• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 10
  • 3
  • 2
  • 1
  • Tagged with
  • 30
  • 14
  • 13
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Models in Neutrino Physics : Numerical and Statistical Studies

Bergström, Johannes January 2013 (has links)
The standard model of particle physics can excellently describe the vast majorityof data of particle physics experiments. However, in its simplest form, it cannot account for the fact that the neutrinos are massive particles and lepton flavorsmixed, as required by the observation of neutrino oscillations. Hence, the standardmodel must be extended in order to account for these observations, opening up thepossibility to explore new and interesting physical phenomena. There are numerous models proposed to accommodate massive neutrinos. Thesimplest of these are able to describe the observations using only a small numberof effective parameters. Furthermore, neutrinos are the only known existing particleswhich have the potential of being their own antiparticles, a possibility that isactively being investigated through experiments on neutrinoless double beta decay.In this thesis, we analyse these simple models using Bayesian inference and constraintsfrom neutrino-related experiments, and we also investigate the potential offuture experiments on neutrinoless double beta decay to probe other kinds of newphysics. In addition, more elaborate theoretical models of neutrino masses have beenproposed, with the seesaw models being a particularly popular group of models inwhich new heavy particles generate neutrino masses. We study low-scale seesawmodels, in particular the resulting energy-scale dependence of the neutrino parameters,which incorporate new particles with masses within the reach of current andfuture experiments, such as the LHC. / Standardmodellen för partikelfysik beskriver den stora majoriteten data från partikelfysikexperimentutmärkt. Den kan emellertid inte i sin enklaste form beskrivadet faktum att neutriner är massiva partiklar och leptonsmakerna är blandande,vilket krävs enligt observationerna av neutrinooscillationer. Därför måste standardmodellenutökas för att ta hänsyn till detta, vilket öppnar upp möjligheten att utforska nya och intressanta fysikaliska fenomen. Det finns många föreslagna modeller för massiva neutriner. De enklaste av dessakan beskriva observationerna med endast ett fåtal effektiva parametrar. Dessutom är neutriner de enda kända befintliga partiklar som har potentialen att vara sinaegna antipartiklar, en möjlighet som aktivt undersöks genom experiment på neutrinolöst dubbelt betasönderfall. I denna avhandling analyserar vi dessa enkla modellermed Bayesisk inferens och begränsningar från neutrinorelaterade experiment och undersöker även potentialen för framtida experiment på neutrinolöst dubbelt betasönderfall att bergänsa andra typer av ny fysik. Även mer avancerade teoretiska modeller för neutrinomassor har föreslagits, med seesawmodeller som en särskilt populär grupp av modeller där nya tunga partiklargenererar neutrinomassor. Vi studerar seesawmodeller vid låga energier, i synnerhetneutrinoparametrarnas resulterande energiberoende, vilka inkluderar nya partiklarmed massor inom räckh°all för nuvarande och framtida experiment såsom LHC. / <p>QC 20130830</p>
22

Effects of fermionic singlet neutrinos on high- and low-energy observables

Weiland, Cedric 04 July 2013 (has links) (PDF)
In this doctoral thesis, we study both low- and high-energy observables related to massive neutrinos. Neutrino oscillations have provided indisputable evidence in favour of non-zero neutrino masses and mixings. However, the original formulation of the Standard Model cannot account for these observations, which calls for the introduction of new Physics. Among many possibilities, we focus here on the inverse seesaw, a neutrino mass generation mechanism in which the Standard Model is extended with fermionic gauge singlets. This model offers an attractive alternative to the usual seesaw realisations since it can potentially have natural Yukawa couplings (O(1)) while keeping the new Physics scale at energies within reach of the LHC. Among the many possible effects, this scenario can lead to deviations from lepton flavour universality. We have investigated these signatures and found that the ratios R_K and R_π provide new, additional constraints on the inverse seesaw. We have also considered the embedding of the inverse seesaw in supersymmetric models. This leads to increased rates for various lepton flavour violating processes, due to enhanced contributions from penguin diagrams mediated by the Higgs and Z bosons. Finally, we also found that the new invisible decay channels associated with the sterile neutrinos present in the supersymmetric inverse seesaw could significantly weaken the constraints on the mass and couplings of a light CP-odd Higgs boson.
23

Muon to electron conversion, flavored leptogenesis and asymmetric dark matter in minimal extensions of the Standard Model

Dhen, Mikaël 30 September 2015 (has links)
Il est clair que le Modèle Standard des particules élémentaires n'est pas complet. Parmi tous les indices d'une physique au-delà du Modèle Standard, la masse des neutrinos, l'asymétrie matière-antimatière de notre Univers et la matière noire constituent les trois contextes généraux de cette thèse.Le fait que les neutrinos soient massifs constitue la plus claire évidence d'une physique au-delà du Modèle Standard. La masse des neutrinos peut trouver une explication notamment dans le cadre des modèles favoris dits "modèles Seesaw". Ces modèles, en plus de générer une petite masse pour les neutrinos, génèrent aussi des processus dans lesquels la saveur d'un lepton chargé est changée, comme la désintégration d'un muon en un électron et un photon, ou la conversion d'un muon en un électron au sein d'un atome sans émission de neutrino. Ces processus sont importants car les expériences futures devraient atteindre des sensibilités impressionnantes sur leurs taux, mais aussi parce que leur observation confirmerait l'existence d'une physique nouvelle et pourrait peut-être discriminé parmi les différents modèles. Il est donc important d'avoir une expression analytique fiable du taux de ces processus dans le cadre de ces modèles Seesaw favoris. Dans la première partie de cette thèse, nous calculons l'expression du taux de conversion d'un muon en un électron au sein d'un atome dans le cadre des modèles Seesaw de type 1, et analysons la phénoménologie s'y rapportant. Ces modèles Seesaw, en plus de générer une petite masse pour les neutrinos et des processus changeant la saveur leptonique, permettent aussi la création de l'asymétrie matière-antimatière dans l'Univers, à travers le mécanisme dit de "leptogenèse". Selon ce mécanisme, une asymétrie leptonique aurait d'abord été créée, avant d'être partiellement transférée en une asymétrie baryonique. Dans la seconde partie de cette thèse, nous calculons et analysons la leptogenèse dans le cadre des modèles Seesaw de type 2 avec, pour la première fois, la prise en compte des effets de saveurs.Finalement, la troisième et dernière partie de cette thèse se concentre sur la possibilité de générer non seulement la matière baryonique à partir d'une asymétrie, mais aussi la matière noire. A cette fin, nous considérons le modèle dit "doublet inerte'', car il contient une interaction qui pourrait à priori générer de la matière noire à partir d'une asymétrie. Nous adressons dès lors la question suivante et y répondons: est-il possible de générer toute la matière noire à partir d'une asymétrie de matière noire dans le contexte du modèle doublet inerte ? / Option Physique du Doctorat en Sciences / info:eu-repo/semantics/nonPublished
24

Preschool teachers’ beliefs of developmentally appropriate educational practices

Ruto-Korir, Rose Cheptoo 01 May 2010 (has links)
Teachers’ beliefs are central to determining children’s optimal educational experiences. However, some studies related to teachers’ beliefs yielded findings that rendered beliefs and practices incongruous. Although the principles of developmentally appropriate practices that synthesize theoretical and empirical research on child development have been adapted to various contexts other than its original United States of America (USA) context, developmentally appropriate practices remain contentious as to its relevance in these contexts. What is appropriate for children’s education seems debatable, largely determined by social expectations of childhood and children. Cultural diversity seems to be the new dispensation in this discourse. Fundamentally, research on preschool teachers’ beliefs about developmentally appropriate educational practices, adds to literature about cultural context variables in preschool provision from different contexts. Purpose: This study examined how teachers’ practical experiences framed their beliefs and understanding of children’s educational experiences within a developmentally appropriate framework and a bioecological systems theory. Paradigm/Design/Methods: A constructivist paradigm within the qualitative approach guided this study. Video and photographs became the basis to elicit teachers’ beliefs about children’s educational experiences. Children’s educational experiences were analysed along five constructs related to the concept of DAP; teaching strategy, use of materials, scheduling of children’s learning, assessment, and consideration of children’s individuality. Findings: Teachers’ beliefs corroborated the DAP framework, but their practices that were more teacher-directed, contrasted the DAP principles. They used formally structured teaching approaches, as materials in three-out-of-four classes observed remained ‘silenced’. The schedules were formally structured, subject-based, with limited flexibility, as assessment for children’s learning focused on limited aspects of the cognitive domain. Conclusion: Teachers’ beliefs seemed to support educational practices that embrace the principles of DAP. However, some context-related factors, which include pressure from parents, competitive school environments, preparation for the interview, different transition requirements, peer pressure, and perceived lack of time limited their use of DAP. I extrapolate these factors to the bioecological systems theory, to understand the dynamics of early childhood education provision in Kenya. Practical implications/Originality/Value: This study adds to literature on teachers’ beliefs about children’s educational experiences from a developing country context, as well as adding to studies that have used visually elicited interviews. It also provides the details of children’s educational experiences, in part, to appreciate the current conversation on the status and the nature of focus on standards or skills-based dynamics in preschool provision. Besides, it might be the first study in Kenya to embrace the DAP framework and the bioecological systems theory. The seesaw model advanced in this study synthesizes the originality of the study by conceptualizing the theoretical as well as empirical literature on developmentally appropriate educational practices, as a valuable framework to understand and interpret competing priorities that might affect preschool provision. The seesaw model is also valuable in locating and extending the conversation about different stakeholders’ priorities, not only in Kenya, but also in other societies. / Thesis (PhD)--University of Pretoria, 2010. / Educational Psychology / unrestricted
25

Flavor and Dark Matter Issues in Supersymmetric Models

Chowdhury, Debtosh January 2013 (has links) (PDF)
The Standard Model of particle physics attempts to unify the fundamental forces in the Universe (except gravity). Over the years it has been tested in numerous experiments. While these experimental results strengthen our understanding of the SM, they also point out directions for physics beyond the SM. In this thesis we assume supersymmetry (SUSY) to be the new physics beyond the SM. We have tried to analyze the present status of low energy SUSY after the recent results from direct (collider) and indirect (flavor, dark matter) searches .We have tried to see the complementarity between these apparently different experimental results and search strategies from the context of low energy SUSY. We show that such complementarity does exist in well-defined models of SUSY breaking like mSUGRA, NUHM etc. The first chapter outlines the present status of the SM and discusses about the unanswered questions in SM. Keeping SUSY as the new physics beyond the SM, we also detail about its present experimental status. Chapter1 ends with the motivation and comprehensive description about each chapter of the thesis. In chapter2, we present an introduction to formal structure of SUSY algebra and the structure of MSSM. One of the such complementarities we have studied is between flavor and dark matter. In general flavor violation effects are not considered when studying DM regions in minimal SUSY models like mSUGRA. If however flavor violation does get generated through non-minimal SUSY breaking sector, one of the most susceptible regions would be the co-annihilation region for neutralino DM. In chapter 3 we consider flavor violation in the sleptonic sector and study its implications on the stau co-annihilation region. In this work we have taken flavor violation between the right-handed smuon (˜µR) and stau (˜τR). Due to this flavor mixing the lightest slepton (ĺ1) is a flavor mixed state. We have studied the effect of such ĺ11’s in the ‘stau co-annihilation’ region of the parameter space, where the relic density of the neutralinos gets depleted due to efficient co-annihilation with the staus. Limits on the flavor violating insertion in the right-handed sleptonic sector mainly comes from BR(τ → µγ). These limits are weak in some regions of the Parameter space where cancellations happen with in the amplitudes. We look for overlaps in parameter space where both the co-annihilation condition as well as the cancellations with in the amplitudes occur. We have shown that in models with non-universal Higgs boundary conditions (NUHM) overlap between these two regions is possible. The effect of flavor violation is two fold: (a) It shifts the co-annihilation regions towards lighter neutralino masses and (b) the co-annihilation cross sections would be modified with the inclusion of flavor violating diagrams which can contribute significantly. In the overlap regions, the flavor violating cross sections become comparable and in some cases even dominant to the flavor conserving ones. A comparison among the different flavor conserving and flavor violating channels, which contribute to the neutralino annihilation cross-section, is presented. One of the challenges of addressing quantitatively the complementarity problems is the lack of proper spectrum generator (numerical tools which computes SUSY sparticle spectrum in the presence of flavor violation in the sfermionic sector). For the lack of a publicly available code which considers general flavor violating terms in the renormalization group equations (RGE) we have developed a SUSY spectrum calculator, named as SuSeFLAV .It is a code written in FORTRAN language and calculates SUSY particle spectrum (with in the context of gravity mediation) in type I seesaw, in the presence of heavy right handed neutrinos (RHN). SuSeFLAV also calculates the SUSY spectrum in other type of SUSY breaking mechanisms (e.g. gauge mediation). The renormalization group (RG) flow of soft-SUSY breaking terms will generate large off-diagonal terms in the slepton sector in the presence of this RHNs, which will give rise to sizable amount of flavor violating (LFV) decays at the weak scale. Hence, in this code we also calculate the different rare LFV decays like, µ → eγ, τ → µγ etc. In SuSeFLAV the user has the freedom to choose the scale of the RHNs as well as the mixing matrix in neutrino sector. It is also possible to choose the values of the SUSY breaking input parameters at the user defined scale. The details of this package is discussed in chapter 4. Many of the present studies of complementarity between the direct and indirect searches are inadequate to address realistic scenarios, where SUSY breaking could be much more general compared to the minimal models. The work in this thesis is a step to wards this direction. Having said that, in the present thesis we have considered modifications of popular models with either explicit flavor violating terms (in some sectors) or sources of flavor violation through new particles and new couplings motivated by strong phenomenological reasons like neutrino masses. It should be noted however, the numerical tool which has been developed during the thesis can be used to address more complicated problems like with complete flavor violation in models of SUSY breaking. One of the popular mechanisms of neutrino mass generation is the so called Seesaw Mechanism. Depending on the extra matter sector present in the theory there are three basic types of them. The type I seesaw, which has singlet bright-handed neutrinos, the type II seesaw contains scalar triplets and type III seesaw has additional fermionic triplets. One of the implications of the seesaw mechanism is flavor violation in the sfermionic sector even in the presence of flavor universal SUSY breaking. This leads to a complementarity between flavor experiments and direct SUSY searches at LHC. With the announcement of the results from the reactor neutrino oscillation experiments, the reactor mixing angle (θ13) in the neutrino mixing matrix (PMNS matrix) gets fixed to a rather large non-zero value. In SO (10) GUT theories neutrino Yukawa couplings of type I seesaw gets related to the up-type fermion sector of the SM. In chapter 5 we update the status of SUSY type I seesaw assuming SO (10)- like relations for neutrino Dirac Yukawa couplings and two cases of mixing, one large, PMNS-like, and another small, CKM-like, are considered. It is shown that for the large mixing case, only a small range of parameter space with moderate tan β is still allowed. It is shown that the renormalization group induced flavor violating slepton mass terms are highly sensitive to the Higgs boundary conditions. Depending on the choice of the parameters, they can either lead to strong enhancements or cancellations with in the flavor violating terms. We have shown that in NUHM scenario there could be possible cancellations which relaxes the severe constraints imposed by lepton flavor violation compared to mSUGRA. We further updated the flavor consequences for the type II seesaw in SUSY theories. As mentioned previously in type II seesaw neutrino mass gets generated due to exchange of heavy SU (2) L triplet Higgs field. The ratio of lepton flavor violating branching ratios (e.g. BR(τ → µγ) /BR (µ → eγ) etc.) are functions of low energy neutrino masses ans mixing angles. In chapter 6 we have analyzed how much these ratios become, after the experimental measurement of θ13, in the whole SUSY parameter space or in other words how much these ratios help to constrain the SUSY parameter space. We compute different factors which can affect this ratios. We have shown that the cMSSM-like scenarios, in which slepton masses are taken to be universal at the high scale, predict 3.5 BR(τ → µγ) / BR(µ → eγ) 30 for normal hierarchical neutrino masses. We Show that the current MEG limit puts severe constraints on the light sparticle spectrum in cMSSM-like model for seesaw scale with in1013 - 1015 GeV. These constraints can be relaxed and relatively light sparticle spectrum can be still allowed by MEG result in a class of models in which the soft mass of triplet scalar is taken to be non-universal at the GUT scale. In chapter 7 we have analyzed the effect of largen eutrino Yukawa couplings on the supersymmetric lightest Higgs mass. In July 2012, ATLAS and CMS collaboration have updated the Higgs search in LHC and found an evidence of a scalar particle having mass around 125 GeV. The one-loop contribution to Higgs mass mainly depends on the top trilinear couplings (At), the SUSY scale and the top Yukawa (Yt). Thus in models with extra large Yukawa couplings at the high scale like the seesaw mechanism ,the renormalization scaling of the At parameter can get significantly affected. This in turn can modify the light Higgs mass at the weak scale for the same set of SUSY parameters. We have shown in type I seesaw with (Yν ~ 3Yu) the light Higgs mass gets reduced by 2 - 3 GeV in most of the parameter rspace. In other words the SUSY scale must be pushed high enough to achieve similar Higgs mass compared to the cMSSM scenario. We have got similar effect in SUSY type III seesaw scenario with (Yν ~Yu) at the GUT scale. In chapter 8 we summarize the results of the thesis and discuss the possible future directions.
26

Astrophysical and Collider Signatures of Extra Dimensions

Melbéus, Henrik January 2010 (has links)
<p>In recent years, there has been a large interest in the subject of extra dimensions in particle physics. In particular, a number of models have been suggested which provide solutions to some of the problems with the current Standard Model of particle physics, and which could be tested in the next generation of high-energy experiments. Among the most important of these models are the large extra dimensions model by Arkani-Hamed, Dimopoulos, and Dvali, the universal extra dimensions model, and models allowing right-handed neutrinos to propagate in the extra dimensions. In this thesis, we study phenomenological aspects of these three models, or simple modifications of them.</p><p> </p><p>The Arkani-Hamed-Dimopoulos-Dvali model attempts to solve the gauge hierarchy problem through a volume suppression of Newton's gravitational constant, lowering the fundamental Planck scale down to the electroweak scale. However, this solution is unsatisfactory in the sense that it introduces a new scale through the radius of the extra dimensions, which is unnaturally large compared to the electroweak scale. It has been suggested that a similar model, with a hyperbolic internal space, could provide a more satisfactory solution to the problem, and we consider the hadron collider phenomenology of such a model.</p><p> </p><p>One of the main features of the universal extra dimensions model is the existence of a potential dark matter candidate, the lightest Kaluza-Klein particle. In the so-called minimal universal extra dimensions model, the identity of this particle is well defined, but in more general models, it could change. We consider the indirect neutrino detection signals for a number of different such dark matter candidates, in a five- as well as a six-dimensional model.</p><p> </p><p>Finally, right-handed neutrinos propagating in extra dimensions could provide an alternative scenario to the seesaw mechanism for generating small masses for the left-handed neutrinos. Since extra-dimensional models are non-renormalizable, the Kaluza-Klein tower is expected to be cut off at some high-energy scale. We study a model where a Majorana neutrino at this cutoff scale is responsible for the generation of the light neutrino masses, while the lower modes of the tower could possibly be observed in the Large Hadron Collider. We investigate the bounds on the model from non-unitarity effects, as well as collider signatures of the model.</p>
27

Particle Phenomenology of Compact Extra Dimensions

Melbéus, Henrik January 2012 (has links)
This thesis is an investigation of the subject of extra dimensions in particle physics. In recent years, there has been a large interest in this subject. In particular, a number of models have been suggested that provide solutions to some of the problem with the current Standard Model of particle physics. These models typically give rise to experimental signatures around the TeV energy scale, which means that they could be tested in the next generation of high-energy experiments, such as the LHC. Among the most important of these models are the universal extra dimensions model, the large extra dimensions model by Arkani-Hamed, Dimopolous, and Dvali, and models where right-handed neutrinos propagate in the extra dimensions. In the thesis, we study phenomenological aspects of these models, or simple modifications of them. In particular, we focus on Kaluza–Klein dark matter in universal extra dimensions models, different aspects of neutrino physics in higher dimensions, and collider phenomenology of extra dimensions. In addition, we consider consequences of the enhanced renormalization group running of physical parameters in higher-dimensional models. / QC 20120427
28

Theoretical and Phenomenological Studies of Neutrino Physics

Blennow, Mattias January 2007 (has links)
This thesis is devoted to the theory and phenomenology of neutrino physics. While the standard model of particle physics has been extremely successful, it fails to account for massive neutrinos, which are necessary to describe the observations of neutrino oscillations made by several different experiments. Thus, neutrino physics is a possible window for exploring the physics beyond the standard model, making it both interesting and important for our fundamental understanding of Nature. Throughout this thesis, we will discuss different aspects of neutrino physics, ranging from taking all three types of neutrinos into account in neutrino oscillation experiments to exploring the possibilities of neutrino mass models to produce a viable source of the baryon asymmetry of the Universe. The emphasis of the thesis is on neutrino oscillations which, given their implication of neutrino masses, is a phenomenon where other results that are not describable in the standard model could be found, such as new interactions between neutrinos and fermions. / QC 20100630
29

Astrophysical and Collider Signatures of Extra Dimensions

Melbéus, Henrik January 2010 (has links)
In recent years, there has been a large interest in the subject of extra dimensions in particle physics. In particular, a number of models have been suggested which provide solutions to some of the problems with the current Standard Model of particle physics, and which could be tested in the next generation of high-energy experiments. Among the most important of these models are the large extra dimensions model by Arkani-Hamed, Dimopoulos, and Dvali, the universal extra dimensions model, and models allowing right-handed neutrinos to propagate in the extra dimensions. In this thesis, we study phenomenological aspects of these three models, or simple modifications of them.   The Arkani-Hamed-Dimopoulos-Dvali model attempts to solve the gauge hierarchy problem through a volume suppression of Newton's gravitational constant, lowering the fundamental Planck scale down to the electroweak scale. However, this solution is unsatisfactory in the sense that it introduces a new scale through the radius of the extra dimensions, which is unnaturally large compared to the electroweak scale. It has been suggested that a similar model, with a hyperbolic internal space, could provide a more satisfactory solution to the problem, and we consider the hadron collider phenomenology of such a model.   One of the main features of the universal extra dimensions model is the existence of a potential dark matter candidate, the lightest Kaluza-Klein particle. In the so-called minimal universal extra dimensions model, the identity of this particle is well defined, but in more general models, it could change. We consider the indirect neutrino detection signals for a number of different such dark matter candidates, in a five- as well as a six-dimensional model.   Finally, right-handed neutrinos propagating in extra dimensions could provide an alternative scenario to the seesaw mechanism for generating small masses for the left-handed neutrinos. Since extra-dimensional models are non-renormalizable, the Kaluza-Klein tower is expected to be cut off at some high-energy scale. We study a model where a Majorana neutrino at this cutoff scale is responsible for the generation of the light neutrino masses, while the lower modes of the tower could possibly be observed in the Large Hadron Collider. We investigate the bounds on the model from non-unitarity effects, as well as collider signatures of the model. / QC 20110324
30

Utveckling av vippgunga för barn i åldrarna 1-3 år / Development of seesaw for children aged 1-3 years

Andersson, Emilia January 2013 (has links)
Under våren år 2013 har Emilia Andersson, en designingenjörsstudent på Högskolan i Skövde, utfört ett produktutvecklingsprojekt i samarbete med HAGS Aneby AB. Syftet med projektet var att utveckla en vippgunga vars storlek skulle vara anpassad för barn i åldrarna 1-3 år. Målet var att vippgungan ska kunna säljas över hela världen samt uppfylla den amerikanska standarden och europastandarden för lekredskap. Projektet inleddes med en förstudie och teori-fas, där bland annat litteraturstudie och konkurrentanalys genomfördes och annan information samlades in för att få djupare kunskaper inom ämnet. Därefter började idéer och koncept genereras, som sedan genomgick utvärderingar, så som användartester, vilket ledde till ett slutkoncept. Konceptet utvärderades med hjälp av bland annat hållfasthetsberäkningar och en antropometrisk analys. Den slutgiltiga vippgungan kan trots anpassningen för åldersgruppen, inte bara användas av 1-3-åringar utan också av äldre barn, tack vare att konstruktion och framförallt handtag ger extra lekvärden. / During the spring of 2013, Emilia Andersson, a student in product design engineering at University of Skövde, carried out a product development project in cooperation with HAGS Aneby AB. The aim of the project was to develop a seesaw adapted for children aged 1-3 years. The goal was to develop a seesaw that could be sold worldwide and meet the American standard and European standard for playground equipment. The project began with a pre study and a theory phase, which included literature review and competitor analysis and information were gathered to gain a deeper knowledge of the subject. Later on ideas and concepts were generated, which then through evaluations as user testing lead to a final concept. The concept was evaluated with for example strength calculations and an anthropometric analysis. The final seesaw can, despite adjustment for the age group, not only be use by 1-3-year-olds, but also by older children, this thanks to the design and the handles that provide extra play values.

Page generated in 0.0392 seconds