• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 93
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 275
  • 275
  • 83
  • 66
  • 58
  • 50
  • 44
  • 43
  • 43
  • 43
  • 38
  • 37
  • 29
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Responses of Superoxide Dismutases to Oxidative Stress in Arabidopsis thaliana

Erturk, Hatice Neval 28 January 1999 (has links)
Superoxide dismutases (SODs) catalyze the dismutation of superoxide radicals to oxygen and hydrogen peroxide. Mn SOD is localized in mitochondria, Cu-Zn SOD is in the cytosol and chloroplast, and Fe SOD is in chloroplasts. The effects of a chloroplast-localized oxidative stress, caused by methyl viologen or 3-(3, 4-dichlorphenyl)-1-1′ dimethylurea (DCMU) on SOD populations were investigated. A cloned Arabidopsis thaliana Fe SOD gene was expressed in Escherichia coli and was purified from transformed cells. This protein was used to raise antibodies against A. thaliana Fe SOD which in turn were used to quantify the effects of oxidative stress on Fe SOD protein. Effects of oxidative stress on enzyme activity were measured in native gels. Fe SOD responded to oxidative stress with an increase in activity, but not in antibody reactive protein. Two novel forms of Fe SOD activity, with faster migration rates in activity gels, were detected. Mn SOD, a mitochondrial enzyme, responded to the stress with an increase in activity. In contrast, the activity or amount of Cu-Zn SOD protein did not respond to this oxidative stress. In light of these results, we propose that SODs respond to oxidative stress at the enzyme and gene levels. Mitochondrial Mn SOD responded to a chloroplast-localized stress with an increase in activity, suggesting either that the site of action for methyl viologen is not exclusively in the chloroplast or that there are other signals among the compartments of the cell. Fe SOD, but not Cu-Zn SOD responded to stress, suggesting that Fe SOD may be the stress responsive enzyme in this organelle. Evolutionary relationships among different isoforms were investigated based on the known primary, secondary, and tertiary structures of these isoforms. The three dimensional structure of A. thaliana Fe SOD was modeled by using structures of crystallized E. coli and Pseudomonas ovalis Fe SODs as templates. Comparison of prokaryotic Fe SOD with eukaryotic isoforms showed that Fe and Mn SODs are structurally homologous, whereas Cu Zn SOD is not. / Ph. D.
132

Efficacy of oligodendrocyte precursor cells as delivery vehicles for single-chain variable fragment to misfolded SOD1 in ALS rat model / ALSモデルラットにおけるミスフォールドSOD1に対する一本鎖抗体の送達手段としてのオリゴデンドロサイト前駆細胞の有効性

Minamiyama, Sumio 24 July 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24839号 / 医博第5007号 / 新制||医||1068(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 井上, 治久, 教授 寺田, 智祐, 教授 林, 康紀 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
133

Determining Protein-Protein Interactions of ALS-Associated SOD1

Shurte, Leah A. 02 June 2016 (has links)
No description available.
134

Generation of Baculovirus-Brucella Abortus Heat Shock Protein Recombinants; Mice Immune Responses Against the Recombinants, and B. Abortus Superoxide Dismutase and L7/L12 Recombinant Proteins

Bea, Joo-eun 05 March 1999 (has links)
<i>Brucella abortus</i> is capable of resisting the microbicidal mechanisms of phagocytic cells and growing within phagocytic cells, usually macrophages. <I>B. abortus</i>, like several other intracellular bacteria responds to the hostile environment in macrophages by producing heat shock proteins (HSPs) which are induced by environmental stresses. Bacterial HSPs are very immunogenic, eliciting both cellular and humoral immune responses in the infected host. The significance of host cellular and protective immune responses directed against these proteins is currently unresolved. Baculovirus recombinants were generated in <i>Sf9</i> insect cells for <i>B. abortus</i> HSPs and the protein expression was optimized. Humoral (Western blot), cell mediated (CMI, IFN-g- release by splenocytes, and CD3+CD4+, CD3+CD8+ T cell/ total splenocytes ratios) and protective immune responses of BALB/c mice (challenge with virulent <i>B. abortus</i> 2308) against these recombinants, against <i>B. abortus</i> superoxide dismutase (SOD) and ribosomal L7/L12 proteins, inoculated alone or in various combinations with complete Freund's, Ribi and recombinant IL-12 as adjuvants, were analyzed. Vaccinia virus-GroEL recombinant as priming immunogen, followed by baculovirus-GroEL-Ribi booster, was explored. Androstenediol, an immune up-regulator, was tested for its ability to induce resistance against challenge. None of the mice inoculated with individual, divalent or trivalent HSP-expressing <i>Sf9</i> cells combined with Freund's were protected against challenge and the <i>Sf9</i> cell-induced response masked the recombinant protein-specific CMI responses. Recombinant HSPs were purified and combined with Ribi. Although significant IFN-g release was induced by immunization with the HtrA-Ribi combination, no mice were protected against challenge. Priming with vaccinia virus-GroEl recombinant and boosting with purified baculovirus-GroEL protein-Ribi combination did not induce protection. Androstenediol did not enhance in vivo resistance to challenge. IL-12 alone did not activate splenocytes but induced significant IFN-g release in mice when combined with killed <i>B. abortu</i>s RB51 vaccine, purified recombinant HtrA or purified SOD proteins, or L7/L12 expressing <i>Escherichia coli</i> cells. Significant protection was induced by SOD combined with IL-12. No correlation was seen between IFN-g release by splenocytes and protection against challenge in the SOD/IL-12-immunized mice. The results suggest that <i>B. abortus</i> HSPs are not highly immunogenic in mice and though various immune responses may be induced by one or another HSPs, protective immune response, unfortunately, is not among them. The results of this study reflect the difficulties in experimenting with immune responses against single or a limited number of recombinant <i>B. abortus</i> proteins. This is particularly true when the task includes induction of a protective immune response and finding significant correlation between different types of immune response assays. / Ph. D.
135

Effect of oxidative stress on <i>Escherichia coli sodA-sodB-</i>: protection by the mimic of superoxide dismutase, Mn(III)-salophen

Kittiponkul, Vipavadee 01 November 2008 (has links)
The effect of Mn(III)-salophen, a superoxide scavenger, against oxidative stress was evaluated in <i>Escherichia coli sodA- sodB-</i>. Oxidative stress was imposed by exposure of the cells to paraquat or hyperoxia. Cells were grown in LB medium overnight, washed and resuspended in the indicated glucose/salts medium supplemented with casamino acids. The effect of Mn(III)-salophen in the oxidative stress model <i>in vivo</i> was measured in terms of the cell growth. Mn(III)-salophen ( 60 nM) completely protected <i>E. coli</i>JI132<i>sodA- sodB-</i>against 1.0 μM paraquat. Equivalent amounts of Mn(III) acetate, a Mn(III)-salophen component, also protected against paraquat toxicity in aerobic <i>E. coli</i> JI132<i>sodA- sodB-</i>. Fe(III)-salophen which has no superoxide scavenging activity, did not protect the cells against paraquat toxicity. The protective effect of Mn(III)-salophen against the paraquat toxicity was proposed to come from the intracellular superoxide scavenging activity of either the complex itself, its component Mn(III), or both, but not by inhibiting the uptake of paraquat. The protective effect of Mn(III)-salophen and Mn(III) in the glucose/salts medium containing casamino acids was also observed in <i>E. coli sodA- sodB-</i> in 100% and 50% oxygen. Hyperoxia increases intracellular levels of superoxide radicals that are intercepted by Mn(III)salophen and Mn(III). / Master of Science
136

Effects of Organic Soil Amendments on Soil Physiochemical and Crop Physiological Properties of Field Grown Corn (Zea mays) and Soybean (Glycine Max)

Bowden, Chandra Lynndell 31 July 2006 (has links)
Water stress is the most critical environmental factor limiting crop production in the US Piedmont. The presence of humic substances in composted organic amendments may increase crop tolerance to water stress through their hormone-like effects on plant metabolism. The objectives of this study were to calculate N mineralization rates of composted and non-composted organic materials used in this long-term field study, and to determine differences in soil physiochemical properties, corn and soybean leaf physical and biochemical properties yield and seed quality between organically amended and inorganically fertilized treatments. Nitrogen mineralization rates were greatest in the poultry litter (21%) and Panorama yard waste compost (4.5%) amended plots. Nitrogen uptake (120 mg/pot, 133 mg/pot, respectively) in these treatments were greater than that in the control (0N) (91.3 mg/pot) treatment. Wolf Creek biosolids compost and Huck's Hen Blend yard waste compost induced N immobilization (-5.0% and 0.18%, respectively), and had N uptake values similar to the control (92.6 mg/pot and 95.7 mg/pot). Rivanna biosolids compost immobilized N (-14.8%) but N uptake (136 mg/pot) was greater than that in the control due to the relatively high inorganic N content in the amendment. The total N concentration and C:N values were less reliable variables in predicting N mineralization when a significant portion of the total N was in the inorganic form. The annual application of poultry litter, Rivanna biosolids compost, and Panorama yard waste compost at 100% agronomic nitrogen and 30 % agronomic nitrogen rates in the field study improved soil fertility and increased total organic and humified carbon contents relative to the inorganically fertilized and control treatments. The amended treatments had slightly greater plant available water contents (average 10.0 cm/15 cm) than the control (8.38 cm/15 cm). Leaf water potential measurements revealed that neither crop experienced water stress during the sampling season. Treatment differences in leaf antioxidant activity were only observed in corn. All corn plants that were fertilized with amendments supplying the crop's nitrogen needs, regardless of the source, had greater leaf nitrogen (+29%), chlorophyll (+33%), and protein contents (+37%), lower superoxide dismutase (-29%) and ascorbate peroxidase (-17%) activities, and lower malondialdehyde (-33%) contents relative to the control and low nitrogen treatments. There were no observed differences in catalase activity, which was likely due to the evolutionary advantage of C4 metabolism. Yield was strongly related to midseason leaf nitrogen contents (R2=0.87, p<0.0001) and not soil humified carbon (R2=0.02, p=0.0543). There were no observed treatment differences in soybean leaf physiology and metabolism. Differences, however, were observed over time. As the leaves senesced, leaf chlorophyll, protein, superoxide dismutase and catalase activities decreased, and the malondialdehyde content increased. Ascorbate peroxidase activity slightly increased with time. Catalase activity in soybean was primarily driven by the oxidation of glycolate, a product of photorespiration, and not the formation of reactive oxygen species in the chloroplasts. The organically amended treatments had higher yields (9-21% increase), greater protein contents (4-9% increase), and seed weights (5-14% increase) relative to the fertilizer and control treatments. It was concluded that differences in soybean yield and seed quality were due to non-nutritive benefits of the organic amendments and not available water or plant nutrition. / Master of Science
137

Inflammation-Dependent Oxidative Stress Metabolites as a Hallmark of Amyotrophic Lateral Sclerosis

Xiong, Luyang, McCoy, Michael, Komuro, Hitoshi, West, Xiaoxia Z., Yakubenko, Valentin, Gao, Detao, Dudiki, Tejasvi, Milo, Amanda, Chen, Jacqueline, Podrez, Eugene A., Trapp, Bruce, Byzova, Tatiana V. 01 January 2022 (has links)
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, with poor prognosis and no cure. Substantial evidence implicates inflammation and associated oxidative stress as a potential mechanism for ALS, especially in patients carrying the SOD1 mutation and, therefore, lacking anti-oxidant defense. The brain is particularly vulnerable to oxidation due to the abundance of polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), which can give rise to several oxidized metabolites. Accumulation of a DHA peroxidation product, CarboxyEthylPyrrole (CEP) is dependent on activated inflammatory cells and myeloperoxidase (MPO), and thus marks areas of inflammation-associated oxidative stress. At the same time, generation of an alternative inactive DHA peroxidation product, ethylpyrrole, does not require cell activation and MPO activity. While absent in normal brain tissues, CEP is accumulated in the central nervous system (CNS) of ALS patients, reaching particularly high levels in individuals carrying a SOD1 mutation. ALS brains are characterized by high levels of MPO and lowered anti-oxidant activity (due to the SOD1 mutation), thereby aiding CEP generation and accumulation. Due to DHA oxidation within the membranes, CEP marks cells with the highest oxidative damage. In all ALS cases CEP is present in nearly all astrocytes and microglia, however, only in individuals carrying a SOD1 mutation CEP marks >90% of neurons, thereby emphasizing an importance of CEP accumulation as a potential hallmark of oxidative damage in neurodegenerative diseases.
138

Effets d’un concentré de melon, particulièrement riche en superoxyde dismutase, sur un modèle d’obésité nutritionnellement induite : hypothèses de mécanismes d’action / Effects of a melon concentrate, particularly rich in superoxide dismuatse, on a diet induced-obesity model : Hypothesis of mechanisms of action

Carillon, Julie 21 June 2013 (has links)
Les effets d'un concentré de melon, SODB®, particulièrement riche en SOD, ont été étudiés en mode curatif sur un modèle animal d'obésité nutritionnellement induite. La question du mécanisme d'action de ce concentré de melon a également été posée dans ce travail.Dans la première partie, des tests in vitro ont permis d'évaluer et de mieux caractériser le pouvoir antioxydant de SODB®. Il a également été montré, grâce à une étude sur rats sains, que SODB® n'était pas toxique aux doses utilisées.Dans une deuxième partie, des effets bénéfiques de SODB® sur le foie et le tissu adipeux d'animaux obèses ont été démontrés.Dans une dernière partie, le mécanisme d'action de SODB® a été discuté. Pour cela, les différents résultats obtenus sur SODB® ont été comparés avec les données d'une revue sur les effets de l'administration de SODs. Grâce à ce travail, des hypothèses de mécanisme d'action ont pu être proposées. En effet, SODB® semblerait agir en augmentant l'expression des enzymes antioxydantes endogènes. L'induction de la défense antioxydante pourrait passer par l'activation de la voie du Nrf2/ARE, à la suite d'une cascade d'évènements initiée au niveau de la barrière intestinale. La compréhension totale du mécanisme d'action de ce concentré de melon nécessite cependant plus d'investigations. / The effects of a curative supplementation of a melon concentrate, SODB®, particularly rich in SOD, have been studied on a diet-induced obesity animal model. In this work, we also wondered what mechanisms of action are involved in SODB® efficacy.First, we evaluated and characterized the antioxidant capacity of SODB® with in vitro tests. The safety of several doses used for SODB® supplementation has also been demonstrated on healthy rats.Then, we showed beneficial effects of SODB® on the liver and the adipose tissue of obese animals.Finally, we discussed the mechanism of action of SODB®, comparing all results obtained after SODB® supplementation with a review on SODs administration effects.This work allowed to propose hypothesis of mechanism of action. Indeed, SODB® seems to exert its antioxidant properties inducing increased endogenous antioxidant enzymes expression. The Nrf2/ARE pathway could be involved in this induction, after cascade events from intestinal barrier. More investigations are needed to determine the complete mechanism of action of this melon concentrate.
139

Efeito de aldeídos de colesterol na esclerose lateral amiotrófica: estudo em modelo animal e na agregação da SOD1 in vitro / Effect of secosterol aldehydes on Amyotrophic Lateral Sclerosis: study in animal model and SOD1 aggregation in vitro

Dantas, Lucas Souza 29 June 2018 (has links)
Aldeídos de colesterol (Secosterol A e Secosterol B) têm sido detectados em amostras de cérebro humano e investigados em modelos de doenças neurodegenerativas como possíveis marcadores e intermediários do processo patológico. Estes oxisteróis constituem uma classe de eletrófilos derivados de lipídeos que podem modificar e induzir agregação de proteínas. A esclerose lateral amiotrófica (ELA) é um distúrbio neurodegenerativo associado ao acúmulo de agregados imunorreativos de superóxido dismutase (Cu, Zn-SOD, SOD1). O objetivo deste trabalho foi avaliar a presença de aldeídos de colesterol em ratos modelo ELA e sua capacidade de induzir a formação de agregados de SOD1 in vitro. Aldeídos de colesterol foram analisados no plasma, medula espinhal e córtex motor de ratos ELA. Uma quantidade elevada de Secosterol B foi detectada no córtex motor desses ratos em comparação com animais controle. Adicionalmente, os experimentos in vitro mostraram que Secosterol B e Secosterol A induziram a agregação da SOD1 em uma forma amiloidogênica que se liga à tioflavina T. Esta agregação não foi observada com o colesterol e os seus hidroperóxidos. Usando aldeídos de colesterol marcados com grupo alquinil e um ensaio de click chemistry, foi observado que os agregados de SOD1 estão ligados covalentemente aos aldeídos. A modificação covalente da proteína foi confirmada por análise de MALDI-TOF, que mostrou a adição de até cinco moléculas de aldeídos de colesterol à proteína por base de Schiff. Curiosamente, a análise comparativa com outros eletrófilos derivados de lipídeos (e.g. HHE e HNE) demonstrou que a agregação de SOD1 aumentou proporcionalmente à hidrofobicidade dos aldeídos, observando-se a maioragregação com aldeídos de colesterol. Os sítios de modificação da SOD1 foram caracterizados por nanoLC-MS/MS após digestão da proteína com tripsina, onde foram identificadas lisinas como o principal aminoácido modificado. Em geral, nossos dados mostram que a oxidação do colesterol que leva à produção de aldeídos de colesterol é aumentada no cérebro de ratos ELA e que os aldeídos altamente hidrofóbicos derivados de colesterol podem promover eficientemente modificação e agregação de SOD1. / Secosterol aldehydes (Secosterol B and Secosterol A) have been detected in human brain samples and investigated in models of neurodegenerative diseases as possible markers and intermediates of the pathological process. These oxysterols constitute a class of lipid-derived electrophiles that can modify and induce aggregation of proteins. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated with the accumulation of immunoreactive aggregates of superoxide dismutase (Cu, Zn-SOD, SOD1). The objective of this work is to evaluate the presence of secosterol aldehydes in ALS rats and their ability to induce formation of SOD1 aggregates in vitro. Secosterol aldehydes were analyzed in plasma, spinal cord and motor cortex of ALS rats. A higher amount of Secosterol B was detected in the motor cortex of these rats compared to control animals. In addition, in vitro experiments have shown that Secosterol B and Secosterol A induce aggregation of SOD1 into an amyloidogenic form that binds to thioflavin T. This aggregation was not apparent in incubations with cholesterol and its hydroperoxides. Using alkynyl-labeled secosterol aldehydes and a click chemistry assay, it was found that the SOD1 aggregates are covalently linked to the aldehydes. Covalent modification of the protein was confirmed by MALDI-TOF analysis, which showed the addition of up to five molecules of secosterol aldehydes to the protein by Schiff base formation. Interestingly, the comparative analysis with other lipid-derived electrophiles (e.g. HHE and HNE) demonstrated that the aggregation of SOD1 increased according to the hydrophobicity of the aldehydes. Compared to the other electrophiles, a higher SOD1 aggregation was observed with secosterol aldehydes. SOD1 modification sites were characterized by nanoLC-MS/MS afterprotein digestion with trypsin, revealing lysine as the major amino acid modified in these experiments. Collectively, our data show that cholesterol oxidation leads to the production of secosterol aldehydes, which are increased in the brain of ALS rats, and that these highly hydrophobic aldehydes can efficiently promote the modification and aggregation of SOD1.
140

Condicionamento fisiológico de sementes de pimentão com biorreguladores / Bell pepper seed priming with bioregulators

Silva, Clíssia Barboza da 07 August 2015 (has links)
A emergência rápida e uniforme de plântulas em campo constituem pré-­ requisitos essenciais para o sucesso da produção comercial de sementes de hortaliças. Um dos principais problemas enfrentados por produtores de pimentão refere-­se à germinação lenta e estabelecimento de estande desuniforme, o que ressalta a importância do desenvolvimento de técnicas que visem aprimorar o desempenho de lotes de sementes. Com o objetivo de verificar a eficiência do condicionamento fisiológico de sementes de pimentão associado a biorreguladores sobre o potencial fisiológico das sementes, foi desenvolvida esta pesquisa utilizando dois cultivares, AF-6 e AF-7, representados por três e quatro lotes de sementes, respectivamente. Foram investigados possíveis efeitos do condicionamento com 24- epibrassinolídeo, ácido giberélico ou o bioestimulante Stimulate&reg;. As sementes foram avaliadas quanto à germinação e vigor, incluindo observações de atividade enzimática das sementes e análises de parâmetros de crescimento de plântulas utilizando o software SVIS&reg;. Por fim, o tratamento considerado promissor, condicionamento com 24-epibrassinolídeo na concentração de 10-8 M, foi avaliado quanto ao crescimento radicular das plantas, eficiência pela utilização do condicionamento em sistema de tambor, e comportamento das sementes durante o armazenamento. Diversos benefícios foram verificados após o condicionamento utilizando 24-epibrassinolídeo a 10-8 M, sobretudo a velocidade de germinação das sementes, atividade de enzimas antioxidantes e hidrolíticas, crescimento e uniformidade de desenvolvimento das plântulas. O condicionamento com 24- epibrassinolídeo a 10-8 M também favoreceu o desempenho dos lotes de sementes durante o armazenamento. A inclusão desse biorregulador no condicionamento em sistema de tambor é eficiente para o tratamento comercial de sementes de pimentão. / Rapid and uniform seedling emergence in field are essential for successful commercial production of vegetables. One of the main problems faced by bell pepper growers is the slow germination and uneven stand establishment, which highlights the importance of developing techniques that improve the performance of seed lots. In order to evaluate the efficiency of seed priming with bioregulators on physiological potential of bell pepper seeds, this research was developed using two cultivars, AF-6 and AF-7, represented by three and four seed lots, respectively. Possible effects of seed priming using 24-epibrassinolide were compared to gibberellic acid, and Stimulate&reg;. Germination and vigor evaluations were carried out, including analysis of seed enzymatic activity and parameters of seedlings growth using the SVIS&reg; software. At the end, the most promising treatment, seed priming with 24- epibrassinolide of 10-8 M was evaluated regarding to plant root growth, drum priming and seed performance during storage. Several benefits were verified after seed priming with 24-epibrassinolide, especially on germination speed, antioxidant and hydrolytic enzymes as well as seedling growth and uniformity development. Primed seeds with 24-epibrassinolide also showed better performance during seed storage. This bioregulador can be used during drum priming for commercial bell pepper seed treatment.

Page generated in 0.0421 seconds