• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A study of wild tomatoes endemic to the Galapagos Islands as a source for salinity tolerance traits

Pailles, Yveline 11 1900 (has links)
Salinity is a major concern in agriculture since it adversely affects plant growth, development, and yield. Domestication of crops exerted strong selective pressure and reduced their genetic diversity. Meanwhile, wild species continued to adapt to their environment becoming valuable sources of genetic variation, with the potential for enhancing modern crops performance in today’s changing climate. Some wild species are found in highly saline environments; remarkable examples are the endemic wild tomatoes from the Galapagos Islands, forming the Solanum cheesmaniae and Solanum galapagense species (hereafter termed Galapagos tomatoes). These wild tomatoes adapted to thrive in the coastal regions of the Galapagos Islands. The present work includes a thorough characterization of a collection of 67 accessions of Galapagos tomatoes obtained from the Tomato Genetics Resource Center (TGRC). Genotyping-by-sequencing (GBS) was performed to establish the population structure and genetic distance within the germplasm collection. Both species were genetically differentiated, and a substructure was found in S. cheesmaniae dividing the accessions in two groups based on their origin: eastern and western islands. Phenotypic studies were performed at the seedling stage, subjecting seedlings to 200 mM NaCl for 10 days. Various traits were recorded and analysed for their contribution to salinity tolerance, compared to control conditions. Large natural variation was found across the collection in terms of salt stress responses and different possible salt tolerant mechanisms were identified. Six accessions were selected for further work, based on their good performance under salinity. This experiment included scoring several plant growth and yield-related traits, as well as RNA sequencing (RNAseq) at the fruit-ripening stage, under three different NaCl concentrations. Accession LA0421 showed an increased yield of almost 50% in mild salinity (150 mM NaCl) compared to control conditions. The transcriptome data obtained could reveal the genes involved in the salt stress-related yield increase. The knowledge obtained so far will be useful for scientists and breeders to select accessions of interest based on recorded traits. It will allow the use of Galapagos tomatoes as genetic sources for salinity tolerance traits in commercial tomatoes, thereby contributing to feed and nourish the growing human population in the years to come.
22

The ontogeny of osmoregulation in the Nile tilapia (Oreochromis niloticus L.)

Fridman, Sophie January 2011 (has links)
In recent times, diminishing freshwater resources, due to the rapidly increasing drain of urban, industrial and agricultural activities in combination with the impact of climate change, has led to an urgent need to manage marine and brackish water environments more efficiently. Therefore the diversification of aquacultural practices, either by the introduction of new candidate species or by the adaptation of culture methods for existing species, is vital at a time when innovation and adaptability of the aquaculture industry is fundamental in order to maintain its sustainability. The Nile tilapia (Oreochromis niloticus, Linnaeus, 1758), which has now been spread well beyond its natural range, dominates tilapia aquaculture because of its adaptability and fast growth rate. Although not considered to be amongst the most salt tolerant of the cultured tilapia species, the Nile tilapia still offers considerable potential for culture in low-salinity water. An increase in knowledge of the limits and basis of salinity tolerance of Nile tilapia during the sensitive early life stages and the ability to predict responses of critical life-history stages to environmental change could prove invaluable in improving larval rearing techniques and extend the scope of this globally important fish species. The capability of early life stages of the Nile tilapia to withstand variations in salinity is due to their ability to osmoregulate, therefore the ontogeny of osmoregulation in the Nile tilapia was studied from spawning to yolk-sac absorption after exposure to different experimental conditions ranging from freshwater to 25 ppt. Eggs were able to withstand elevated rearing salinities up to 20 ppt, but transfer to 25 ppt induced 100% mortality by 48 h post-fertilisation. At all stages embryos and larvae hyper-regulated at lower salinities and hypo-regulated at higher salinities, relative to the salinity of the external media. Osmoregulatory capacity increased during development and from 2 days post-hatch onwards remained constant until yolk-sac absorption. Adjustments to larval osmolality, following abrupt transfer from freshwater to experimental salinities (12.5 and 20 ppt), appeared to follow a pattern of crisis and regulation, with whole-body osmolality for larvae stabilising at c. 48 h post-transfer for all treatments, regardless of age at time of transfer. Age at transfer to experimental salinities (7.5 – 20 ppt) had a significant positive effect on larval ability to osmoregulate; larvae transferred at 8 dph maintained a more constant range of whole body osmolality over the experimental salinities tested than larvae at hatch. Concomitantly, survival following transfer to experimental salinities increased with age. There was a significant effect (GLM; p < 0.05) of salinity of incubation and rearing media on the incidence of gross larval malformation that was seen to decline over the developmental period studied. It is well established that salinity exerts a strong influence on development and growth in early life stages of fishes therefore the effects of varying low salinities (0 - 25 ppt) on hatchability, survival, growth and energetic parameters were examined in the Nile tilapia during early life stages. Salinity up to 20 ppt was tolerable, although reduced hatching rates at 15 and 20 ppt suggest that these salinites may be less than optimal. Optimum timing of transfer of eggs from freshwater to elevated salinities was 3-4 h post-fertilisation, following manual stripping and fertilisation of eggs, however increasing incubation salinity lengthened the time taken to hatch. Salinity was related to dry body weight, with larvae in salinities greater than 15 ppt displaying, at hatch, a significantly (GLM: p < 0.05) lower body weight but containing greater yolk reserves than those in freshwater or lower salinities. Survival at yolk-sac absorption displayed a significant (GLM; p < 0.05) inverse relationship with increasing salinity and mortalities were particularly heavy in the higher salinities of 15, 20 and 25 ppt. Mortalities occurred primarily during early yolk-sac development yet stabilised from 5 dph onwards. Salinity had a negative effect on yolk absorption efficiency (YAE). Salinity-related differences in oxygen consumption rates were not detectable until 3 days post-hatch; oxygen consumption rates of larvae in freshwater between days 3 – 6 post-hatch were always significantly higher (GLM p < 0.05) than those in 7.5, 15, 20 and 25 ppt, however, on day 9 post-hatch this pattern was reversed and freshwater larvae had a significantly lower QO2 than those in elevated salinities. Salinity had a significant inverse effect on larval standard length, with elevated salinities producing shorter larvae from hatch until 6 dph, after which time there was no significant differences between treatments. Salinity had a significant effect on whole larval dry weight, with heavier larvae in elevated salinities throughout the yolk-sac period (GLM; p < 0.05). The ability of the Nile tilapia to withstand elevated salinity during early life stages is due to morphological and ultrastructural modifications of extrabranchial mitochondria-rich cells (MRCs) that confer an osmoregulatory capacity before the development of the adult osmoregulatory system. A clearly defined temporal staging of the appearance of these adaptive mechanisms, conferring ability to cope with varying environmental conditions during early development, was evident. Ontogenetic changes in MRC location, 2-dimensional surface area, density and general morphological changes were investigated in larvae incubated and reared in freshwater and brackish water (15 ppt) from hatch until yolk-sac absorption using Na+/K+-ATPase immunohistochemistry with a combination of microscope techniques. The pattern of MRC distribution was seen to change during development under both treatments, with cell density decreasing significantly on the body from hatch to 7 days post-hatch, but appearing on the inner opercular area at 3 days post-hatch and increasing significantly (GLM; p < 0.05) thereafter. Mitochondria-rich cells were always significantly (GLM; p < 0.05) denser in freshwater than in brackish water maintained larvae. In both freshwater and brackish water, MRCs located on the outer operculum and tail showed a marked increase in size with age, however, cells located on the abdominal epithelium of the yolk-sac and the inner operculum showed a significant decrease in size (GLM; p < 0.05) over time. Mitochondria-rich cells from brackish water maintained larvae from 1 day post-hatch onwards were always significantly larger (GLM; p < 0.05) than those maintained in freshwater. Preliminary scanning electron microscopy studies revealed structural differences in chloride cell morphology that varied according to environmental conditions. Mitochondria-rich cell morphology and function are intricately related and the plasticity or adaptive response of this cell to environmental changes is vital in preserving physiological homeostasis and contributes to fishes’ ability to inhabit diverse environments. Yolk-sac larvae were transferred from freshwater at 3 days post-hatch to 12.5 and 20 ppt and sampled at 24 and 48 h post-transfer. The use of scanning electron microscopy allowed a quantification of MRC, based on the appearance and surface area of their apical crypts, resulting in a reclassification of ‘sub-types’ i.e. Type I or absorptive, degenerating form (surface area range 5.2 – 19.6 μm2), Type II or active absorptive form (surface area range 1.1 – 15.7 μm2), Type III or differentiating form (surface area range 0.08 – 4.6 μm2) and Type IV or active secreting form (surface area range 4.1 – 11.7 μm2). In addition, the crypts of mucous cells were discriminated from those of MRCs based on the presence of globular extensions and similarly quantified.
23

Aspectos fisiológicos e bioquímicos relacionados com a tolerância à salinidade em algodão, feijão-de-corda e sorgo / Physiological and biochemical aspects related to salt tolerance in cotton, cowpea and sorghum

Freitas, Valdinéia Soares January 2010 (has links)
FREITAS, Valdinéia Soares. Aspectos fisiológicos e bioquímicos relacionados com a tolerância à salinidade em algodão, feijão-de-corda e sorgo. 2010. 95 f. Dissertação (Mestrado em Bioquímica)-Universidade Federal do Ceará, Fortaleza-CE, 2010. / Submitted by Eric Santiago (erichhcl@gmail.com) on 2016-07-15T12:34:50Z No. of bitstreams: 1 2010_dis_vsfreitas.pdf: 448393 bytes, checksum: c7ed3dd8fce7b17f5075105ce3c143f7 (MD5) / Approved for entry into archive by José Jairo Viana de Sousa (jairo@ufc.br) on 2016-08-02T20:24:14Z (GMT) No. of bitstreams: 1 2010_dis_vsfreitas.pdf: 448393 bytes, checksum: c7ed3dd8fce7b17f5075105ce3c143f7 (MD5) / Made available in DSpace on 2016-08-02T20:24:14Z (GMT). No. of bitstreams: 1 2010_dis_vsfreitas.pdf: 448393 bytes, checksum: c7ed3dd8fce7b17f5075105ce3c143f7 (MD5) Previous issue date: 2010 / The objective of this study was to evaluate physiological and biochemical parameters in three plant species with different degrees of salt tolerance in order to better understand their differences in salinity tolerance. For this, cotton seed, bean-to-string and sorghum were sown in plastic cups containing vermiculite moistened with ½ Hoagland solution strength (½ SNH), the experiment being conducted in a greenhouse. Seedlings of five days of age were transferred to hydroponic medium (SNH ½), where they remained for a period of six days for acclimatization. After this period, the plants were subjected to three saline treatments with values ​​of electrical conductivity (EC) of 0.9 dS m-1 (low salinity), 4.0 dS m -1 (mean salinity) and 8.0 dS m 1 (high salt). Data were collected at 25 days after the onset of stress. Salinity significantly reduced leaf area and shoot dry mass of all species, especially, bean-to-string and to a lesser extent those of cotton. The osmotic potential of leaves and roots of the three species were significantly reduced in the treatments at 4.0 and 8.0 dS m-1 compared to 0.9 dS m-1 except the root sorghum. Since the leaf relative water content did not change with the increase in the EC medium. The Na + and Cl-increased in leaves and roots of three species, and cotton was the species that most of these ions retained in treatments 4.0 and 8.0 dS m-1. The concentrations of K + in leaves of cotton and bean-to-string were increased by increasing salinity levels, while in sorghum plants were decreased. Since the roots of this ion concentrations were significantly reduced in all three species. In general, the treatment of medium and high salinity compared with the low salinity, the concentrations of NO3-were reduced in leaves and roots of three species. Treatments at medium and high salinity reduced concentrations of soluble carbohydrates in cotton, while increased in the-string-beans and sorghum. The soluble protein concentration did not change the jack bean-string a function of salinity was reduced while the other two species. The N-aminossóluveis were increased in all three species while for proline, the increases were only observed at 8.0 dS m-1. In general, the parameters of emission of fluorescence of chlorophyll SPAD readings were not affected by the salinity. Levels were significantly increased lipid peroxidation in the treatment of medium and high salinity of the bean-string, the sorghum did not change while the cotton were reduced compared with that of low salinity. The activity of the enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and guaiacol (GPX) in leaves was not affected by saline treatments at 4.0 and 8.0 dS m-1, except for reductions in the activities of SOD and GPX in cotton and string beans in CAT and GPX to increases in sorghum. In roots, increases were observed for SOD in cotton and increases for sorghum and beans in GPX-of-string while there were reductions of APX and GPX for cotton. The growth data presented here confirm the increased tolerance of cotton and the higher sensitivity of the jack bean-string to salt stress, whereas changes in lipid peroxidation and antioxidant enzymes lead us to suggest that the antioxidant enzyme system appears to be cotton more efficient than the other two species, the removal of oxidative damage caused by salinity. It is also possible that the greater ability of cotton to accumulate toxic ions (Na + and Cl-) in photosynthetic tissues contributes at least in part to its greater tolerance to salinity. / O objetivo deste trabalho foi avaliar parâmetros fisiológicos e bioquímicos em três espécies vegetais com graus diferenciados de tolerância ao estresse salino, a fim de melhor entender suas diferenças na tolerância à salinidade. Para isto, sementes de algodão, feijão-de-corda e sorgo foram semeadas em copos plásticos contendo vermiculita umedecida com solução nutritiva de Hoagland ½ força (SNH ½), sendo o experimento conduzido em casa de vegetação. Plântulas de cinco dias de idade foram transferidas para meio hidropônico (SNH ½), onde permaneceram por um período de seis dias para aclimatação. Após esse período, as plantas foram submetidas a três tratamentos salinos com valores de condutividade elétrica (CE) de 0,9 dS m-1 (baixa salinidade), 4,0 dS m-1 (média salinidade) e 8,0 dS m-1 (alta salinidade). A coleta foi realizada aos 25 dias após o início do estresse. A salinidade reduziu significativamente a área foliar e a massa seca da parte aérea das três espécies estudadas, especialmente as das plantas de feijão-de-corda e em menor proporção as do algodão. O potencial osmótico de folhas e raízes das três espécies foram significativamente reduzidos nos tratamentos a 4,0 e 8,0 dS m-1 em comparação com o de 0,9 dS m-1, exceto nas raízes de sorgo. Já o teor relativo de água foliar não apresentou alterações com o aumento da CE do meio de crescimento. Os íons Na+ e Cl- aumentaram nas folhas e raízes das três espécies, sendo que o algodão foi a espécie que mais reteve esses íons nos tratamentos a 4,0 e 8,0 dS m-1. As concentrações de K+ nas folhas de algodão e feijão-de-corda foram aumentadas pelos níveis crescentes de salinidade, enquanto nas plantas de sorgo foram diminuídas. Já nas raízes as concentrações desse íon foram significativamente reduzidas nas três espécies. De maneira geral, nos tratamentos de média e alta salinidade comparados com o de baixa salinidade, as concentrações de NO3- foram reduzidas em folhas e raízes das três espécies. Os tratamentos a média e alta salinidade reduziram as concentrações de carboidratos solúveis no algodão, enquanto aumentaram no feijão-de-corda e no sorgo. A concentração de proteína solúvel não se alterou no feijão-de-corda em função da salinidade, enquanto foi reduzida nas outras duas espécies. Os N-aminossóluveis foram aumentados nas três espécies, enquanto para a prolina, esses aumentos só foram observados a 8,0 dS m-1. De modo geral, os parâmetros de emissão de fluorescência da clorofila a e a leitura SPAD não foram alterados pela salinidade. Os níveis de peroxidação lipídica foram significativamente aumentados nos tratamentos de média e alta salinidade no feijão-de-corda, não sofreram alteração no sorgo, enquanto foram reduzidos no algodão, quando comparados com o de baixa salinidade. A atividade das enzimas dismutase do superóxido (SOD), catalase (CAT), peroxidases do ascorbato (APX) e do guaiacol (GPX) em folhas, não foi alterada pelos tratamentos salinos a 4,0 e 8,0 dS m-1, com exceção de reduções nas atividades da SOD e GPX no algodão e da CAT no feijão-corda e, aumentos para a GPX no sorgo. Nas raízes, foram observados aumentos para a SOD no algodão e aumentos para a GPX no sorgo e feijão-de-corda, enquanto houve reduções da APX e GPX para o algodão. Os dados de crescimento aqui apresentados confirmam a maior tolerância do algodão e a maior sensibilidade do feijão-de-corda ao estresse salino, enquanto que as alterações na peroxidação dos lipídios e nas enzimas antioxidativas nos levam a sugerir que o sistema enzimático antioxidativo do algodão parece ser mais eficiente do que o das outras duas espécies estudadas, na eliminação dos danos oxidativos ocasionados pela salinidade. É possível, também, que a maior capacidade do algodão de acumular íons tóxicos (Na+ e Cl-) nos tecidos fotossintetizantes contribua, pelo menos em parte, para sua maior tolerância à salinidade.
24

Economic Impact Analysis of Marker-Assisted Breeding in Rice

Alpuerto, Vida-Lina Esperanza Battad 21 August 2008 (has links)
Abiotic stresses such as salinity and phosphorous (P) deficiency are major yield-limiting factors for rice, particularly on marginal lands. Marker-aided backcrossing (MAB), enabled by advances in genomics and molecular mapping in recent years, is said to be a more precise, time-saving, and cost-effective way to develop rice varieties that can withstand these abiotic stresses than conventional breeding. The study employs the economic surplus approach to measure the benefits of MAB for salinity tolerance in rice for Bangladesh, India, Indonesia, and Philippines, and for rice with tolerance to P-deficient soils in Indonesia. At a 5% discount rate, the benefits over 15 years of planting salt-tolerant varieties amount to $226.9 million in the Philippines, $3.666 billion in Bangladesh, $4.848 billion in India, and $895.7 million in Indonesia. The gains from growing varieties that can withstand P deficient soils in Indonesia amount to $2.070 billion. The incremental benefits from completing the salt-tolerant and P-deficient tolerant breeding cycles 2 years earlier are $340.5 million in Bangladesh and $192.1 in Indonesia, respectively. In India, $227.0 million is gained even if MAB develops salt-tolerant varieties just a year earlier. The additional gains from completing the salt-tolerant rice breeding cycle 4 years earlier are $40.3 million in the Philippines and $158.9 in Indonesia. In general, the gains from saline- (Bangladesh, Indonesia, Philippines) and P-deficient (Indonesia) tolerant rice are reduced by 5%, 9%, 14%, and 18% when MAB breeding cycle is delayed by one, two, three, and four years, respectively. In India, there is 3%, 7%, 10%, and 13% loss in benefits from salt-tolerant rice for every additional year of delay in the MAB breeding cycle. / Master of Science
25

Non-indigenous zooplankton : the role of predatory cladocerans and of copepods in trophic dynamics

Andersen Borg, Marc January 2009 (has links)
Human-mediated introductions of non-indigenous species now threaten to homogenize the biota of the Globe, causing huge economic and ecological damage. This thesis studies the ecological role of 3 invasive planktonic crustaceans, the omnivorous copepod Acartia tonsa (western Atlantic and Indo-Pacific) and the predatory cladocerans, Cercopagis pengoi (Ponto-Caspian) and Bythotrephes longimanus (Eurasian). B. longimanus invaded the North American Great Lakes in 1982, C. pengoi the Baltic in 1992 and the Great Lakes in 1999, while A. tonsa has an extensive invasion history that includes the Baltic. We review current knowledge on feeding biology of the predatory cladocerans. A study of stable C and N isotope ratios indicated mesozooplankton as the main food source of C. pengoi in the northern Baltic Sea proper, with young C. pengoi also eating microzooplankton, such as rotifers. Young-of-the-year herring did eat C. pengoi and herring trophic position shifted from 2.6 before the invasion to 3.4 after, indicating that C. pengoi had been “sandwiched” into the modified food web between mesozooplankton and fish. Salinity tolerance experiments on Acartia tonsa and co-occurring Acartia clausi showed the formers euryhaline character and high grazing potential. Energy partitioning between ingestion, production and respiration was rather constant over the tested salinity range of 2 to 33, with small differences in gross growth efficiency and cost of growth, but maximum ingestion at 10-20. Egg hatching in A. tonsa was only reduced at the lowest salinity. Extreme changes in salinity were needed to cause significant mortality of A. tonsa in the field, but its feeding activity could be severely reduced by salinity changes likely to occur in estuaries. A study of a hypertrophic estuary showed that A. tonsa can sustain a population despite very high mortality rates, caused by predation, high pH and low oxygen, helping explain the success of A. tonsa as an invader of estuaries.
26

Characterizing Salinity Tolerance in Greenhouse Roses

Solis Perez, Alma R. 2009 May 1900 (has links)
Among ornamental plants, roses (Rosa L.) are considered the most economically important, being among the most popular garden shrubs, as well as the favorite cut flowers sold by florists. In the past roses have been classified as fairly salt-sensitive, however, recent nutrition studies suggest that they may actually tolerate moderate to relatively high salinities. The general objective of this research was to reassess the limits of tolerance to salinity of roses and the influence of the rootstock used, to determine the ameliorative properties of supplemental Ca2+ on the response to salt stress, and to establish the influence of Na+- and Cl--counter ions on the detrimental effects caused by these salinizing elements. The NaCl or NaCl-CaCl2-salinity tolerance limit for greenhouse roses, although greatly influenced by the rootstock, was between 12 and 15 mmol.L-1. Plants grafted on ?Manetti? sustained their productivity/quality characteristics for longer time periods, tolerated greater salinity concentrations, and accumulated less Cl- and Na+ in leaves of flowering shoots than those grafted on ?Natal Briar?, confirming the greater ability of the former rootstock to tolerate salt stress. Supplementing the saline solution with 0-10 mmol.L-1 Ca2+ (as CaSO4) did not alleviate the harmful effects caused by NaCl-salt stress (12 mmol.L-1) on the productivity and quality responses of roses. The detrimental effects caused by Na- and Cl-based salinity were greatly influenced by the composition of the salt mixtures (i.e. their counter ions). Sodium sulfate and CaCl2 were the least harmful salts; NaCl had intermediate effects, while NaNO3 and KCl were the most deleterious. Among the most distinguishable effects caused by the more toxic Na+ and Cl- counter ions were lower osmotic potential (piSS) and greater electrical conductivity (ECSS) of the salinized solutions, markedly increased uptake and/or transport of either Na+ or Cl- to the flowering shoot leaves, and altered uptake and/or transport of other mineral nutrients. Computations of the saline solutions? chemical speciation revealed that salts containing divalent ions had lower ionization and exhibited greater ion associations compared to monovalent ion salts, rendering a lower number in free ions/molecules in solution which caused greater SS and lower ECSS in those solutions.
27

Variation in morphology, salinity and waterlogging tolerance and resource allocation in strawberry clover (Trifolium fragiferum L.) : implications for its use in mildly saline soils in southern Australian farming systems

McDonald, Kathi January 2009 (has links)
[Truncated abstract] In southern Australian farming systems the replacement of deep-rooted perennial native vegetation with shallow-rooted annual crops and pastures has resulted in rising groundwater tables and an increased incidence of dryland salinity. It has been suggested that to address this issue by restoring hydrological balance, large areas of agricultural land need to be vegetated with perennial plants. One of the most agriculturally productive ways to do this is to introduce perennial pastures, both into upslope groundwater
28

Cultivos para el cambio climático: selección y caracterización de variedades de judía (Phaseolusvulgaris L.) y Phaseolus lunatus tolerantes a la sequía y salinidad

Arteaga Castillo, Sugenith Margarita 28 June 2021 (has links)
[ES] Durante siglos de cultivo en la Península Ibérica después de su introducción en el siglo XVI, las judías se adaptaron a nuevos entornos, evolucionando numerosas variedades locales. Se evaluaron cultivares españoles locales de Phaseolus lunatus (frijol lima) y su resistencia a la salinidad, en dónde se expusieron las plantas a varios tratamientos de sal, con el fin de evaluar el efecto de la salinidad en el crecimiento y el rendimiento del cultivo. Se observó que el estrés salino redujo el peso fresco de los órganos aéreos, lo que permitió clasificar los cuatro genotipos según su tolerancia a la salinidad. la prolina aumentó en todos los cultivares, más notablemente en el cv. VPH-79, con las concentraciones absolutas más altas registradas en los cultivares más tolerantes a la sal. Estos hallazgos indican que P. lunatus es moderadamente tolerante a la sal y que sus principales mecanismos para adaptarse al estrés salino son el mantenimiento de altas concentraciones de K+ y la acumulación de prolina en las hojas. Por otra parte, se analizaron en invernadero 24 genotipos locales de P. vulgaris de España durante dos temporadas consecutivas. De cada genotipo, se cultivaron cinco plantas y se caracterizaron (17 rasgos cuantitativos y 15 cualitativos) utilizando los descriptores del IBPGR. Los resultados obtenidos indican una alta variabilidad para la mayoría de los rasgos, especialmente los relacionados con el rendimiento y sus componentes. Además, se analizaron las respuestas a los tratamientos por déficit hídrico y estrés salino, en cuanto a inhibición del crecimiento y contenido de prolina foliar (Pro), en 47 genotipos de Phaseolus vulgaris de diferentes orígenes. Para la mayoría de las variables de crecimiento analizadas y Pro, los efectos del cultivo, el tratamiento y sus interacciones fueron altamente significativos (p<0.001); los rasgos morfológicos de las raíces, el diámetro del tallo y el número de hojas se debieron principalmente a una variación incontrolada, mientras que la variación del peso fresco y el contenido de agua de los tallos y las hojas fue inducida claramente por el estrés. Bajo las condiciones experimentales, los efectos promedio del estrés salino sobre el crecimiento de las plantas fueron relativamente más débiles que los del déficit hídrico. . Pro, por su parte, fue la única variable que mostró una correlación negativa con todos los parámetros de crecimiento, pero particularmente con los de tallos y hojas mencionados anteriormente, como lo indican los coeficientes de correlación de Pearson y los PCA. Se propone el uso de Pro como un marcador bioquímico adecuado para exámenes simples, rápidos y a gran escala de genotipos de judía, para excluir los más sensibles, aquellos que acumulan concentraciones más altas de Pro en respuesta a tratamientos de estrés hídrico o salino. Asimismo, se han analizado las respuestas a la salinidad en seis cultivares de judía común: cuatro variedades locales de España y dos líneas experimentales de Cuba. La prolina fue usada para clasificar la tolerancia de los cultivares, Las concentraciones de azúcares solubles totales variaron con los tratamientos y entre los genotipos, pero fue difícil evaluar su papel en la tolerancia al estrés de las plantas analizadas. Los cambios en el contenido de malondialdehído (MDA) no indicaron peroxidación de la membrana inducida por sal como resultado del estrés oxidativo secundario; en consecuencia, no se detectó acumulación de compuestos fenólicos totales y flavonoides, como mecanismo de defensa antioxidante. Estos resultados destacan la confiabilidad del uso de prolina como marcador bioquímico del estrés salino en judía y la importancia del mecanismo relacionado con el transporte de potasio a las hojas para conferir tolerancia al estrés a algunos cultivares de judía. / [CA] Durant segles de cultiu a la Península Ibèrica després de la seva introducció en el segle XVI, les mongetes es van adaptar a nous entorns, evolucionant nombroses varietats locals. Es van avaluar conreessis espanyols locals de garrofó (fesol llima) i la seva resistència a la salinitat, a on es van exposar les plantes a diversos tractaments de sal, per tal d'avaluar l'efecte de la salinitat en el creixement i el rendiment de l'cultiu. Es va observar que l'estrès salí va reduir el pes fresc dels òrgans aeris, el que va permetre classificar els quatre genotips segons la seva tolerància a la salinitat. la prolina augmentar en tots els conreessis, més notablement en el cv. VPH-79, amb les concentracions absolutes més altes registrades en els conreessis més tolerants a la sal. Aquestes troballes indiquen que P. lunatus és moderadament tolerant a la sal i que els seus principals mecanismes per adaptar-se a l'estrès salí són el manteniment d'altes concentracions de K + i l'acumulació de prolina en les fulles. D'altra banda, es van analitzar en hivernacle 24 genotips locals de P. vulgaris d'Espanya durant dues temporades consecutives. De cada genotip, es van conrear cinc plantes i es van caracteritzar (17 trets quantitatius i 15 qualitatius) utilitzant els descriptors de l'IBPGR. Els resultats obtinguts indiquen una alta variabilitat per a la majoria dels trets, especialment els relacionats amb el rendiment i els seus components. A més, es van analitzar les respostes als tractaments per dèficit hídric i estrès salí, pel que fa a inhibició de l'creixement i contingut de prolina foliar (Pro), en 47 genotips de Phaseolus vulgaris de diferents orígens. Per a la majoria de les variables de creixement analitzades i Pro, els efectes de l'cultiu, el tractament i les seves interaccions van ser altament significatius (p <0.001); els trets morfològics de les arrels, el diàmetre de la tija i el nombre de fulls es van deure principalment a una variació incontrolada, mentre que la variació de l'pes fresc i el contingut d'aigua de les tiges i les fulles va ser induïda clarament per l'estrès. Sota les condicions experimentals, els efectes mitjana de l'estrès salí sobre el creixement de les plantes van ser relativament més febles que els de el dèficit hídric. . Pro, per la seva banda, va ser l'única variable que va mostrar una correlació negativa amb tots els paràmetres de creixement, però particularment amb els de tiges i fulles esmentats anteriorment, com ho indiquen els coeficients de correlació de Pearson i els PCA. Es proposa l'ús de Pro com un marcador bioquímic adequat per a exàmens simples, ràpids i a gran escala de genotips de mongeta, per excloure els més sensibles, aquells que acumulen concentracions més altes de Pro en resposta a tractaments d'estrès hídric o salí. Així mateix, s'han analitzat les respostes a la salinitat en sis conreessis de mongeta comú: quatre varietats locals d'Espanya i dues línies experimentals de Cuba. La prolina va ser usada per a classificar la tolerància dels conreessis, Les concentracions de sucres solubles totals van variar amb els tractaments i entre els genotips, però va ser difícil avaluar el seu paper en la tolerància a l'estrès de les plantes analitzades. Els canvis en el contingut de malondialdehid (MDA) no van indicar peroxidació de la membrana induïda per sal com a resultat de l'estrès oxidatiu secundari; en conseqüència, no es va detectar acumulació de compostos fenòlics totals i flavonoides, com a mecanisme de defensa antioxidant. Aquests resultats destaquen la fiabilitat de l'ús de prolina com a marcador bioquímic de l'estrès salí en jueva i la importància de l'mecanisme relacionat amb el transport de potassi a les fulles per conferir tolerància a l'estrès a alguns conreessis de mongeta. / [EN] During centuries of cultivation in the Iberian Peninsula after their introduction in the 16th century, beans adapted to new environments, evolving numerous landraces.In this study was also evaluated the resistance to salinity of several local Spanish cultivars of Phaseolus lunatus L. (lima bean). Plants were subjected to various salt treatments and growth and biochemical parameters were determined. It was observed that salt stress reduced the fresh weight of aerial organs, which allowed us to classify the four genotypes according to their tolerance to salinity. In addition, proline increased in all cultivars, most notably in cv. VPH-79, with the highest absolute concentrations recorded in the most salt tolerant cultivars. These findings indicate that P. lunatus is moderately salt tolerant and that its main mechanisms for adapting to salt stress are the maintenance of high K+ concentrations and proline accumulation in leaves. In studies conducted in this research project, 24 landraces of P. vulgaris from Spain were analyzed in greenhouses during two consecutive seasons. From each genotype, five plants were grown and characterized for 17 quantitative and 15 qualitative traits using IBPGR descriptors. . The results obtained indicate high variability for most of the traits, especially those related to yield and its components. On the other hand, this study analyzed the responses to water deficit and salt stress treatments, in terms of growth inhibition and leaf proline (Pro) content, in 47 Phaseolus vulgaris genotypes of different origins. For most of the growth variables analyzed and Pro, the effects of cultivar, treatment and their interactions were highly significant (p <0.001); root morphological traits, stem diameter and number of leaves were mainly due to uncontrolled variation, whereas variation in fresh weight and water content of stems and leaves was clearly induced by stress. Under our experimental conditions, the average effects of salt stress on plant growth were relatively weaker than those of water deficit. . Pro, in turn, was the only variable that showed a negative correlation with all growth parameters, but particularly with those of stems and leaves mentioned above, as indicated by Pearson's correlation coefficients and PCAs. We propose the use of Pro as a biochemical marker suitable for simple, rapid, large-scale screening of bean genotypes to exclude the most sensitive, those that accumulate higher concentrations of Pro in response to water or salt stress treatments. In addition, responses to salinity were analyzed in six common bean cultivars: four local varieties from Spain and two experimental lines from Cuba. Proline was used to rank the relative tolerance of the cultivars. Concentrations of total soluble sugars varied with treatments and among genotypes, but it was difficult to assess their role in stress tolerance of the plants tested.. Changes in malondialdehyde (MDA) content did not indicate salt-induced membrane peroxidation as a result of secondary oxidative stress; consequently, accumulation of total phenolic compounds and flavonoids, as an antioxidant defense mechanism, was not detected. These results highlight the reliability of the use of proline as a biochemical marker of salt stress in common beans and the importance of the mechanism related to potassium transport to leaves in conferring stress tolerance to some common bean cultivars. / Arteaga Castillo, SM. (2021). Cultivos para el cambio climático: selección y caracterización de variedades de judía (Phaseolusvulgaris L.) y Phaseolus lunatus tolerantes a la sequía y salinidad [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/168450 / TESIS

Page generated in 0.0693 seconds