Spelling suggestions: "subject:"selforganizing mass."" "subject:"selforganizing mas.""
91 |
Desenvolvimento de um sistema de classificação de cores em tempo real para aplicações robóticas / Development of areal time color classifier to robotics applicationsÉder Augusto Penharbel 10 March 2008 (has links)
Na visão computacional, a detecção de objetos é uma tarefa que tem signifgificativa importância. Podemos verificar isto através da existência de inúmeros métodos propostos na literatura. Cada um destes métodos se apóia em algumas características presentes na imagem para alcançar um desempenho eficiente. Considerando ambientes que utilizam cores para determinação de objetos presentes em uma imagem, é possível utilizá-las como características que permitam detectar os objetos. Neste trabalho, são investigados dois classificadores de cores. O primeiro é baseado em limiarização no espaço HSV e o segundo é constituído de um mapa auto-organizável para classificação dos pixels no espaço RGB. Objetivando a construção de um sistema classificador de cores eficiiente, capaz de processar vídeo em tempo real, é proposta uma técnica que se baseia no conceito de quantização. Outro aspecto investigado foi a detecção de movimento para evitar o processamento de pontos indesejados. O desempenho do sistema de classificação de cores é avaliado em um ambiente de futebol de robôs da categoria Mirosot, que é um ambiente dinâmico e que exige que todo o processamento da imagem seja rápido de modo a detectar corretamente todos objetos presentes em cada quadro. Os resultados mostram que o classificador de cores é capaz de detectar todos objetos no ambiente de futebol de robôs, sendo cada quadro processado em menos de 30 milisegundos, tornando o sistema desenvolvido muito adequado ao processamento de vídeo / In computer vision, the detection of objects is a task of great importance. We can verify this by the existence of several methods proposed in the literature. Each one of these methods is based on some characteristics present in the image to reach an eficient performance. Considering environments that make use of colors for determining the objects present in a image, it is possible to utilize them as the characteristics that allow to detect the objects. In this work, two color classifiers are investigated. The first one is based on the thresholding in the HSV space and the second is constituted by a self-organizing map for classifying of pixels in the RGB space. Aiming to construct an eficient color classifier able to process video in real time, it is proposed a technique that is based on the quantization concept. It is also investigated the detection of movement to avoid processing undesired points. The performance of the color classifier system is validated in a MIROSOT robot soccer environment, which is a dynamic environment, requiring that all image processing be very fast in order to detect all the objects present in each frame. The results show that the color classifier system is able to detect correctly all objects present in the robot soccer environment, processing each frame in less than 30 milliseconds, turning the developed system very appropriate for real time video processing
|
92 |
Classification of road side material using convolutional neural network and a proposed implementation of the network through Zedboard Zynq 7000 FPGARahman, Tanvir 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In recent years, Convolutional Neural Networks (CNNs) have become the state-of-
the-art method for object detection and classi cation in the eld of machine learning
and arti cial intelligence. In contrast to a fully connected network, each neuron of a
convolutional layer of a CNN is connected to fewer selected neurons from the previous
layers and kernels of a CNN share same weights and biases across the same input layer
dimension. These features allow CNN architectures to have fewer parameters which in
turn reduces calculation complexity and allows the network to be implemented in low
power hardware. The accuracy of a CNN depends mostly on the number of images
used to train the network, which requires a hundred thousand to a million images.
Therefore, a reduced training alternative called transfer learning is used, which takes
advantage of features from a pre-trained network and applies these features to the new
problem of interest. This research has successfully developed a new CNN based on
the pre-trained CIFAR-10 network and has used transfer learning on a new problem
to classify road edges. Two network sizes were tested: 32 and 16 Neuron inputs with
239 labeled Google street view images on a single CPU. The result of the training
gives 52.8% and 35.2% accuracy respectively for 250 test images. In the second part
of the research, High Level Synthesis (HLS) hardware model of the network with 16
Neuron inputs is created for the Zynq 7000 FPGA. The resulting circuit has 34%
average FPGA utilization and 2.47 Watt power consumption. Recommendations to
improve the classi cation accuracy with deeper network and ways to t the improved
network on the FPGA are also mentioned at the end of the work.
|
93 |
An Unsupervised Machine-Learning Framework for Behavioral Classification from Animal-Borne AccelerometersDentinger, Jane Elizabeth 03 May 2019 (has links)
Studies of animal spatial distributions typically use prior knowledge of animal habitat requirements and behavioral ecology to deduce the most likely explanations of observed habitat use. Animal-borne accelerometers can be used to distinguish behaviors which allows us to incorporate in situ behavior into our understanding of spatial distributions. Past research has focused on using supervised machine-learning, which requires a priori specification of behavior to identify signals whereas unsupervised approaches allow the model to identify as many signal types as permitted by the data. The following framework couples direct observation to behavioral clusters identified from unsupervised machine learning on a large accelerometry dataset. A behavioral profile was constructed to describe the proportion of behaviors observed per cluster and the framework was applied to an acceleration dataset collected from wild pigs (Sus scrofa). Although, most clusters represented combinations of behaviors, a leave-p-out validation procedure indicated this classification system accurately predicted new data.
|
94 |
A Methodology to Measure and Improve U.S. States Highway Sustainability Using Data Envelopment Analysis and Self Organizing MapsKurmapu, Dhruva 11 September 2012 (has links)
No description available.
|
95 |
Visualizing Qos in networksGrift, Werner 12 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2006. / ENGLISH ABSTRACT: Network simulations generate large volumes of data. This thesis presents an animated
visualization system that utilizes the latest affordable Computer Graphics (CG) hardware
to simplify the task of visualizing and analyzing these large volumes of data. The use of
modern CG hardware allows us to create an interactive system which allows the user to
interact with the data sets and extract the relevant data in real time. We also present an
alternate approach to the network layout problem, using Self Organizing Maps to find an
aesthetic layout for a network which is fundamental to a successful network visualization.
We finally discuss the design and implementation of such an network visualization tool. / AFRIKAANSE OPSOMMING: Netwerk simulasies genereer groot volumes data. Hierdie tesis stel voor ’n geanimeerde
visualiseringwat gebruik maak van die nuutste bekostigbare rekenaar grafika hardeware om
die visualisering van groot volumes data te vergemaklik. Die gebruik van moderne rekenaar
grafika hardeware stel ons in staat om sagteware te skep wat n gebruiker in staat stel om
met die data te werk. Ons stel voor ’n alternatiewe benadering om die netwerk se uitleg
daar te stel, met die hulp van tegnieke wat gebruik word in die studie van neurale netwerke.
Ons bespreek dan die ontwerp en implementering van so ’n netwerk visualisering program.
|
96 |
Transforming user data into user value by novel mining techniques for extraction of web content, structure and usage patterns : the development and evaluation of new Web mining methods that enhance information retrieval and improve the understanding of users' Web behavior in websites and social blogsAmmari, Ahmad N. January 2010 (has links)
The rapid growth of the World Wide Web in the last decade makes it the largest publicly accessible data source in the world, which has become one of the most significant and influential information revolution of modern times. The influence of the Web has impacted almost every aspect of humans' life, activities and fields, causing paradigm shifts and transformational changes in business, governance, and education. Moreover, the rapid evolution of Web 2.0 and the Social Web in the past few years, such as social blogs and friendship networking sites, has dramatically transformed the Web from a raw environment for information consumption to a dynamic and rich platform for information production and sharing worldwide. However, this growth and transformation of the Web has resulted in an uncontrollable explosion and abundance of the textual contents, creating a serious challenge for any user to find and retrieve the relevant information that he truly seeks to find on the Web. The process of finding a relevant Web page in a website easily and efficiently has become very difficult to achieve. This has created many challenges for researchers to develop new mining techniques in order to improve the user experience on the Web, as well as for organizations to understand the true informational interests and needs of their customers in order to improve their targeted services accordingly by providing the products, services and information that truly match the requirements of every online customer. With these challenges in mind, Web mining aims to extract hidden patterns and discover useful knowledge from Web page contents, Web hyperlinks, and Web usage logs. Based on the primary kinds of Web data used in the mining process, Web mining tasks can be categorized into three main types: Web content mining, which extracts knowledge from Web page contents using text mining techniques, Web structure mining, which extracts patterns from the hyperlinks that represent the structure of the website, and Web usage mining, which mines user's Web navigational patterns from Web server logs that record the Web page access made by every user, representing the interactional activities between the users and the Web pages in a website. The main goal of this thesis is to contribute toward addressing the challenges that have been resulted from the information explosion and overload on the Web, by proposing and developing novel Web mining-based approaches. Toward achieving this goal, the thesis presents, analyzes, and evaluates three major contributions. First, the development of an integrated Web structure and usage mining approach that recommends a collection of hyperlinks for the surfers of a website to be placed at the homepage of that website. Second, the development of an integrated Web content and usage mining approach to improve the understanding of the user's Web behavior and discover the user group interests in a website. Third, the development of a supervised classification model based on recent Social Web concepts, such as Tag Clouds, in order to improve the retrieval of relevant articles and posts from Web social blogs.
|
97 |
Emprego de redes neurais e de descritores moleculares em quimiotaxonomia da família Asteraceae / Use of Neural Networks and Molecular Descriptors in Chemotaxonomy of the Asteraceae FamilyScotti, Marcus Tullius 18 July 2008 (has links)
Esse trabalho descreve o desenvolvimento de uma nova ferramenta quimioinformática designada de SISTEMATX que possibilitou a análise quimiotaxonômica da família Asteraceae, empregando novos parâmetros moleculares, bem como o estudo da relação quantitativa estrutura química atividade biológica de substâncias provenientes desse grupo vegetal. A família Asteraceae, uma das maiores entre as angiospermas, caracteriza-se quimicamente pela produção de sesquiterpenos lactonizados (SLs). Um total de 1111 (SLs), extraídos de 658 espécies, 161 gêneros, 63 subtribos e 15 tribos da família Asteraceae foram representados e cadastrados em duas dimensões no SISTEMATX e associados à respectiva origem botânica. A partir dessa codificação, o grau de oxidação e as estruturas em três dimensões de cada SL foram obtidos pelo sistema. Essas informações, associadas aos dados botânicos, foram exportadas para um arquivo texto, o qual permitiu a obtenção de vários tipos de descritores moleculares. Esses parâmetros moleculares foram correlacionados com o grau de oxidação médio por tribo e tiveram sua seleção realizada por regressão linear múltipla utilizando algoritmo genético. Equações com coeficientes estatísticos variando entre 0,725 ≤ r2 ≤ 0,981 e 0,647 ≤ Qcv2 ≤ 0,725 foram obtidas com apenas um descritor, possibilitando a identificação de algumas características estruturais relacionadas ao grau de oxidação. Não foi obtida nenhuma relação entre o grau de oxidação dos SL e a evolução das tribos da família Asteraceae. Os descritores moleculares também foram usados como dados de entrada para separar as ocorrências botânicas através de mapas auto-organizáveis (rede não supervisionada Kohonen). Os mapas gerados, com cada bloco de descritor, separaram as tribos da família Asteraceae com valores de índices de acerto total entre 66,7% e 83,6%. A análise desses resultados evidencia semelhanças entre as tribos Heliantheae, Helenieae, e Eupatorieae e, também, entre as tribos Anthemideae e Inuleae. Tais observações são coincidentes com as classificações sistemáticas propostas por Bremer, que utilizam principalmente dados morfológicos e, também, moleculares. A mesma abordagem foi utilizada para separar os ramos da tribo Heliantheae, segundo a classificação proposta por Stuessy, cuja separação é baseada no número de cromossomos das subtribos. Os mapas auto-organizáveis obtidos separam em duas regiões distintas os ramos A e C, com elevados índices de acerto total que variam entre 81,79% a 92,48%. Ambos os estudos demonstram que os descritores moleculares podem ser utilizados como uma ferramenta para classificação de táxons em níveis hierárquicos baixos, tais como tribos e subtribos. Adicionalmente, foi demonstrado que os marcadores químicos corroboram parcialmente com as classificações que empregam dados morfológicos e moleculares. Os descritores obtidos por fragmentos ou pela representação da estrutura dos SLs em duas dimensões foram suficientes para obtenção de resultados significativos, não sendo obtida melhora nos resultados com os descritores que utilizam a representação em três dimensões das estruturas. Paralelamente, um estudo adicional foi realizado relacionando a estrutura química, representada pelos mesmos descritores moleculares anteriormente mencionados, com a atividade citotóxica de 37 SLs frente às células tumorais da nasofaringe KB. Uma equação com índices estatísticos significativos (r2=0,826 e Qcv2=0,743) foi obtida. Os cinco descritores, selecionados a partir de uma equação estatisticamente mais significativa, representam uma descrição global de propriedades estéricas e características eletrônicas de cada molécula que auxiliaram na determinação de fragmentos estruturais importantes para a atividade citotóxica. Tal modelo permitiu verificar que os esqueletos carbônicos dos tipos guaianolídeo e pseudoguaianolídeo são encontrados nos SLs que apresentam maior atividade citotóxica. / This work describes the development of a new chemoinformatic tool named SISTEMATX that allowed the chemotaxonomic analysis of the Asteraceae family employing new molecular parameters, as well as the quantitative structure activity relationship study of compounds produced by this botanical group. The Asteraceae, one of the largest families among of angiosperms, is chemically characterized by the production of sesquiterpene lactones (SLs). A total of 1111 (SLs), extracted from 658 species, 161 genera, 63 subtribes and 15 tribes of the Asteraceae, were represented and registered in two dimensions in the SISTEMATX and associated with their botanical source. From this codification, the degree of oxidation and the structures in three dimensions of each SL were obtained by the system. These data linked with botanical origin were exported for a text file which allow the generation of several types of molecular descriptors. These molecular parameters were correlated with the average oxidation degree by tribe and were selected by multiple linear regressions using genetic algorithms. Equations with statistical coefficients varying between 0,725 ≤ r2 0,981 and 0,647 ≤ Qcv2 ≤ 0,725 were obtained with only one descriptor, making possible the identification of some structural characteristics related to the oxidation level. Any relationship between the degree of oxidation of SL and the tribes evolution of the family Asteraceae was not obtained. The molecular descriptors were also used as input data to separate the botanical occurrences through the self organizing-maps (unsupervised net Kohonen). The generated maps with each block descriptor, divide the Asteraceae tribes with total indexes values between 66,7% and 83,6%. The analysis of these results shows evident similarities among the Heliantheae, Helenieae and Eupatorieae tribes and, also, between the Anthemideae and Inuleae tribes. Those observations are in agreement with the systematic classifications proposed by Bremer, that use mainly morphologic and, also, molecular data. The same approach was utilized to separate the branches of the Heliantheae tribe, according to the Stuessys classification, whose division is based on the chromosome numbers of the subtribes. From the obtained self-organizing maps, two different areas (branches A and C) were separated with high hit indexes varying among 81,79% to 92,48%. Both studies demonstrate that the molecular descriptors can be used as a tool for taxon classification in low hierarchical levels such as tribes and subtribes. Additionally, was demonstrated that the chemical markers partially corroborate with the classifications that use morphologic and molecular data. Descriptors obtained by fragments or by the representation of the SL structures in two dimensions were sufficient to obtain significant results, and were not obtained better results with descriptors that utilize the structure representation in three dimensions. An additional study was accomplished relating the chemical structure, represented by the same molecular descriptors previously mentioned, with the cytotoxic activity of 37 SLs against tumoral cells derived from human carcinoma of the nasopharynx (KB). An equation with significant statistical indexes was obtained. The five descriptors, selected from the more statistical significant equation, shows a global description of sterical properties and electronic characteristics of each molecule that aid in the determination of important structural fragments for the cytotoxic activity. From the model can be verified that the carbon skeletons of the guaianolide and pseudoguaianolide types are encountered in the SLs that show the higher cytotoxic activity.
|
98 |
Agente topológico de aprendizado por reforço / Topological reinforcement learning agentBraga, Arthur Plínio de Souza 07 April 2004 (has links)
Os métodos de Aprendizagem por Reforço (AR) se mostram adequados para problemas de tomadas de decisões em diversos domínios por sua estrutura flexível e adaptável. Apesar de promissores, os métodos AR frequentemente tem seu campo de atuação prático restrito a problemas com espaço de estados de pequeno ou médio porte devido em muito à forma com que realizam a estimativa da função de avaliação. Nesta tese, uma nova abordagem de AR, denominada de Agente Topológico de Aprendizagem por Reforço (ATAR), inspirada em aprendizagem latente, é proposta para acelerar a aprendizagem por reforço através de um mecanismo alternativo de seleção dos pares estado-ação para atualização da estimativa da função de avaliação. A aprendizagem latente refere-se à aprendizagem animal que ocorre na ausência de reforço e que não é aparente até que um sinal de reforço seja percebido pelo agente. Este aprendizado faz com que um agente aprenda parcialmente uma tarefa mesmo antes que este receba qualquer sinal de reforço. Mapas Cognitivos são usualmente empregados para codificar a informação do ambiente em que o agente está imerso. Desta forma, o ATAR usa um mapa topológico, baseado em Mapas Auto-Organizáveis, para realizar as funções do mapa cognitivo e permitir um mecanismo simples de propagação das atualizações. O ATAR foi testado, em simulação, para planejamento de navegação de um robô móvel em ambientes inicialmente desconhecidos e não-estruturados. Comparações com outros seis algoritmos AR avaliaram comparativamente o desempenho do agente proposto na navegação. Os resultados obtidos são promissores e comparáveis com os algoritmos AR mais rápidos testados, alcançando em alguns ensaios desempenho superior aos dos demais algoritmos - principalmente nas simulações que consideram situações observadas em ambientes não-estruturados. Três características do ATAR original foram alteradas para tornar ainda mais viável sua aplicação prática: (i) mudanças no mapa topológico para reduzir o número de vértices, (ii) mudança na heurística usada na seleção das ações do agente e (iii) variações na estratégia de exploração do ATAR. Do ponto (i), foi proposto e implementado um novo mapa topológico, o Mapa Topológico Incremental Classificador MTIC, que a partir da classificação dos estados do ambiente gera os vértices de uma triangularização de Watson. O ponto (ii) criou um método aplicável a outros problemas de planejamento de trajetória em grafos denominado de Melhoria das trajetórias por detecção de ponto interior. O terceiro estudou estratégias direcionadas de exploração como uma opção para acelerar o aprendizado do ATAR. / Reinforcement Learning (RL) methods have shown to be a good choice for decision-making problems due to their flexible and adaptive characteristics. Despite such promising features, RL methods often have their practical application restricted to small or medium size (at state, or state-action, space) problems mainly because of their standard strategies for value function estimation. In this thesis, a new RL approach, called \"Topological Reinforcement Learning Agent\" - TRLA, is proposed to accelerate learning through an alternative mechanism to update the state-action value function. TRLA is inspired in latent learning, which refers to animal learning that occurs in the absence of reinforcements and that is not visible until an environmental reinforcement is perceived. This concept considers that part of a task can be learned even before the agent receives any indication of how to perform such a task. Cognitive Maps are usually used to encode information about the environment where the agent is immersed. Thus, the TRLA uses a topological map, based on Self-Organized Maps, to implement cognitive map functions and permit a new simple mechanism to execute the propagation of state-action updates. The chosen problem to test TRLA is the simulation of a mobile robot navigation in some initially unknown and unstructured environments. Performance comparisons of the TRLA with six other RL algorithms were carried out to the execution of the navigation task. The obtained results are very promising and comparable with some of faster RL algorithms simulated. In some experiments, the TRLA\'s performance overcomes the others especially in simulations with unstructured environments. Three characteristics of the original TRLA were modified to make it more suitable for real implementations: (i) changes in the topological map construction to reduce the vertices number, (ii) changes in the agents heuristic for action selection, and (iii) variations on the TRLAs strategy for exploration of the state-action space. In (i), a new procedure to construct topological maps was proposed and implemented, the Incremental Classifier Topological Map ICTM, which generates the vertices for a Watsons triangulation from the classification of the input states. In (ii), it was proposed a method to optimize trajectory planning problems based on graphs, denoted \"trajectory improvement from inner point detection\". The third point considers directed exploration strategies as an option for TRLA\'s learning acceleration.
|
99 |
Classificação de sismofáceis carbonáticas a partir da técnica Self-Organizing Maps (SOM). / Variability study of carbonate sismofacies applying the Self-Organizing technique.Bronizeski, Edgar Davanço 26 October 2018 (has links)
O desenvolvimento de soluções para a classificação de ambientes de sedimentação ainda é um desafio, sobretudo em ambientes de deposição carbonáticos. Em reservatórios de óleo e gás offshore, onde a geometria dos ambientes deposicionais é fundamental para a estimativa de viabilidade técnica e econômica de exploração e produção, a discriminação destes ambientes depende de dados indiretos. Nesse sentido, a sísmica de reflexão e seus respectivos atributos funcionam como robusta ferramenta interpretativa. Grandes reservas de petróleo offshore se encontram em rochas carbonáticas constituídas, sobretudo, por calcita e dolomita. Estes minerais, no entanto, não apresentam resposta sísmica contrastante, já que a diferença de velocidade entre tais minerais é inexpressiva. A utilização da amplitude sísmica, unicamente, não possibilita diferenciar propriedades das rochas carbonáticas, tal como ocorre com rochas siliciclásticas. Compactação e hidrotermalismo são fatores pós-deposicionais que influenciam na alteração das características de rochas carbonáticas, e apresentam difícil detecção nas seções sísmicas. Tais fatores necessitam de uma abordagem que envolva as propriedades dos múltiplos atributos sísmicos para a respectiva caracterização. A técnica Self-Organizing Maps (SOM) consiste em ferramenta de análise e visualização de dados vetoriais dentro do espaço dimensional definido pelas variáveis. Trata-se de abordagem multi-atributos em que a identificação e classificação das amostras ocorre de maneira não supervisionada. Neste trabalho são utilizados dados sísmicos dos quais foi extraída a amplitude sobre um horizonte interpretado. Foram utilizados também os atributos do traço sísmico complexo, tais como: envelope, fase instantânea e frequência instantânea, além da impedância acústica e derivada espacial. Estes atributos foram escolhidos em função das características geológicas que representam. Além disso, tais atributos têm sido utilizados em outros trabalhos de classificação de fácies sísmicas. Após uma primeira análise SOM, tendo em vista o realce dos atributos de entrada, foi aplicada a Análise por Principais Componentes (APC). Com base nos componentes obtidos, foi realizada uma segunda análise SOM, obtendo-se assim os resultados que mais corresponderam ao sistema deposicional analisado. Foram identificados também clinoformas nos dados sísmicos, que apresentam correlação com a classificação dos resultados assim como um mapa de distribuição de rochas carbonáticas foi elaborado pela interpretação das classes identificadas correlacionando-as ao poço 1-SPS-0029 associando-o ao modelo de deposição de uma plataforma carbonática. / Developing solutions for classifying sedimentation environments is still quite a challenge, particularly in carbonate sites. It\'s crucial to use indirect data to differentiate the geometry of depositional environment of oil and gas offshore reservoirs when estimating the productions under technical and economical sights. Therefore, the seismic and its attributes work like a powerful interpretative tool. A great amount of oil reservoirs can be found in carbonate rocks, whose main constitution minerals are calcite and dolomite. Those minerals, however, don\'t offer a significantly contrasting response to seismic. The seismic amplitude, by itself, isn\'t a good property estimation to be used on carbonate rocks, as it is on the siliciclastic rocks. Compactation and hydrothermalism are post-depositional influencers on the alteration of carbonate rocks features, and they present a difficult detection on seismic sections. Those factors will need multiple seismic attributes to respective characterization. Self-Organizing Maps (SOM) appear as a tool for analysis and visualization of vectorial data within the dimensional space defined by the variables. That\'s a multi-featured approach whose samples identification and classification will occur in a non-supervisioned way. The use of SOM in this paper do not intend to substitute the interpretation of the results, but aims to pop up the intrinsic relations between used attributes. It has been interpreted a horizon, from which it was possible to take the amplitude on seismic as a first attribute. There have also been used acoustic impedance, spatial derivative and complex seismic trace attributes, like reflection strength, instant phase and instant frequency. Such attributes have been chosen by reflecting geological characteristics. After a previous SOM analysis, aiming to highlight raw attributes, there was applied the Principal Components Analysis (PCA). Based on obtained components, a second SOM was performed, leading to results that best corresponded to the depositional system analyzed. Besides, there were identified clinoforms on seismic data, which keep relation with classification of the result.
|
100 |
Análise de agrupamentos baseada na topologia dos dados e em mapas auto-organizáveis. / Data clustering based on data topology and self organizing-maps.Boscarioli, Clodis 16 May 2008 (has links)
Cada vez mais, na conjuntura das grandes tomadas de decisões, a análise de dados massivamente armazenados se torna uma necessidade das mais variadas áreas de conhecimento. A análise de dados envolve a realização de diferentes tarefas, que podem ser realizadas por diferentes técnicas e estratégias como análise de agrupamento de dados. Esta pesquisa enfatiza a realização da tarefa de análise de agrupamento de dados (Data Clustering) usando SOM (Self-Organizing Maps) como principal artefato. SOM é uma rede neural artificial baseada em aprendizado competitivo e não-supervisionado, o que significa que o treinamento é inteiramente guiado pelos dados e que os neurônios do mapa competem entre si. Essa rede neural possui a habilidade de formar mapeamentos que quantizam os dados, preservando a sua topologia. Este trabalho introduz uma nova metodologia de análise de agrupamentos a partir de SOM, que considera o mapa topológico gerado por ele e a topologia dos dados no processo de agrupamento. Uma análise experimental e comparativa é apresentada, evidenciando a potencialidade da proposta, destacando, por fim, as principais contribuições do trabalho. / More than ever, in environment of large decision making, the analysis of data stored massively becomes a real need in almost all knowledge areas. The data analyzing process covers the performing of different tasks that can be executed for different techniques and strategies as the data clustering analysis. This research is focused on the analysis task of data groups, called Data Clustering using Self Organizing Maps (SOM) as principal artifact. SOM is an artificial neural network based on competitive and unsupervised learning, what means that its training is entirely driven by the data, such the neurons of the map compete themselves for doing it. This neural network has the ability to build the mapping task that quantifies the source data, but preserving the topology. This work introduces a new clustering analysis methodology based on SOM, considering the topological map produced by it and also the topology of the data obtained in the clustering process. The experimental and comparative analysis are also presented to demonstrate the potential of the proposal, highlighting at the end the mainly contributions of the work.
|
Page generated in 0.0657 seconds