• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • Tagged with
  • 14
  • 14
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Phénomènes de localisation et d’universalité pour des polymères aléatoires / Localization and universality phenomena for random polymers

Torri, Niccolò 18 September 2015 (has links)
Le modèle d'accrochage de polymère décrit le comportement d'une chaîne de Markov en interaction avec un état donné. Cette interaction peut attirer ou repousser la chaîne de Markov et elle est modulée par deux paramètres, h et β. Quand β = 0 on parle de modèle homogène, qui est complètement solvable. Le modèle désordonné, i.e. quand β > 0, est mathématiquement le plus intéressant. Dans ce cas, l'interaction dépend d'une source d'aléa extérieur indépendant de la chaîne de Markov, appelée désordre. L'interaction est réalisée en modifiant la loi originelle de la chaîne de Markov par une mesure de Gibbs et la probabilité obtenue définit le modèle d'accrochage de polymère. Le but principal est d'étudier et de comprendre la structure des trajectoires typiques de la chaîne de Markov sous cette nouvelle probabilité. Le premier sujet de recherche concerne le modèle d'accrochage de polymère où le désordre est à queues lourdes et où le temps de retour de la chaîne de Markov suit une distribution sous-exponentielle. Dans notre deuxième résultat nous étudions le modèle d'accrochage de polymère avec un désordre à queues légères et le temps de retour de la chaîne de Markov avec une distribution à queues polynomiales d'exposant α > 0. On peut démontrer qu'il existe un point critique, h(β). Notre but est comprendre le comportement du point critique quand β -> 0. La réponse dépend de la valeur de α. Dans la littérature on a des résultats précis pour α < ½ et α > 1. Nous montrons que α ∈ (1/2, 1) le comportement du modèle dans la limite du désordre faible est universel et le point critique, opportunément changé d'échelle, converge vers la même quantité donnée par un modèle continu / The pinning model describes the behavior of a Markov chain in interaction with a distinguished state. This interaction can attract or repel the Markov chain path with a force tuned by two parameters, h and β. If β = 0 we obtain the homogeneous pinning model, which is completely solvable. The disordered pinning model, i.e. when β > 0, is most challenging and mathematically interesting. In this case the interaction depends on an external source of randomness, independent of the Markov chain, called disorder. The interaction is realized by perturbing the original Markov chain law via a Gibbs measure, which defines the Pinning Model. Our main aim is to understand the structure of a typical Markov chain path under this new probability measure. The first research topic of this thesis is the pinning model in which the disorder is heavy-tailed and the return times of the Markov chain have a sub-exponential distribution. In our second result we consider a pinning model with a light-tailed disorder and the return times of the Markov chain with a polynomial tail distribution, with exponent α > 0. It is possible to show that there exists a critical point, h(β). Our goal is to understand the behavior of the critical point when β -> 0. The answer depends on the value of α and in the literature there are precise results only for the case α < ½ et α > 1. We show that for α ∈ (1/2, 1) the behavior of the pinning model in the weak disorder limit is universal and the critical point, suitably rescaled, converges to the related quantity of a continuum model
12

Passeios aleatórios estáveis em Z com taxas não-homogêneas e os processos quase-estáveis / Stable random walks on Z with inhomogeneous rates and quasistable processes

Wagner Barreto de Souza 18 December 2012 (has links)
Seja $\\mathcal X=\\{\\mathcal X_t:\\, t\\geq0,\\, \\mathcal X_0=0\\}$ um passeio aleatório $\\beta$-estável em $\\mathbb Z$ com média zero e com taxas de saltos não-homogêneas $\\{\\tau_i^: i\\in\\mathbb Z\\}$, com $\\beta\\in(1,2]$ e $\\{\\tau_i: i\\in\\mathbb Z\\}$ sendo uma família de variáveis aleatórias independentes com distribuição marginal comum na bacia de atração de uma lei $\\alpha$-estável, com $\\alpha\\in(0,2]$. Nesta tese, obtemos resultados sobre o comportamento do processo $\\mathcal X_t$ para tempos longos, em particular, obtemos seu limite de escala. Quando $\\alpha\\in(0,1)$, o limite de escala é um processo $\\beta$-estável mudado de tempo pela inversa de um outro processo, o qual envolve o tempo local do processo $\\beta$-estável e um independente subordinador $\\alpha$-estável; chamamos o processo resultante de processo quase-estável. Para o caso $\\alpha\\in[1,2]$, o limite de escala é um ordinário processo $\\beta$-estável. Para $\\beta=2$ e $\\alpha\\in(0,1)$, o limite de escala é uma quase-difusão com medida de velocidade aleatória estudada por Fontes, Isopi e Newman (2002). Outros resultados sobre o comportamento de $\\mathcal X$ para tempos longos são envelhecimento e localização. Nós obtemos resultados de envelhecimento integrado e não-integrado para $\\mathcal X$ quando $\\alpha\\in(0,1)$. Relacionado à esses resultados, e possivelmente de interesse independente, consideramos o processo de armadilha definido por $\\{\\tau_{\\mathcal X_t}: t\\geq0\\}$, e obtemos seu limite de escala. Concluímos a tese com resultados sobre localização de $\\mathcal X$. Mostramos que ele pode ser localizado quando $\\alpha\\in(0,1)$, e que não pode ser localizado quando $\\alpha\\in(1,2]$, assim estendendo os resultados de Fontes, Isopi e Newman (1999) para o caso de passeios simples simétricos. / Let $\\mathcal X=\\{\\mathcal X_t:\\, t\\geq0,\\, \\mathcal X_0=0\\}$ be a mean zero $\\beta$-stable random walk on $\\mathbb Z$ with inhomogeneous jump rates $\\{\\tau_i^: i\\in\\mathbb Z\\}$, with $\\beta\\in(1,2]$ and $\\{\\tau_i: i\\in\\mathbb Z\\}$ is a family of independent random variables with common marginal distribution in the basin of attraction of an $\\alpha$-stable law with $\\alpha\\in(0,2]$. In this thesis we derive results about the long time behavior of this process, in particular its scaling limit. When $\\alpha\\in(0,1)$, the scaling limit is a $\\beta$-stable process time-changed by the inverse of another process, involving the local time of the $\\beta$-stable process and an independent $\\alpha$-stable subordinator; the resulting process may be called a quasistable process. For the case $\\alpha\\in[1,2]$, the scaling limit is an ordinary $\\beta$-stable process. For $\\beta=2$ and $\\alpha\\in(0,1)$, the scaling limit is a quasidiffusion with random speed measure studied by Fontes, Isopi and Newman (2002). Other results about the long time behavior of $\\mathcal X$ concern aging and localization. We obtain integrated and non integrated aging results for $\\mathcal X$ when $\\alpha\\in(0,1)$. Related to these results, and possibly of independent interest, we consider the trap process defined as $\\{\\tau_{\\mathcal X_t}: t\\geq0\\}$, and derive its scaling limit. We conclude the thesis with results about localization of $\\mathcal X$. We show that it localizes when $\\alpha\\in(0,1)$, and does not localize when $\\alpha\\in(1,2]$, extending results of Fontes, Isopi and Newman (1999) for the simple symmetric case.
13

Passeios aleatórios estáveis em Z com taxas não-homogêneas e os processos quase-estáveis / Stable random walks on Z with inhomogeneous rates and quasistable processes

Souza, Wagner Barreto de 18 December 2012 (has links)
Seja $\\mathcal X=\\{\\mathcal X_t:\\, t\\geq0,\\, \\mathcal X_0=0\\}$ um passeio aleatório $\\beta$-estável em $\\mathbb Z$ com média zero e com taxas de saltos não-homogêneas $\\{\\tau_i^: i\\in\\mathbb Z\\}$, com $\\beta\\in(1,2]$ e $\\{\\tau_i: i\\in\\mathbb Z\\}$ sendo uma família de variáveis aleatórias independentes com distribuição marginal comum na bacia de atração de uma lei $\\alpha$-estável, com $\\alpha\\in(0,2]$. Nesta tese, obtemos resultados sobre o comportamento do processo $\\mathcal X_t$ para tempos longos, em particular, obtemos seu limite de escala. Quando $\\alpha\\in(0,1)$, o limite de escala é um processo $\\beta$-estável mudado de tempo pela inversa de um outro processo, o qual envolve o tempo local do processo $\\beta$-estável e um independente subordinador $\\alpha$-estável; chamamos o processo resultante de processo quase-estável. Para o caso $\\alpha\\in[1,2]$, o limite de escala é um ordinário processo $\\beta$-estável. Para $\\beta=2$ e $\\alpha\\in(0,1)$, o limite de escala é uma quase-difusão com medida de velocidade aleatória estudada por Fontes, Isopi e Newman (2002). Outros resultados sobre o comportamento de $\\mathcal X$ para tempos longos são envelhecimento e localização. Nós obtemos resultados de envelhecimento integrado e não-integrado para $\\mathcal X$ quando $\\alpha\\in(0,1)$. Relacionado à esses resultados, e possivelmente de interesse independente, consideramos o processo de armadilha definido por $\\{\\tau_{\\mathcal X_t}: t\\geq0\\}$, e obtemos seu limite de escala. Concluímos a tese com resultados sobre localização de $\\mathcal X$. Mostramos que ele pode ser localizado quando $\\alpha\\in(0,1)$, e que não pode ser localizado quando $\\alpha\\in(1,2]$, assim estendendo os resultados de Fontes, Isopi e Newman (1999) para o caso de passeios simples simétricos. / Let $\\mathcal X=\\{\\mathcal X_t:\\, t\\geq0,\\, \\mathcal X_0=0\\}$ be a mean zero $\\beta$-stable random walk on $\\mathbb Z$ with inhomogeneous jump rates $\\{\\tau_i^: i\\in\\mathbb Z\\}$, with $\\beta\\in(1,2]$ and $\\{\\tau_i: i\\in\\mathbb Z\\}$ is a family of independent random variables with common marginal distribution in the basin of attraction of an $\\alpha$-stable law with $\\alpha\\in(0,2]$. In this thesis we derive results about the long time behavior of this process, in particular its scaling limit. When $\\alpha\\in(0,1)$, the scaling limit is a $\\beta$-stable process time-changed by the inverse of another process, involving the local time of the $\\beta$-stable process and an independent $\\alpha$-stable subordinator; the resulting process may be called a quasistable process. For the case $\\alpha\\in[1,2]$, the scaling limit is an ordinary $\\beta$-stable process. For $\\beta=2$ and $\\alpha\\in(0,1)$, the scaling limit is a quasidiffusion with random speed measure studied by Fontes, Isopi and Newman (2002). Other results about the long time behavior of $\\mathcal X$ concern aging and localization. We obtain integrated and non integrated aging results for $\\mathcal X$ when $\\alpha\\in(0,1)$. Related to these results, and possibly of independent interest, we consider the trap process defined as $\\{\\tau_{\\mathcal X_t}: t\\geq0\\}$, and derive its scaling limit. We conclude the thesis with results about localization of $\\mathcal X$. We show that it localizes when $\\alpha\\in(0,1)$, and does not localize when $\\alpha\\in(1,2]$, extending results of Fontes, Isopi and Newman (1999) for the simple symmetric case.
14

Coupe et reconstruction d'arbres et de cartes aléatoires / Cutting and rebuilding random trees and maps

Dieuleveut, Daphné 10 December 2015 (has links)
Cette thèse se divise en deux parties. Nous nous intéressons dans un premier temps à des fragmentations d'arbres aléatoires, et aux arbres des coupes associés. Dans le cadre discret, les modèles étudiés sont des arbres de Galton-Watson, fragmentés en enlevant successivement des arêtes choisies au hasard. Nous étudions également leurs analogues continus, l'arbre brownien et les arbres stables, que l'on fragmente en supprimant des points donnés par des processus ponctuels de Poisson. L'arbre des coupes associé à l'un de ces processus, discret ou continu, décrit la généalogie des composantes connexes créées au fur et à mesure de la dislocation. Pour une fragmentation qui se concentre autour de nœuds de grand degré, nous montrons que l'arbre des coupes continu est la limite d'échelle des arbres des coupes discrets correspondants. Dans les cas brownien et stable, nous montrons également que l'on peut reconstruire l'arbre initial à partir de son arbre des coupes et d'un étiquetage bien choisi de ses points de branchement. Nous étudions ensuite un problème portant sur les cartes aléatoires, et plus précisément sur la quadrangulation uniforme infinie du plan (UIPQ). De récents résultats montrent que dans l'UIPQ, toutes les géodésiques infinies issues de la racine sont essentiellement similaires. Nous déterminons la quadrangulation limite obtenue en ré-enracinant l'UIPQ ''à l'infini'' sur de l'une de ces géodésiques. Cette étude se fait en découpant l'UIPQ le long de cette géodésique. Nous étudions les deux parties ainsi créées via une correspondance avec des arbres discrets, puis nous obtenons la limite souhaitée par recollement. / This PhD thesis is divided into two parts. First, we study some fragmentations of random trees and the associated cut-trees. The discrete models we are interested in are Galton-Watson trees, which are cut down by recursively removing random edges. We also consider their continuous counterparts, the Brownian and stable trees, which are fragmented by deleting the atoms of Poisson point processes. For these discrete and continuous models, the associated cut-tree describes the genealogy of the connected components which appear during the cutting procedure. We show that for a ''vertex-fragmentation'', in which the nodes having a large degree are more susceptible to be deleted, the continuous cut-tree is the scaling limit of the corresponding discrete cut-trees. In the Brownian and stable cases, we also give a transformation which rebuilds the initial tree from its cut-tree and a well chosen labeling of its branchpoints. The second part relates to random maps, and more precisely the uniform infinite quadrangulation of the plane (UIPQ). Recent results show that in the UIPQ, all infinite geodesic rays originating from the root are essentially similar. We identify the limit quadrangulation obtained by rerooting the UIPQ at a point ''at infinity'' on one of these geodesics. To do this, we split the UIPQ along this geodesic ray. Using a correspondence with discrete trees, we study the two sides, and obtain the desired limit by gluing them back together.

Page generated in 0.0453 seconds