosine of latitude and taking into account alpha quenching. We performed these mean-field simulations (MFS) using the Pencil Code. The results show that dynamo and NEMPI can work at the same time such that they become a coupled system. This coupled system has then been studied separately in more detail in plane geometry where we used both mean-field simulations and direct numerical simulations (DNS). Losada et al. (2013) showed that rotation suppresses NEMPI. However, we now find that for higher Coriolis numbers, the growth rate increase again. This implies that there is another source that provides the excitation of an instability. This mechanism acts at the same time as NEMPI or even after NEMPI was suppressed. One possibility is that for higher Coriolis numbers, an α2 dynamo is activated and causes the observed growth rate. In other words, for large values of the Coriolis numbers we again deal with the coupled system of NEMPI and mean-field dynamo. Both, MFS and DNS confirm this assumption. Using the test-field method, we also calculated the dynamo coefficients for such a system which again gave results consistent with previous studies. There was a small difference though, which is interpreted as being due to the larger scale separation that we have used in our simulations. Another important finding related to NEMPI was the result of Brandenburg et al. (2013), that in the presence of a vertical magnetic field NEMPI results in magnetic flux concentrations of equipartition field strength. This leads to the formation of a magnetic spot. This finding stimulated us to investigate properties of NEMPI for imposed vertical fields in more detail. We used MFS and DNS together with implicit large eddy simulations (ILES) to confirm that an initially uniform weak vertical magnetic field will lead to a circular magnetic spot of equipartition field strength if the plasma is highly stratified and scale separation is large enough. We determined the parameter ranges for NEMPI for a vertical imposed field. Our results show that, as we change the magnitude of the vertical imposed field, the growth rate and geometry of the flux concentrations is unchanged, but their position changes. In particular, by increasing the imposed field strength, the magnetic concentration forms deeper down in the domain.
189

Exploring Mesoscale Structures using Chord Occultations of Saturn's Rings

Benyamine, Lamia 01 January 2021 (has links)
The Cassini spacecraft orbited Saturn for over 13 years and collected stellar occultations using an Ultraviolet Imaging Spectrograph (UVIS). Chord occultations were analyzed using autocorrelations at minimum ring plane radius to visualize the structure and correlation in the azimuthal direction. These particle tracking occultations cut a chord across the rings in the path of the star. By taking the autocorrelation of these chord occultations, 8 out of the 66 showed clumping within the first 3.0 km in azimuth, representing signs of a structure. Six of those occultations could be moonlets or propellers as their minimum ring plane radii are in the Propeller Belt region. The Fast Fourier Transform Power Spectrum of the autocorrelation was also taken, and 6 of the 8 had high peak power outputs at certain wavelengths. It is also observed that five of the occultations may contain self-gravity wakes.
190

The Political career of Sun Yat-sen

Hodge, Katherine Talbot 01 January 1930 (has links) (PDF)
The world first heard of Sun Yat-sen in 1896 when the British government intervened to save him from deportation to Chine as a refugee. A decade and half later the public read with amazement that this name refugee had lived to be proclaimed the First President of the Republic of China. This men conspirator, a "visionary", socialist dreamer, a fighter for right end Justice became the hero and idol of the Chinese people. Today he is held in greater entres then any living statesmen or any political philosopher of the pet century. The respect mid his memory is paralleled in Chinese history only by the veneration due Confucius. His ultimate position in Chinese history is yet to be determined, but five years after his death he lives in the hearts of the people as the nation's greatest lender and as the outstanding figure of the Chinese Revolution

Page generated in 0.0191 seconds