• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 45
  • 9
  • 6
  • Tagged with
  • 133
  • 58
  • 35
  • 20
  • 20
  • 20
  • 19
  • 16
  • 15
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Development of New Model-based Methods in ASIC Requirements Engineering

Onuoha, Chukwuma Onuoha 25 January 2022 (has links)
Requirements in the development of application-specific integrated circuits (ASICs) continue to increase. This leads to more complexities in handling and processing the requirements, which often causes inconsistencies in the requirments. To better manage the resulting complexities, ASIC development is evolving into a model-based process. This thesis is part of a continuing research into the application and evolution of a model-based process for ASIC development at the Robert Bosch GmbH. It focuses on providing methologies that enable tracing of ASIC requirements and specifications as part of a model-based development process to eliminate inconsistencies in the requirements. The question of what requirements are and, what their traceability means, is defined and analysed in the context of their relationships to models. This thesis applies requirements engineering (RE) practices to the processing of ASIC requirements in a development environment. This environment is defined by availability of tools which are compliant with some standards and technologies. Relying on semi-formal interviews to understand the process in this environment and what stakeholders expect, this thesis applies the standards and technologies with which these tools are compliant to provide methodologies that ensures requirements traceability. Effective traceability methods were proven to be matrices and tables, but for cases of fewer requirements (ten or below), requirement diagrams are also efficient and effective. Furthermore, the development process as a collaborative effort was shown to be enhanced by using the resulting tool-chain, when the defined methodologies are properly followed. This solution was tested on an ASIC concept development project as a case study.
102

Attacking complexity in logic synthesis of asynchronous circuits

Wist, Dominic January 2011 (has links)
Most of the microelectronic circuits fabricated today are synchronous, i.e. they are driven by one or several clock signals. Synchronous circuit design faces several fundamental challenges such as high-speed clock distribution, integration of multiple cores operating at different clock rates, reduction of power consumption and dealing with voltage, temperature, manufacturing and runtime variations. Asynchronous or clockless design plays a key role in alleviating these challenges, however the design and test of asynchronous circuits is much more difficult in comparison to their synchronous counterparts. A driving force for a widespread use of asynchronous technology is the availability of mature EDA (Electronic Design Automation) tools which provide an entire automated design flow starting from an HDL (Hardware Description Language) specification yielding the final circuit layout. Even though there was much progress in developing such EDA tools for asynchronous circuit design during the last two decades, the maturity level as well as the acceptance of them is still not comparable with tools for synchronous circuit design. In particular, logic synthesis (which implies the application of Boolean minimisation techniques) for the entire system's control path can significantly improve the efficiency of the resulting asynchronous implementation, e.g. in terms of chip area and performance. However, logic synthesis, in particular for asynchronous circuits, suffers from complexity problems. Signal Transitions Graphs (STGs) are labelled Petri nets which are a widely used to specify the interface behaviour of speed independent (SI) circuits - a robust subclass of asynchronous circuits. STG decomposition is a promising approach to tackle complexity problems like state space explosion in logic synthesis of SI circuits. The (structural) decomposition of STGs is guided by a partition of the output signals and generates a usually much smaller component STG for each partition member, i.e. a component STG with a much smaller state space than the initial specification. However, decomposition can result in component STGs that in isolation have so-called irreducible CSC conflicts (i.e. these components are not SI synthesisable anymore) even if the specification has none of them. A new approach is presented to avoid such conflicts by introducing internal communication between the components. So far, STG decompositions are guided by the finest output partitions, i.e. one output per component. However, this might not yield optimal circuit implementations. Efficient heuristics are presented to determine coarser partitions leading to improved circuits in terms of chip area. For the new algorithms correctness proofs are given and their implementations are incorporated into the decomposition tool DESIJ. The presented techniques are successfully applied to some benchmarks - including 'real-life' specifications arising in the context of control resynthesis - which delivered promising results. / Moderner Schaltungsentwurf fokussiert hauptsächlich synchrone Schaltungstechnik mit allen inhärenten Problemen. Asynchone (d.h. ungetaktete) Schaltungen zeichnen sich jedoch nicht nur durch das Fehlen der Taktversatzproblematik gegenüber ihren synchronen Pendents aus, sondern auch insbesondere durch geringeren Energieverbrauch, günstigere EMV-Eigenschaften, hohe Performance, Modularität und Robustheit gegenüber Schwankungen in der Spannungsversorgung, im Herstellungsprozess sowie Temperaturunterschieden. Diese Vorteile werden mit höherer Integration sowie höheren Taktraten signifikanter. Jedoch ist der Entwurf und auch der Test asynchroner Schaltungen erheblich schwieriger verglichen mit synchronen Schaltungen. Entwurfswerkzeuge zur Synthese asynchroner Schaltungen aus Hochsprachen-Spezifikationen sind zwar inzwischen verfügbar, sie sind jedoch noch nicht so ausgereift und bei weitem noch nicht so akzeptiert in der Industrie, wie ihre Äquivalente für den synchronen Schaltungsentwurf. Insbesondere fehlt es an Werkzeugunterstützung im Bereich der Logiksynthese komplexer Steuerungen („Controller“), welche kritisch für die Effizienz – z.B. in Bezug auf Chipfläche und Geschwindigkeit – der resultierenden Schaltungen oder Systeme ist. Zur Spezifikation von Steuerungen haben sich Signalflankengraphen („signal transition graphs“, STGs) bewährt, die auch als Entwurfseinstieg für eine Logiksynthese von SI-Schaltungen („speed independent“) verwendet werden. (SI-Schaltungen gelten als sehr robuste asynchrone Schaltungen.) Aus den STGs werden zwecks Logiksynthese Automaten abgeleitet werden, deren Zustandszahl aber oft prohibitiv groß werden kann. Durch sogenannte STG-Dekomposition wird die Logiksynthese einer komplexen Schaltung ermöglicht, was bislang aufgrund von Zustandsexplosion oft nicht möglich war. Dabei wird der Spezifikations-STG laut einer gegebenen Partition von Ausgangssignalen in viele kleinere Teilnetze dekomponiert, wobei zu jedem Partitionsblock ein Teilnetz – mit normalerweise signifikant kleinerem Zustandsraum im Vergleich zur Spezifikation – erzeugt wird. Zu jedem Teilnetz wird dann eine Teilschaltung (Komponente) mittels Logiksynthese generiert. Durch die Anwendung von STG-Dekomposition können jedoch Teilnetze erzeugt werden, die sogenannte irreduzible CSC-Konflikte aufweisen (d.h. zu diesen Teilnetzen kann keine SI-Schaltung erzeugt werden), obwohl die Spezifikation keine solchen Konflikte hatte. Diese Arbeit präsentiert einen neuen Ansatz, welcher die Entstehung solcher irreduziblen Konflikte vermeidet, und zwar durch die Einführung interner Kommunikation zwischen den (zu den Teilnetzen gehörenden) Schaltungskomponenten. Bisher werden STG-Dekompositionen total durchgeführt, d.h. pro resultierender Komponente wird ein Ausgangssignal erzeugt. Das führt gewöhnlich nicht zu optimalen Schaltungsimplementierungen. In dieser Arbeit werden Heuristiken zur Bestimmung gröberer Ausgabepartitionen (d.h. Partitionsblöcke mit mehreren Ausgangssignalen) vorgestellt, die zu kleineren Schaltungen führen. Die vorgestellten Algorithmen werden formal abgesichert und wurden in das bereits vorhandene Dekompositionswerkzeug DESIJ integriert. An praxisrelevanten Beispielen konnten die vorgestellten Verfahren erfolgreich erprobt werden.
103

Energieeffiziente integrierte Schaltungen zur Basisbandsignalverarbeitung und Zeitsynchronisation für drahtgebundene Ethernet-Echtzeitkommunikation

Buhr, Simon 28 January 2022 (has links)
In dieser Arbeit wird eine genaue Zeitsynchronisation über kupferbasierte Ethernetsysteme sowie der Entwurf von Schaltungen für die Bitübertragungsschicht (Physical Layer, PHY) in solchen Ethernetsystemen untersucht. Dabei wird der Entwurf eines integrierten Schaltkreises für den Standard 100Base-TX vorgestellt. Dieser PHY-Chip ermöglicht die Datenübertragung mit einer Datenrate von 100 MBit/s über verdrillte Kupferkabel und stellt darüber hinaus eine genaue Uhr bereit, welche zwischen den verbundenen Netzknoten synchronisiert werden kann. Dieser Schaltkreis ist insbesondere für Industrieanwendungen gedacht, bei denen verschiedene Prozesse zeitlich synchronisiert werden müssen. Prinzipiell ist der PHY-Chip jedoch universell für verschiedenste Anwendungen zur Zeitsynchronisation einsetzbar. Um die Genauigkeit der Zeitsynchronisation gegenüber herkömmlichen Ansätzen zu steigern, werden verschiedene Techniken untersucht und in dem entworfenen Schaltkreis eingesetzt. So wird die Phase der Taktsignale in feinen Schritten eingestellt und auch gemessen, sodass die Auflösung der Zeitstempel erheblich verbessert wird. Zu diesem Zweck wird ein sogenannter Digital-To-Phase Converter (DPC) eingesetzt, der 256 verschiedene Taktphasen des 125 MHz Systemtaktes bereitstellt. Für die eigentliche Zeitsynchronisation wird ein Proportional-Integral-Regler verwendet. Basierend auf einer theoretischen Rauschanalyse wird eine Methode vorgestellt, mit der die Parameter dieses Reglers so dimensioniert werden können, dass der Zeitfehler im eingeschwungenen Zustand möglichst klein wird. Darüber hinaus werden weitere Störeinflüsse analysiert und es werden geeignete Maßnahmen entwickelt, um diese zu kompensieren. So wird eine adaptive Kompensation eines Eintonstörers sowie eine Kalibrierung zur automatischen Kompensation von Asymmetrien im Kabel vorgestellt. All diese Punkte helfen, eine hervorragende Genauigkeit der Zeitsynchronisation zu ermöglichen, was durch umfangreiche Messungen verifiziert wird. Insgesamt weist der gemessene Zeitfehler in einem Punkt-zu-Punkt-Szenario eine Standardabweichung von 64 ps und einen Mittelwert unterhalb von 100 ps auf. Dies stellt eine erhebliche Verbesserung gegenüber konventionellen Lösungen zur Zeitsynchronisation über kupferbasiertes Ethernet dar, mit denen Genauigkeiten im Nanosekundenbereich erreicht werden. Als zweites Ziel dieser Arbeit wird der PHY-Chip für eine möglichst niedrige Leistungsaufnahme optimiert. Um dies zu erreichen, werden insbesondere der Leitungstreiber im Sender und der Equalizer im Empfänger systematisch optimiert. So werden zwei verschiedene Topologien von Leitungstreibern untersucht und verglichen. Beide weisen eine Leistungsaufnahme von etwa 24 mW auf. Im Vergleich zum Stand der Technik sind dies die beiden niedrigsten Werte für Leitungstreiber für den Standard 100Base-TX. Der gesamte PHY-Chip, der in einer 180 nm Technologie implementiert wurde, weist durch die zahlreichen Optimierungen eine geringe Leistungsaufnahme von maximal 69 mW auf, was ebenfalls einen Rekordwert im Vergleich mit dem Stand der Technik darstellt (80 mW). Die einzelnen Schaltungen wurden sowohl simulativ als auch mit ausführlichen Messungen verifiziert. Für den gesamten Link wird eine Bitfehlerrate besser als 10⁻¹² bei verschiedenen Kabeln bis zu 120 m Länge erreicht.:Abbildungsverzeichnis Tabellenverzeichnis Abkürzungen Symbole 1 Einleitung 1.1 Zeit und Zeitsynchronisation 1.2 Ziele dieser Arbeit 1.3 Gliederung 2 Grundlagen 2.1 100Base-TX Ethernet-Standard 2.1.1 Schnittstelle zur MAC-Schicht 2.1.2 4B5B-Kodierung 2.1.3 Scrambler und Descrambler 2.1.4 MLT-3-Kodierung 2.1.5 Bitfehlerrate und Signal-Rausch-Verhältnis 2.2 Kanalmodellierung 2.2.1 Dämpfung 2.2.2 Baseline-Wander 2.3 Zeitsynchronisierung 2.3.1 Bestimmung der Zeitdifferenz 2.3.2 Vergrößerung der Synchronisationsgenauigkeit 3 Schaltungsentwurf und Charakterisierung 3.1 Energieeffiziente Leitungstreiber 3.1.1 Vergleich von Leitungstreibern mit passiver Anpassung 3.1.2 Spannungstreiber 3.1.3 Leitungstreiber mit aktiver Anpassung 3.1.4 Vergleich der Leitungstreiber und Fazit 3.2 Takterzeugung 3.2.1 Ringoszillator 3.2.2 Phasenregelschleife 3.2.3 Phaseninterpolator 3.2.4 Messung 3.2.5 Verbesserter 10 Bit DPC 3.3 Takt- und Datenrückgewinnung 3.3.1 Phasendetektor 3.3.2 Modellierung des DPC 3.3.3 Dimensionierung des Schleifenfilters 3.3.4 Implementierung 3.4 Adaptiver Equalizer 3.4.1 Kompensation der Kabeldämpfung 3.4.2 Implementierung des analogen Filters 3.4.3 Digitale Regelung der Equalizer-Parameter 3.4.4 Messung des Equalizers 3.5 Zeitsynchronisation 3.5.1 Uhr und Steuerung der Frequenz 3.5.2 Digitale Schaltungen zur Zeitstempelung 3.5.3 Implementierung der Zeitsynchronisation 3.5.4 Adaptive Unterdrückung eines Eintonstörers 3.5.5 Automatische Kalibrierung von Asymmetrien 3.5.6 Vergleich mit dem Stand der Technik 3.6 Gesamter PHY-Schaltkreis 3.6.1 Leistungsaufnahme 3.6.2 Vergleich mit dem Stand der Technik 4 Zusammenfassung und Ausblick Literaturverzeichnis Eigene Veröffentlichungen / This work investigates accurate time synchronization over copper-based Ethernet systems as well as the design of circuits for the physical layer (PHY) in such Ethernet systems. The design of an integrated circuit (IC) for the 100Base-TX standard is presented. This PHY-IC enables data transmission at a data rate of 100 MBit/s over twisted pair copper cables and, additionally, provides an accurate clock which can be synchronized between connected network nodes. This circuit is designed for industrial applications where various processes need to be synchronized in time. In principle, however, the PHY-IC can be used universally for various time synchronization applications. In order to increase the accuracy of the time synchronization compared to conventional approaches, various techniques are investigated and used in the designed circuit. For example, the phase of the clock signals is adjusted and measured in fine steps, such that the resolution of the timestamps is improved by a large amount. For this purpose, a digital-to-phase converter (DPC) is used, which provides 256 different clock phases of the 125 MHz system clock. A proportional integral controller is used for the actual time synchronization application. Based on a theoretical noise analysis, a method is presented to dimension the parameters of this controller to minimize the timing error in the steady state. Furthermore, other disturbing influences are analyzed and suitable measures are developed to compensate them. Thus, an adaptive compensation of a single-tone interferer is presented as well as a calibration to automatically compensate for asymmetries in the cable. All these points help to provide excellent accuracy of the time synchronization, which is verified by extensive measurements. Overall, the measured time error in a point-to-point scenario has a standard deviation of 64 ps and a mean value below 100 ps. This represents a significant improvement over conventional solutions for time synchronization over copper-based Ethernet, which achieve accuracies in the nanosecond range. As a second goal of this work, the PHY-IC is optimized for lowest power consumption. In particular, the line driver in the transmitter and the equalizer in the receiver are systematically optimized to achieve this. Thus, two different topologies of line drivers are investigated and compared. Both have a power consumption of about 24 mW. These represent the two lowest values for line drivers for the 100Base-TX standard compared to the state of the art. The entire PHY-IC is implemented in a 180 nm technology and shows a power consumption below 69 mW due to the numerous optimizations. This also represents a record value compared to the state of the art (80 mW). The individual circuits were verified with simulations and with detailed measurements. For the entire link, a bit error rate better than 10⁻¹² is achieved for various cables up to 120 m length.:Abbildungsverzeichnis Tabellenverzeichnis Abkürzungen Symbole 1 Einleitung 1.1 Zeit und Zeitsynchronisation 1.2 Ziele dieser Arbeit 1.3 Gliederung 2 Grundlagen 2.1 100Base-TX Ethernet-Standard 2.1.1 Schnittstelle zur MAC-Schicht 2.1.2 4B5B-Kodierung 2.1.3 Scrambler und Descrambler 2.1.4 MLT-3-Kodierung 2.1.5 Bitfehlerrate und Signal-Rausch-Verhältnis 2.2 Kanalmodellierung 2.2.1 Dämpfung 2.2.2 Baseline-Wander 2.3 Zeitsynchronisierung 2.3.1 Bestimmung der Zeitdifferenz 2.3.2 Vergrößerung der Synchronisationsgenauigkeit 3 Schaltungsentwurf und Charakterisierung 3.1 Energieeffiziente Leitungstreiber 3.1.1 Vergleich von Leitungstreibern mit passiver Anpassung 3.1.2 Spannungstreiber 3.1.3 Leitungstreiber mit aktiver Anpassung 3.1.4 Vergleich der Leitungstreiber und Fazit 3.2 Takterzeugung 3.2.1 Ringoszillator 3.2.2 Phasenregelschleife 3.2.3 Phaseninterpolator 3.2.4 Messung 3.2.5 Verbesserter 10 Bit DPC 3.3 Takt- und Datenrückgewinnung 3.3.1 Phasendetektor 3.3.2 Modellierung des DPC 3.3.3 Dimensionierung des Schleifenfilters 3.3.4 Implementierung 3.4 Adaptiver Equalizer 3.4.1 Kompensation der Kabeldämpfung 3.4.2 Implementierung des analogen Filters 3.4.3 Digitale Regelung der Equalizer-Parameter 3.4.4 Messung des Equalizers 3.5 Zeitsynchronisation 3.5.1 Uhr und Steuerung der Frequenz 3.5.2 Digitale Schaltungen zur Zeitstempelung 3.5.3 Implementierung der Zeitsynchronisation 3.5.4 Adaptive Unterdrückung eines Eintonstörers 3.5.5 Automatische Kalibrierung von Asymmetrien 3.5.6 Vergleich mit dem Stand der Technik 3.6 Gesamter PHY-Schaltkreis 3.6.1 Leistungsaufnahme 3.6.2 Vergleich mit dem Stand der Technik 4 Zusammenfassung und Ausblick Literaturverzeichnis Eigene Veröffentlichungen
104

AMC 2015 – Advanced Metallization Conference

22 July 2016 (has links)
Since its inception as the Tungsten Workshop in 1984, AMC has served as the leading conference for the interconnect and contact metallization communities, and has remained at the leading edge of the development of tungsten, aluminum, and copper/low-K interconnects. As the semiconductor industry evolves, exciting new challenges in metallization are emerging, particularly in the areas of contacts to advanced devices, local interconnect solutions for highly-scaled devices, advanced memory device metallization, and 3D/packaging technology. While the conference content has evolved, the unique workshop environment of AMC fosters open discussion to create opportunities for cross-pollination between academia and industry. Submissions are covering materials, process, integration and reliability challenges spanning a wide range of topics in metallization for interconnect/contact applications, especially in the areas of: - Contacts to advanced devices (FinFET, Nanowire, III/V, and 2D materials) - Highly-scaled local and global interconnects - Beyond Cu interconnect - Novel metallization schemes and advanced dielectrics - Interconnect and device reliability - Advanced memory (NAND/DRAM, 3D NAND, STT and RRAM) - 3D and packaging (monolithic 3D, TSV, EMI) - Novel and emerging interconnects Executive Committee: Sang Hoon Ahn (Samsung Electronics Co., Ltd.) Paul R. Besser (Lam Research) Robert S. Blewer (Blewer Scientific Consultants, LLC) Daniel Edelstein (IBM) John Ekerdt (The University of Texas at Austin) Greg Herdt (Micron) Chris Hobbs (Sematech) Francesca Iacopi (Griffith University) Chia-Hong Jan (Intel Corporation) Rajiv Joshi (IBM) Heinrich Koerner (Infineon Technologies) Mehul Naik (Applied Materials Inc.) Fabrice Nemouchi (CEA LETI MINATEC) Takayuki Ohba (Tokyo Institute of Technology) Noel Russell (TEL Technology Center, America) Stefan E. Schulz (Chemnitz University of Technology) Yosi Shacham-Diamand (Tel-Aviv University) Roey Shaviv (Applied Materials Inc.) Zsolt Tokei (IMEC)
105

Integrierte Hochvolt-Ansteuerelektronik für Mikroaktoren mit elektrostatischem Antrieb

Heinz, Steffen 29 August 2006 (has links) (PDF)
Die vorliegende Arbeit behandelt integrierte Hochvolt-Schaltungen für die Ansteuerung elektrostatisch arbeitender Mikroaktoren und Mikroaktorarrays. Im Besonderen wird auf die Gesichtspunkte der Treiberschaltungen von Torsionsspiegelarrays eingegangen. Es werden verschiedene Verstärkerbetriebsarten und Schaltungsvarianten hinsichtlich der Ansteuerung kleiner kapazitiver Lasten beurteilt. Für die hocheffiziente Signalübertragung zwischen Low-Side und High-Side in geschalteten Hochvolt-Verstärkern wird ein neuer dynamischer Level-Shifter vorgestellt. Anhand eines gebondeten Mikroelektronik-Mikromechanik-Aufbaus für ein Hadamard-Transformations-Spektrometer werden die speziellen Aspekte des Elektronikentwurfs für ein System-in-Package aufgezeigt. Als Entwurfsgrundlage wird ein Überblick über die wesentlichen Isolationstechnologien für integrierte Hochvolt-Schaltungen und über die Bauelementemodellierung in einer SOI-Technologie ausgearbeitet. Außerdem werden die Vor- und Nachteile der wichtigsten Antriebsprinzipien von Mikroaktoren zusammengefasst.
106

Preemptive HW/SW-Threading by combining ESL methodology and coarse grained reconfiguration

Rößler, Marko, Heinkel, Ulrich 14 January 2014 (has links) (PDF)
Modern systems fulfil calculation tasks across the hardware- software boundary. Tasks are divided into coarse parallel subtasks that run on distributed resources. These resources are classified into a software (SW) and a hardware (HW) domain. The software domain usually contains processors for general purpose or digital signal calculations. Dedicated co-processors such as encryption or video en-/decoding units belong to the hardware domain. Nowadays, a decision in which domain a certain subtask will be executed in a system is usually taken during system level design. This is done on the basis of certain assumptions about the system requirements that might not hold at runtime. The HW/SW partitioning is static and cannot adapt to dynamically changing system requirements at runtime. Our contribution to tackle this, is to combine a ESL based HW/SW codesign methodology with a coarse grained reconfigurable System on Chip architecture. We propose this as Preemptive HW/SW-Threading.
107

Low power laser driver design in 28nm CMOS for on-chip and chip-to-chip optical interconnect

Belfiore, Guido, Szilagyi, Laszlo, Henker, Ronny, Ellinger, Frank 06 August 2019 (has links)
This paper discusses the challenges and the trade-offs in the design of laser drivers for very-short distance optical communications. A prototype integrated circuit is designed and fabricated in 28 nm super-low-power CMOS technology. The power consumption of the transmitter is 17.2 mW excluding the VCSEL that in our test has a DC power consumption of 10 mW. The active area of the driver is only 0.0045 mm². The driver can achieve an error-free (<BER < 10^12) electrical data-rate of 25 Gbit/s using a pseudo random bit sequence of 2^7-1. When the driver is connected to the VCSEL module an open optical eye is reported at 15 Gbit/s. In the tested bias point the VCSEL module has a measured bandwidth of 10.7 GHz.
108

AMC 2015 – Advanced Metallization Conference

Schulz, Stefan E. 22 July 2016 (has links)
Since its inception as the Tungsten Workshop in 1984, AMC has served as the leading conference for the interconnect and contact metallization communities, and has remained at the leading edge of the development of tungsten, aluminum, and copper/low-K interconnects. As the semiconductor industry evolves, exciting new challenges in metallization are emerging, particularly in the areas of contacts to advanced devices, local interconnect solutions for highly-scaled devices, advanced memory device metallization, and 3D/packaging technology. While the conference content has evolved, the unique workshop environment of AMC fosters open discussion to create opportunities for cross-pollination between academia and industry. Submissions are covering materials, process, integration and reliability challenges spanning a wide range of topics in metallization for interconnect/contact applications, especially in the areas of: - Contacts to advanced devices (FinFET, Nanowire, III/V, and 2D materials) - Highly-scaled local and global interconnects - Beyond Cu interconnect - Novel metallization schemes and advanced dielectrics - Interconnect and device reliability - Advanced memory (NAND/DRAM, 3D NAND, STT and RRAM) - 3D and packaging (monolithic 3D, TSV, EMI) - Novel and emerging interconnects Executive Committee: Sang Hoon Ahn (Samsung Electronics Co., Ltd.) Paul R. Besser (Lam Research) Robert S. Blewer (Blewer Scientific Consultants, LLC) Daniel Edelstein (IBM) John Ekerdt (The University of Texas at Austin) Greg Herdt (Micron) Chris Hobbs (Sematech) Francesca Iacopi (Griffith University) Chia-Hong Jan (Intel Corporation) Rajiv Joshi (IBM) Heinrich Koerner (Infineon Technologies) Mehul Naik (Applied Materials Inc.) Fabrice Nemouchi (CEA LETI MINATEC) Takayuki Ohba (Tokyo Institute of Technology) Noel Russell (TEL Technology Center, America) Stefan E. Schulz (Chemnitz University of Technology) Yosi Shacham-Diamand (Tel-Aviv University) Roey Shaviv (Applied Materials Inc.) Zsolt Tokei (IMEC)
109

Electro-Photonic Transmitter Front-Ends for High-Speed Fiber-Optic Communication

Giuglea, Alexandru 28 October 2022 (has links)
This thesis addresses basic scientific research in the field of transmitter front-end circuits for electro-optical data communication. First, the theoretical fundamentals are presented and analyzed. Based on the theoretical considerations, conceptual circuit designs are studied. Finally, in order to prove the described concepts, the circuits were experimentally characterized and subsequently compared to other works in the literature. The analysis covers key theoretical aspects regarding transmitter front-end circuits. It starts from the basic physical effects inside a transistor and ends with the design of high-swing modulator drivers. Furthermore, it comprises the fundamentals of optical modulators as well as the integration of the electrical driver with the modulator. First, the concept of a basic monolithically integrated transmitter consisting of a Mach-Zehnder modulator (MZM) and an electrical driver is presented. The circuit reaches a bit-error-free data rate of 37 Gb/s, which is a record among other monolithically integrated transmitters reported in the literature. It was shown that by employing a high-swing driver, high extinction ratios (ER) can be achieved (namely 8.4 dB at 25 Gb/s and 7.6 dB at 35 Gb/s) while using short-length phase shifters (2 mm of length). It was therefore proved that one of the main drawbacks of the MZM-based transmitters, namely their large chip area, can be mitigated by using high-swing drivers, however without sacrificing the ER. Next, an improved modulator driver design is investigated, the focus of the study being the linearity. In addition to a high peak-to-peak differential output voltage swing of 7.2 Vpp,d, the driver achieves record-low total harmonic distortion (THD) values of 1% (at 1 GHz, for the output swing of 6.5 Vpp,d) and 1.7% (at 1 GHz, for the output swing of 7 Vpp,d). Moreover, the driver reaches a bandwidth of 61.2 GHz and shows a high power efficiency when relating its DC power consumption to its output voltage swing. The achievement of a high linearity and bandwidth without an increased power consumption is due to the fact that the bias currents of the emitter-follower (EF) stages are provided by means of resistors instead of the conventional current sources. The two approaches were first analyzed mathematically and subsequently compared by means of circuit simulations. It was shown that the proposed approach for the realization of the EFs – i.e. by means of resistors – allows a reduction of the DC power consumption by 19% compared to the current-source approach for an equivalent performance in terms of linearity and bandwidth. Finally, a modulator driver concept suitable for higher-order modulation formats is studied, namely the 8-level pulse amplitude modulation (PAM-8). The circuit was realized as a 3-bit digital-to-analog converter (DAC), thus being able to yield 8-level output signals. Moreover, the circuit is able to function as a PAM-4 driver as well, thanks to the tunable tail currents of the DAC core. It achieves a symbol rate of 50 Gbaud, which corresponds to a bit rate of 150 Gb/s for the PAM-8 modulation and 100 Gb/s for PAM-4. The study showed that a modulator driver can be realized that is able to switch between different modulation formats (namely PAM-8 and PAM-4), without requiring extra power or additional circuit parts. Moreover, the use of on-chip single-to-differential converters (SDCs) targets the relaxation of the requirements on the stages that precede the driver. Finally, relating its DC power consumption (590 mW, including the SDCs) to its output voltage swing (4 Vpp,d), the driver shows one of the highest power efficiencies among PAM modulator drivers in the literature.
110

Investigation of Current Excitation for Personal Health and Biological Tissues Monitoring / Untersuchung der Stromanregung zur Überwachung der menschlichen Gesundheit und des biologischen Gewebes

Bouchaala, Dhouha 06 September 2016 (has links) (PDF)
Bioimpedance spectroscopy is very useful in biomedical field as a safe and non-invasive technique. A stable and safe excitation current below than 0.5 mA for load impedances changing from 100 Ω to 10 kΩ in the full β-dispersion range from kHz up to 1 MHz is a big challenge for the design of the current source addressed by this thesis. For a good stability and high accuracy, the source should have a high output impedance. Different current source types in “current-mode approach” and “voltage-mode approach” were investigated and compared for usability in bioimpedance measurement systems. The “voltage-mode approach” with grounded load was proven to be more suitable and stable for biomedical measurements. Thereby the Tietze and the Howland circuit in dual configuration with negative feedback have shown the lowest error of the output current and the highest output impedance, where the improved Howland circuit in dual configuration with negative feedback is preferred because it has a simple structure, high accuracy and good stability. We suggest to improve the stability of the Howland circuit in dual configuration with negative feedback by introducing compensated operational amplifiers and to reduce stray capacitances at higher frequencies by adding gain compensation capacitor. We reach thereby an accuracy of 0.5% at low frequency and 0.9% at 1 MHz. With the realized accuracy of the designed voltage controlled current source, one decisive prerequisite for portable bioimpedance measurement system is achieved. In order to select the appropriate excitation signals for short measurement time, a comparative study of signals and their parameters was carried out. It leads to the selection of binary chirp signal as a suitable excitation signal due to its short measurement time about 100 μs, low crest factor lower than 2.8 and an energy efficiency higher than 54% in a very noisy signal. Simulation results show that the designed enhanced Howland current source excited by the binary chirp signal has low error and flatness in the whole range. / Die Bioimpedanzspektroskopie gewinnt aufgrund ihrer besonderen Eigenschaften als nicht-invasive, schonende Messmethode zunehmend an Bedeutung im biomedizinischen Bereich. Dabei ergeben sich besondere erausforderungen für den Entwurf der Stromquelle zur Realisierung eines stabilen und sicheren Anregungsstroms. Gefordert ist eine hohe Genauigkeit bis zu einem Maximalstrom von 0.5 mA in einem Frequenzbereich, der der β-Dispersion entspricht, von wenigen kHz bis hin zu 1 MHz. Die Stabilität muss bei variablen Lastimpedanzen im Bereich von 100 Ω bis 10 kΩ gewährleistet sein. Dafür muss die Stromquelle eine hohe Ausgangsimpedanz aufweisen. Diese Arbeit fokussiert auf den Entwurf von spannungsgesteuerten Stromquellen. Verschiedene Arten von Stromquellen wurden untersucht und verglichen. Der "Voltage-Modus-Ansatz" mit Masse-referenzierter Last hat sich als besser geeignet und stabiler für biomedizinische Messungen erwiesen. Die Tietze-Schaltung und diese Howland-Schaltung zeigen dabei die niedrigsten Fehler des Ausgangsstroms und die höchste Ausgangsimpedanz. Im direkten Vergleich besitzt die verbesserte Howland-Schaltung doch eine einfachere Struktur, höhere Genauigkeit und bessere Stabilität und wird daher gegenüber der Tietze-Schaltung bevorzugt. Um weitere Stabilitätsverbesserungen bei der Howland-Schaltung zu erreichen, werden zwei Maβnahmen vorgeschlagen. Zum einen werden kompensierte Operationsverstärker eingeführt und zum anderen wird der Einfluss von Streukapazitäten bei hohen Frequenzen minimiert indem die Verstärkung mit Kondensatoren kompensiert wird. Durch diese Maβnahmen wird eine Genauigkeit von 0.5% bei niedrigen Frequenzen und 0.9% bei 1 MHz ermöglicht. Mit dem neuen Entwurf der spannungsgesteuerten Stromquelle ist ein entscheidender Meilenstein für die Realisierung tragbarer Messsysteme der Bioimpedanz erreicht. Um eine kurze Messzeit zu realisieren wurde eine vergleichende Studie von Anregungssignalen und deren Signalparameter durchgeführt. Die Ergebnisse zeigen, dass binäre Chirp-Signale aufgrund der reduzierten Messzeit, des niedrigen Crest-Faktors unter 2.8 und hohe Energieeffizienz von mehr als 54% bei hohem Rauschlevel besonders geeignet sind. Simulationsergebnisse zeigen, dass die entwickelte Howland-Stromquelle zusammen mit einem binären Mehrfrequenzsignal den geringsten Amplitudenfehler im gesamten Frequenzbereich realisiert.

Page generated in 0.037 seconds