• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 16
  • 11
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 73
  • 73
  • 29
  • 21
  • 21
  • 18
  • 16
  • 16
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Modelling surface runoff and soil erosion for Yen Bai Province, Vietnam, using the Soil and Water Assessment Tool (SWAT): Research article

Nguyen, Hong Quang, Le, Thi Thu Hang, Pham, Thi Thanh Nga, Kappas, Martin 24 August 2017 (has links)
Applications of the Soil and Water Assessment Tool (SWAT) are common. However, few attempts have focused on the tropics like in the Yen Bai province, Vietnam. Annual water-induced soil erosion (WSE) rates and surface runoff (SR) were estimated. The Nam Kim and Ngoi Hut watersheds were calibrated with accepted agreement between simulated and observed discharge. Correlations between precipitation, land covers, surface runoff and WSE were indicated. Although the estimated average WSE 4.1 t ha−1 year−1 (t ha−1 y−1) was moderate, some steep-bare areas were suffering serious soil loss of 26 t ha−1 y−1 and 15% of the province was calculated at the rate of 8.5 t ha−1 y−1. We found that the changes in WSE significantly correlated with land use changes. As calibrated SR matched closely with the measured data, we recommend SWAT applications for long-term soil erosion assessments in the tropics. / Những ứng dụng của mô hình công cụ đánh giá đất và nước (SWAT) đã được sử dụng phổ biến. Tuy nhiên có rất ít nghiên cứu tập trung vào khu vực nhiệt đới như tỉnh Yên Bái của Việt Nam. Trong nghiên cứu này, giá trị trung bình năm (2001-2012) nước chảy bề mặt (NCM) và xói mòn đất do nước (XM) đã được đánh giá trên cơ sở mô hình SWAT. Các thông số thủy văn của hai lưu vực sông là Nậm Kim và Ngòi Hút được tính toán và kiểm nghiệm với sự trùng hợp tương đối tốt giữa kết quả mô hình và số liệu thực đo. Mối liên hệ giữa lượng mưa, phủ bề mặt, NCM và XM cũng được phân tích và trình bầy chi tiết. Mặc dù giá trị XM năm được ước lượng ở mức trung bình cho toàn Tỉnh (4,1 tấn/ha/năm) nhưng ở một số khu vực nơi có độ dốc lớn và phủ mặt ít lại có lượng XM năm ở mức cao, 26 tấn/ha/năm và 15% tổng diện tích của Tỉnh có giá trị XM là 8,5 tấn/ha/năn. Kết quả nghiên cứu cho thấy sự liên hệ mật thiết giữa sự thay đổi phủ mặt tới giá trị XM. Trên cơ sở kết quả kiểm nghiệm mô hình khả quan, chúng tôi đề xuất sử dụng mô hình SWAT để đánh giá XM trong thời gian dài cho vùng nhiệt đới.
62

Groundwater Recharge from a Portion of the Santa Catalina Mountains

Belan, R. A., Matlock, W. G. 05 May 1973 (has links)
From the Proceedings of the 1973 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 4-5, 1973, Tucson, Arizona / The geohydrology of a portion of the Santa Catalina Mountains including the definition of aquifer systems in the foothills was studied in order to calculate groundwater recharge to the Tucson basin. This underlying groundwater aquifer is the only source of Tucson, Arizona's water supply. A well network, well logs, geologic profiles, and a water level contour map were used as source information. Recharge was found to occur in some sections of washes and close to the mountains where washes cross or coincide with faults. Significant recharge to sand and gravel aquifers occurs directly through faults and joints. Little of the surface runoff is thought to recharge local aquifers because of low permeability layers beneath the alluvium and the short duration of the flows. Recharge calculation using the Darcy equation was subject to considerable error; but flow net analysis showed the total recharge to be 336 acre-feet per year representing about 50 acre feet per mile of mountain front per year.
63

A Deterministic Model for Semi-Arid Catchments

Nnaji, S., Davis, D. R., Fogel, M. M. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / Semiarid environments exhibit certain hydrologic characteristics which must be taken into consideration for the effective modeling of the behavior of catchments in these areas. Convective storms, which cause most of the runoff, occur in high intensity and short duration during the summer months and are highly localized so that only a small portion of the catchment actually contributes flow to the storm hydrograph. Also, streams in semiarid catchments are ephemeral with flow occurring only about 1 percent of the time. This study attempts to develop a simple synthetic catchment model that reflects these features of the semiarid environment and for which (1) the simplifying assumptions do not preclude the inclusion of the important components of the runoff process, and (2) parameters of the equations representing the component processes have physical interpretation and are obtainable from basin characteristics so that the model may be applicable to ungaged sites. A reductionist approach is then applied in which the entire catchment is subdivided into a finite number of meshes and the various components of the runoff phenomenon are delineated within each mesh as independent functions of the catchment. Simplified forms of the hydrodynamic equations of flow are used to route flow generated from each mesh to obtain a complete hydrograph at the outlet point.
64

Salvaging Wasted Waters for Desert-Household Gardening

Fink, D. H., Ehrler, W. L. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / With the objective of determining if sufficient water would be salvaged by a typical desert, urban-household from normally wasted sources associated with the lot and household to adequately irrigate a garden and orchard, a 2000 sq ft house on a typical one fifth acre lot in three cities having climates similar to Phoenix, Tucson, or Prescott, Arizona was hypothesized and the amount of water available for yard watering calculated, provided that (1) only rainfall was available, (2) rainfall-runoff from covered areas associated with or adjacent to the lot was salvaged (roof, street, alley etc.), (3) gray-water from the household was utilized, (4) a portion of the lot was waterproofed to concentrate the runoff on the untreated portion, and (5) various combinations of the above were utilized to increase the amount of available water. It is demonstrated that these sources could be used singly or in combination to obtain the required amount of water with the actual amount available depending upon the precipitation, runoff and runon areas, runoff efficiency of the contributing area, and the number of people in the household. A number of horticultural plants are suggested that should best fit such an irregular irrigation scheme.
65

Rainfall-Runoff Relationships for a Mountain Watershed in Southern Arizona

Myhrman, M., Cluff, C. B., Putnam, F. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / A network of rain gauges and two recorder -equipped flumes were installed near the head of Cottonwood Canyon on Mt. Hopkins in the Santa Rita Mountains pursuant to a water development study for the Smithsonian Institution's Mt. Hopkins Astrophysical Observatory. The watershed is generally characterized by steep slopes, a dense evergreen woodland cover predominated by several species of oaks, isolated bedrock exposures and talus chutes. The watershed for the lower flume site comprises about 145 acres (58.60 ha) with an elevation range from about 6775 to 8580 feet (2,065 to 2,615 m). Rainfall-runoff measurements were made during the summer and fall of 1977. A runoff efficiency of 0.56 percent was calculated for the lower-flume watershed. However, since physical evidence of surface flow was found only in side drainages receiving runoff from culverts located along the Mt. Hopkins access road, a second calculation was made, using only the total area of contributing road surface as the watershed area. This yielded a runoff efficiency of 27.0 percent. The latter value, adjusted for infiltration on the slopes below the culverts, agrees well with measured efficiencies for compacted-earth water harvesting catchments. Based on the above, recommendations were made for developing a water supply system using the access road, modified to increase its effectiveness, as a water harvesting system and having two surface reservoirs for storage. A computer model was used to test the capability of the system to meet the projected water needs of the observatory.
66

Water Quality Problem of the Urban Area in an Arid Environment, Tucson, Arizona

Hansen, G. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / The U.S. Environmental Protection Agency 's two-year 208 area-wide Water Quality Management Study for Pima County, Arizona, is discussed in terms of the specific problems of municipal wastewater effluent, industrial wastewater, urban stormwater runoff, land disposal of residual wastes, septic systems, and construction activities related to the City of Tucson urban area. The primary groundwater and the slow cycling of the hydrologic system in this arid urban environment reduce many water pollution problems to insignificant levels in the short term, (2) there does exist significant long-term pollution problems in the area. These problems include urban stormwater runoff and landfill leachate, and are related to the pollution of groundwater recharge and aquifer water supplies, and (3) there is a strong need for total water resource planning in arid urban areas which includes planning for wastewater reuse, water harvesting, and proper management of groundwater recharge systems.
67

Water Quality of Runoff from Surface Mined Lands in Northern Arizona

Kempf, J., Leonhart, L., Fogel, M., Duckstein, L. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Surface mining of coal in the western U.S. can cause problems of increased salinity and heavy metal contamination in runoff along with a lack of enough rainfall to sustain plant growth for reclamation. To facilitate the planning of reclamation efforts in such areas results are described of a water quality sampling experiment on the ponds and runoff at the University of Arizona Experimental Watershed on Black Mesa in northern Arizona. A systems theoretic framework is employed to model the watershed and the results of a computer simulation based on this model is used to indicate that salinity buildup could be expected over time, given a minimal change in watershed configuration, with possible development of fluoride contamination being of particular concern. Water quality tests of the pond water and runoff on Black Mesa indicated that the water is within Federal standards for drinking and irrigation, except for sodium and fluoride. It is suggested that if it is economically desirable, the collection of more data on the ponds could be used to develop a simulation model of pond subsystems along the lines of the methodology outlined in this analysis.
68

Urbanistická opatření pro efektivní hospodaření s povrchovou vodou v zastavěných územích / Urban measures of effective surface water management in urban areas

Vacková, Michaela January 2017 (has links)
One of the main challenges in promoting rainwater management into practise is the fact that it was not recognized as an interdisciplinary issue. We should seek ways how to open the problem to other professions, specially for architects and urban planners, who are the key element of its farther development. This work analyzes the reasons of this unsatisfactory state of rainwater management in the Czech Republic and it defines the possible ways how to remedy this state and outlines scenarios of its further development. The default document of the work is czech technical standard "TNV 75 9010 Hospodaření se srážkovými vodami". The new methodological guide, which is part of this work, is based on it. The work extends the range of measures which are mentioned in the standard. It brings new ways for assessing the benefits of the various measures to streamline the application of rainwater management measures in urban space.
69

Impact of topsoil depth and amendment application on soil health and agronomic productivity in central Ohio

Moonilall, Nall Inshan January 2022 (has links)
No description available.
70

Расчёт системы дождевого сада : магистерская диссертация / Calculation of the rain garden system

Русинова, А. Д., Rusinova, A. D. January 2024 (has links)
The research is devoted to the issue of the use of compensation systems of water-green infrastructure in the integrated engineering improvement of urban areas, namely rain garden systems to solve the problem of flooding of urban areas during periods of intense rains. The author offers an assessment of the level of danger of flooding of places in the city of Yekaterinburg to determine the priority of implementing compensatory measures. The classification of flooding sites is determined depending on quantitative indicators. The definition of a "rain garden system" is given, the functions, purpose and principles of placement in urban areas are considered. The methods of determining the values of the main indicators of the water balance of such structures are revealed. / Исследование посвящено вопросу применения в комплексном инженерном благоустройстве городских территорий компенсационных систем водно-зелёной инфраструктуры, а именно систем дождевых садов для решения проблемы затопления городских территорий в периоды интенсивных дождей. Автором предложена оценка уровня опасности затопления мест в городе Екатеринбурге для определения приоритета внедрения компенсационных мероприятий. Классификация мест затопления определена в зависимости от количественных показателей. Дано определение «системы дождевого сада», рассмотрены функции, назначение и принципы размещения на городских территориях. Раскрываются методы определения значений основных показателей водного баланса таких сооружений.

Page generated in 0.0446 seconds