• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 13
  • 1
  • Tagged with
  • 30
  • 30
  • 15
  • 11
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation expérimentale et modélisation thermo-mécanique de l’accommodation cyclique du polyéthylène. / Experimental characterization and thermo-mechanical modeling of cyclic behavior of polyethylene

Nguyen, Song Thanh Thao 02 December 2013 (has links)
Dans une approche de dimensionnement en fatigue basée sur un critère multiaxial, les paramètres d’entrée ducritère (contraintes, déformations, termes énergétiques) sont généralement calculés sur un état stabilisé. Dans lesmétaux, il s’agit souvent du premier cycle, en supposant que le matériau se comporte élastiquement ou présente desprocessus de plasticité très localisés. Dans les matériaux viscoélastiques comme les polymères, l’évolutionsignificative de la raideur en début de cyclage soulève la question de la stabilisation du cycle sur lequel lesparamètres mécaniques devraient être calculés. Un enjeu majeur est donc de définir et prédire cet état stabilisé, c’està dire non seulement l’évolution de la déformation moyenne qui accompagne le cyclage mais aussi la bouclestabilisée elle-même et les contributions énergétiques pertinentes. Pour être applicable à des structures, le modèledoit conserver un formalisme aussi maniable que possible.Dans cette étude, réalisée sur les 1000 premiers cycles de la vie d’un polyéthylène, il est montré, par des essaisde recouvrance, que la contribution viscoélastique à l’évolution de la déformation moyenne est majoritaire. Unintérêt particulier est donc porté à la caractérisation expérimentale et à la modélisation macroscopique de cet aspectdu comportement.La première partie du travail est menée dans un cadre purement mécanique. L’accumulation cyclique estétudiée expérimentalement au cours des premiers 1000 cycles à force contrôlée et faible fréquence, à la températureambiante. L’influence de la fréquence et du rapport de charge sur la réponse viscoélastique est étudiée. Lacomparaison d’essais de traction et de cisaillement de type Iosipescu permet de discuter les parts volumique etdéviatorique. Un modèle viscoélastique non linéaire isotherme en petites déformations est proposé dans le cadre dela Thermodynamique des Processus Irréversibles.Dans la deuxième partie, l’étude expérimentale et théorique est étendue au cadre thermo-mécanique. Latempérature est en effet intrinsèquement couplée à la viscoélasticité dans les polymères ; cet effet peut conduire àdes auto-échauffements importants. Les mêmes essais de traction et cisaillement sont réalisés par le LMGC deMontpellier avec une métrologie différente : la mesure de champs de température et déformation au cours de l’essaipermet de calculer les différents termes de l’équation de diffusion de la chaleur et d’accéder aux sources de chaleur.Ces résultats expérimentaux sont analysés et confrontés à une extension du modèle thermo-viscoélastique dumodèle dans laquelle le couplage est introduit via la thermo-élasticité (par la déformation volumique) et via ladissipation visqueuse (sur la base du principe d’équivalence temps-température). / Fatigue design approaches based on fatigue life criteria require as an input mechanical parameters (stress orstrain components or equivalent measurements, energetic terms) usually calculated over the first cycle, assumingthat the material behaves elastically or exhibits highly localized plasticity processes. In viscous materials likepolymers, such approaches raise the question of the stabilization of the cycle over which the mechanical parametersshould be computed. The challenge is not only to predict the ratcheting strain but also the stabilized loop itself andthe relevant energetic contributions, within a formalism as simple as possible to be used for structure simulations.In this study conducted in polyethylene, a special interest is paid on the viscoelastic contribution, expected tohighly contribute in the low stress range of high-cycle fatigue. A challenge is to accurately capture two time scales,i.e. the long term scale of strain ratcheting and the short term scale of the cycle itself.In the first part, cyclic accommodation is experimentally investigated over the first thousand cycles of forcecontrolledtests at room temperature. Viscoelasticity tackles in a specific way the frequency and mean stresssensitivity which are both varied in the experiments. Viscoelasticity also questions the volume / deviator partition:tension and shear tests are compared to highlight this point.After establishing from recovery tests that viscoelasticity mainly contributes to the ratcheting strain in bothexperiments series, a small-strain non-linear viscoelastic model is proposed in the framework of Thermodynamicsof Irreversible Processes. The aim is to capture the ratcheting strain evolution and recovery kinetics, as well as thestabilized loop area and dynamic modulus. The mean strain kinetics and non-recoverable term appearunderestimated, due to the fact that inelastic strain parts are not taken into account in the model. On the other hand,the loop area and rigidity are reasonably predicted.Volume / deviatoric contributions are on two counts an open issue, because of their different contribution tothermoelastic coupling. Thermo-mechanical coupling is examined in the last part of the presentation, by couplingthe above described model to temperature and analyzing the resulting heat sources evolution.
2

Polymer brushes: "A new step for surface engineering"

Olivier, Aurore 21 September 2010 (has links)
Polymer brushes represent a relatively new class of materials and are referred to an assembly of polymer chains tethered by one of their extremities to a surface by a chemical bond. Different techniques to produce polymer brushes exist but our privileged choice was about the ¡§grafting from¡¨ method due to the better control over the types of grafted polymer, the surface-grafting density, and the chain-lengths. In our project, we focused on polymerizations from self-assembled monolayers of thiol chemisorbed on gold surface, bearing end-group functions as anchoring sites. The main objective of this work is to develop multifunctional polymeric surfaces composed by micro-domains of diverse compounds, which contain opposite features. Poly(ƓÕ-caprolactone) and poly(L,L-lactide)-based brushes both known for their high degree of crystallinity and hydrophobicity, and poly(dimethylamino ethyl methacrylate) (PDMAEMA)-based brushes for their hydrophilicity and external stimuli responsive characteristics were investigated. Moreover, the design of these advanced materials can be achieved with patterning technique such as micro-contact printing, leading to a spatial confinement of the polymer brushes. In order to reach our objective, the thesis was decomposed in different parts. First, the preparation of homogeneous and heterogeneous monolayers derived from thiols on gold surface will be investigated. Secondly, the ¡§grafting from¡¨ synthesis of homo-polymers from thiol end group will be carried out. This part required the development of synthesis conditions for both types of homopolymer brushes. Subsequently, these parameters were applied to the creation of a binary system by the growth of two different macromolecular chains on the same substrate. Finally, upon the ¡§smart¡¨ behavior of PDMAEMA, the potential of the polymer as chemical sensor was evaluated with single walled and multi walled-carbon nanotubes (SW- and MW-CNTs) as interesting conductive (nano)fillers.
3

Approche multi-échelles dans les matériaux polymères : de la caractérisation nanométrique aux effets d'échelles / Multiscale approach in polymer materials : from the nanoscale characterization to the effects of scale

Nguyen, Thanh Loan 17 June 2014 (has links)
L’effet du confinement de la phase amorphe lors de la cristallisation du poly(éthylène téréphtalate) et du poly(acide lactique) a été étudié à multi-échelles. Ces polymères peuvent exister sous forme amorphe et semi-cristalline. La relation entre la microstructure et les propriétés viscoélastiques des matériaux a été mise en évidence par les expériences en diffusion des rayons X aux petits angles (SAXS) et aux grands angles (WAXS), en Calorimétrie différentielle à balayage (DSC), en traction, en analyseur mécanique dynamique (DMA) et en nanoindentation. La différence de la structure moléculaire du PET et du PLA est essentielle pour leur comportement physique et mécanique. Au cours de la cristallisation, une autre phase amorphe dont le comportement mécanique est plus rigide que la phase amorphe traditionnelle a été formée. La DSC permet de quantifier la dépendance de la fraction de cette phase amorphe rigide en fonction du taux de cristallinité. La technique de diffusion des rayons X permet d’étudier l’évolution de la microstructure (dimension de cristallites, épaisseur des phases) lors de la cristallisation. Le comportement mécanique des polymères a été étudié à différentes échelles. Les essais de DMA permettent non seulement d’étudier le comportement viscoélastique macroscopique des polymères mais aussi de quantifier les propriétés viscoélastiques de chaque phase amorphe via leur température de transition vitreuse. Cela a été utilisé comme données d’entrée dans des modèles micromécaniques. La nanoindentation permet de mesurer les propriétés mécaniques du matériau à son extrême surface. Dans la dernière partie, une approche des propriétés mécaniques macroscopiques des matériaux a été réalisée par des modèles micromécaniques d’homogénéisation en se basant sur la morphologie matrice-inclusion. / The signature of confinement effect onto the mechanical properties of the amorphous phase during crystallization of two polymers, Polyethylene terephthalate (PET) and poly(lactic acid) (PLA) was investigated at multi-scale. The two polymers have the advantage of being either in bulk amorphous or in semi-crystalline state. The relation between the microstructure and the viscoelastic properties of materials is put light on by the experiments of X-Ray Scattering, differential scanning calorimetry (DSC), by tensile strength tests, by dynamic mechanical analysis (DMA) and by nanoindentation. The difference in molecular structure of PET and PLA is essential for their physical and mechanical behavior. During crystallization, the second amorphous phase whose mechanical behavior is more rigid than conventional amorphous phase was formed. DSC is used to quantify the rigid amorphous fraction dependence on the crystallinity. The technique of X-ray scattering is used to study the evolution of the microstructure (crystallite size, lamella thickness) during crystallization. The mechanical behavior of materials was studied at different scale. DMA tests allow not only to study the macroscopic behavior of viscoelastic polymers but also to quantify the viscoelastic properties of each amorphous phase through their glass transition temperature. This was used as input data in micromechanical models. Nanoindentation is used to measure the mechanical properties of the materials at the extreme surface. In the last part, the homogenization micromechanical modeling was performed based on the matrix - inclusion morphology in order to predict the macroscopic mechanical behavior laws of materials.
4

Realistic Package Opening Simulations : An Experimental Mechanics and Physics Based Approach

Andreasson, Eskil January 2015 (has links)
A finite element modeling strategy targeting package opening simulations is the final goal with this work. The developed simulation model will be used to proactively predict the opening compatibility early in the development process of a new opening device and/or a new packaging material. To be able to create such a model, the focus is to develop a combined and integrated physical/virtual test procedure for mechanical characterization and calibration of thin packaging materials. Furthermore, the governing mechanical properties of the materials involved in the opening performance needs to be identified and quantified with experiments. Different experimental techniques complemented with video recording equipment were refined and utilized during the course of work. An automatic or semi-automatic material model parameter identification process involving video capturing of the deformation process and inverse modeling is proposed for the different packaging material layers. Both an accurate continuum model and a damage material model, used in the simulation model, were translated and extracted from the experimental test results. The results presented show that it is possible to select constitutive material models in conjunction with continuum material damage models, adequately predicting the mechanical behavior of intended failure in thin laminated packaging materials. A thorough material mechanics understanding of individual material layers evolution of microstructure and the micro mechanisms involved in the deformation process is essential for appropriate selection of numerical material models. Finally, with a slight modification of already available techniques and functionalities in the commercial finite element software AbaqusTM it was possible to build the suitable simulation model. To build a realistic simulation model an accurate description of the geometrical features is important. Therefore, advancements within the experimental visualization techniques utilizing a combination of video recording, photoelasticity and Scanning Electron Microscopy (SEM) of the micro structure have enabled extraction of geometries and additional information from ordinary standard experimental tests. Finally, a comparison of the experimental opening and the virtual opening, showed a good correlation with the developed finite element modeling technique. The advantage with the developed modeling approach is that it is possible to modify the material composition of the laminate. Individual material layers can be altered and the mechanical properties, thickness or geometrical shape can be changed. Furthermore, the model is flexible and a new opening device i.e. geometry and load case can easily be adopted in the simulation model. Therefore, this type of simulation model is a useful tool and can be used for decision support early in the concept selection of development projects.
5

Modèle viscoélastique-viscoplastique couplé avec endommagement pour les matériaux polymères semi-cristallins

Balieu, Romain 03 December 2012 (has links)
Les matériaux polymères sont largement utilisés pour des applications structurelles dans le secteur automobile et leurs comportements complexes nécessitent des modèles précis pour la simulation éléments finis. Les polymères possèdent un comportement dépendant du temps et de la vitesse. La dépendance à la vitesse peut être observée par un accroissement de la rigidité et de la limite élastique en fonction de la vitesse de déformation. Le long temps nécessaire pour retrouver des contraintes nulles après sollicitation du matériau met en évidence la dépendance du temps sur le comportement. De plus, particulièrement pour les polymères chargés, le phénomène de cavitation se traduisant par la création et la croissance de micro-cavités et de microfissures conduit à un changement de volume durant la déformation. Dans ce travail, un modèle de comportement est développé pour un polymère semi-cristallin chargé de talc utilisé dans l’industrie automobile. Un modèle constitutif viscoélastique-viscoplastique non-associatif avec endommagement non-local est proposé dans le but de simuler les phénomènes observés expérimentalement. Dans le modèle développé, une surface de charge non symétrique est utilisée pour prendre en compte la pression hydrostatique. La viscoplasticité non-associative couplée avec l’endommagement conduit aux déformations viscoplastiques non-isochoriques caractérisées expérimentalement. Les paramètres du modèle proviennent d’essais expérimentaux réalisés sous différentes conditions et `a différentes vitesses de déformation. Pour ces essais, plusieurs techniques de mesure, telles que la corrélation d’images et l’extensommetrie optique sont utilisées pour les mesures de champs de déplacements. La bonne corrélation entre les données expérimentales et les simulations numériques mettent en évidence la précision du modèle développé afin de modéliser le comportement des matériaux polymères semi-cristallins. / Polymer materials are widely used for structural applications in the automotive sector and their behaviours are complex and require accurate models for finite element simulations. Polymer materials exhibit rate and time dependent behaviours. The rate dependency can be observed by an increase of the stiffness and the yield stress at increasing strain rate. The long time to recover the zero stress after solicitation of the material highlight the time dependent behaviour. Furthermore, particularly for filled polymers, the cavitation phenomenon cause the creation and growth of micro-voids and microcracks called damage and leads to volume change during the deformation. In this work, a behaviourmodel for mineral filled semi-crystalline polymer used in automotive industry is developed. A constitutive viscoelastic-viscoplastic non-associated model coupled with nonlocal damage is proposed in order to simulate the phenomena observed experimentally. In the constitutive model, a non symmetric yield surface is used to take the hydrostatic pressure into account. The non associated viscoplasticity coupled with damage leads to the non-isochoric viscoplastic deformation characterised experimentally. The material parameters arise from experimental tests carried out under various loadings and strain rates. For these experimental tests, different measurement techniques like Digital Image Correlation and optical extensometry are used for the displacements and the strain field measurements. The good agreement between the experimental data and the numerical simulations highlights the accuracy of the developed model for polymer modelling.
6

Mobilité moléculaire aux interfaces de nanostructures polymères renforcées par des nanocharges fonctionnelles / Molecular mobility in the interfaces of polymer reinforced by functional nanocharges

Rekik, Houda 21 March 2014 (has links)
Deux séries d'échantillon à base de PVDF ont été élaborées avec différentes fractions de dioxyde de titane TiO2 en utilisant deux modes d'élaboration : dispersion des nanoparticules de TiO2 par voie fondue habituelle et génération des charges de TiO2 basée sur des réactions d'hydrolyse-condensations d'un alkoxyde de titane (le n-tétrabutoxyde de titane). Dans cette étude, quatre techniques ont été utilisées pour étudier les processus de relaxation dans les polymères semi-cristallins. Le microscope électronique à balayage (MEB) pour étudier la dispersion des nanoparticules de TiO2 dans la matrice PVDF. La calorimétrie différentielle à balayage (DSC) a été utilisée dans cette étude pour caractériser thermiquement les échantillons polymériques semi-cristallins. L'analyse thermo-gravimétrique (ATG) a été utilisée pour voir l'effet de nanoparticules sur les propriétés thermiques du PVDF. De plus, la technique de spectroscopie diélectrique a été utilisée dans la thèse pour étudier l'influence du processus d'élaboration sur la mobilité moléculaire trouvée dans ces systèmes. On a montré que le comportement de ces nanocomposites est proche de celui de PVDF pur. Les changements principaux observés sont le ralentissement de la dynamique de la relaxation alpha (associée à la température de transition vitreuse) et la relaxation alpha c (associée à la phase cristalline) en fonction de l'augmentation de fraction volumique TiO2. L'existence des charges piégées aux interfaces qui met en cause la présence de la polarisation interfaciale (IP) dans les différents nanocomposites a aussi été analysée. Les additions de TiO2 diminuent la mobilité des chaînes polymériques ce qui rend difficile l'orientation des dipôles électriques et augmente l'énergie d'activation de la relaxation de polarisation interfaciale / Polyvinylidene fluoride (PVDF) films have been filled with different volume fraction of titanate dioxide TiO2 using two ways : dispersion in the melt or in-situ generation based on the hydrolysis-condensation reactions of titanium alkoxide inorganic precursor premixed with PVDF under molten conditions. In this study, four techniques were used to study the relaxation processes in the semi-crystalline polymers. The scanning electron microscope (SEM) was introduced in the field of polymer science to study the dispersion of TiO2 nanoparticules in the PVDF matrix. The differential scanning calorimetry (DSC) was used in this study to thermally characterize the semi-crystalline polymer samples. Thermal gravimetric analysis (TGA) was used to see the effect of nanoparticles on the thermal properties of PVDF. In addition, the dielectric spectroscopy technique was used in the thesis to study the influence of the process on the molecular mobility found in these systems. It was shown that the behavior of PVDF as a matrix in these nanocomposite is close to that of pure PVDF. The main changes observed is the slowing down of the dynamics of the alpha a (associated to the glass transition temperature) and the alpha c (associated to the crystalline phase) relaxations as a function of the TiO2 volume fraction increase. The existence of charge carriers trapping at the interfaces related to the interfacial polarization (IP) in the different nanocomposites has also been analyzed. The additions of TiO2 decrease the mobility of the polymer chains which makes difficult the orientation of electric dipole moment ending in an increase of the energy of activation of IP relaxation
7

Chain Dynamics in the Crystalline Region of Polyethylene Oxide (PEO) as Investigated by Solid-State NMR

Shi, Jingjun 04 June 2015 (has links)
No description available.
8

MODELING THE EFFECTS OF SOLID STATE ORIENTATION ON BLOWN HIGH MOLECULAR WEIGHT HIGH DENSITY POLYETHYLENE FILMS: A COMPOSITE THEORY APPROACH

BREESE, DAVID RYAN 23 May 2005 (has links)
No description available.
9

Effects of Microcrystallinity on Physical Aging and Environmental Stress Cracking of Poly (ethylene terephthalate) (PET)

Zhou, Hongxia 05 October 2005 (has links)
No description available.
10

Process/Structure/Property Relationships of Semi-Crystalline Polymers in Material Extrusion Additive Manufacturing

Lin, Yifeng 14 March 2024 (has links)
Material Extrusion additive manufacturing (MEX) represents the most widely implemented form of additive manufacturing due to its high performance-cost ratio and robustness. Being an extrusion process in its essence, this process enables the free form fabrication of a wide range of thermoplastic materials. However, in most typical MEX processes, only amorphous polymers are being used as feedstock material owing to their smaller dimensional shrinkage during cooling and well-stablished process/structure/property (P/S/P) relationship. Semi-crystalline polymers, with their crystalline nature, possess unique properties such as enhanced mechanical properties and improved chemical resistance. However, due to the inherent processing challenges in MEX of semi-crystalline polymers, the P/S/P relationships are much less established, thus limits the application of semi-crystalline polymers in MEX. The overall aim of this thesis is to advance the understanding of P/S/P relationship of semi-crystalline polymers in MEX. This is accomplished through both experimental and simulation-based research. With a typical commodity semi-crystalline polymer, Poly (ethylene terephthalate) (PET), selected as the benchmark material. First, we experimentally explored the MEX printing of both neat and glass fiber (GF) reinforced recycled PET (rPET). Excellent MEX printability were shown for both neat and composite materials, with GF reinforced parts showing a significant improved mechanical property. Notably, a gradient of crystallinity induced by a different toolpathing time was highlighted. In the second project, to further investigate the impact of MEX parameter on crystallinity and mechanical properties, a series of benchmark parts were printed with neat PET and analyzed. The effect of part design and MEX parameter on thermal history during printing was revealed though a comparative analysis of IR thermography. Subsequent Raman spectroscopy and mechanical test indicated that crystallinity developed during the MEX process can adversely affects the interlayer adhesion. In the third project, a 3D heat transfer model was developed to simulate and understand the thermal history of MEX feedstock material during printing, this model is then thoroughly validated against the experimental IR thermography data. While good prediction accuracy was shown for some scenarios, the research identified and discussed several unreported challenges that significantly affect the model's prediction performance in certain conditions. In the fourth project, we employed a non-isothermal crystallization model to directly predict the development of crystallinity based on given temperature profiles, whether monitored experimentally or predicted by the heat transfer model. The research documented notable discrepancies between the model's predictions and actual crystallinity measurements, and the potential source of the error was addressed. In summary, this thesis explored the MEX printing of semi-crystalline polymer and its fiber reinforced composite. The influence of MEX parameters and part designs on the printed part's thermal history, crystallinity and mechanical performance was then thoroughly investigated. A heat transfer model and a non-isothermal crystallization model were constructed and employed. With rigorous validation against experimental data, previously unreported challenges in MEX thermal and crystallization modeling was highlighted. Overall, this thesis deepens the understanding of current semi-crystalline polymer's P/S/P relationship in MEX, and offers insights for the optimization and future research in the field of both experiment and simulation of MEX. / Doctor of Philosophy / Material extrusion additive manufacturing (MEX), also known as fused filament fabrication (FFF), is a popular form of 3D printing known for its cost-effectiveness and versatility in creating objects from plastic materials. Traditionally, MEX utilizes amorphous polymers because they are less prone to shrinkage and thus easier to print. However, semi-crystalline polymers, offer enhanced strength and chemicals resistance, yet they pose significant challenges in printing due to a limited understanding of their process/structure/property (P/S/P) relationships in MEX. This research aims to improve our understanding of P/S/P relationships of semi-crystalline polymers in MEX. The study utilizes a typical semi-crystalline polymer, Poly (ethylene terephthalate) (PET), as the benchmark material. The study begins with the exploration of the MEX printing of recycled PET (rPET) and its glass fiber composite, finding that with appropriate MEX parameters, both feedstocks are highly printable, and the incorporation of glass fibers substantially increased the strength of the printed parts. Subsequently, a comprehensive investigation regarding the intricate relationship between crystallinity development, mechanical properties, and the MEX printing process is conducted. Our research revealed that the MEX process and the design of the part both considerably affect the crystallinity of the final part, thereby influencing its mechanical properties. In the third chapter, a 3D heat transfer model is constructed to better understand and predict the temperature evolution of materials during MEX printing. Most importantly, the modeling results are rigorously validated against experimental data, showing promising results. However, it also reveals challenges in precisely predicting the temperature of parts under certain conditions. The research then evaluates the applicability of Nakamura non-isothermal crystallization model for MEX printing scenarios. It is found that this model underestimates crystallinity in MEX, primarily because it does not account for shear-induced crystallization, a critical factor in the process. This finding underscores the necessity for more advanced models that can effectively capture the complex dynamics of MEX. In summary, this dissertation significantly enhances our understanding of the behavior of semi-crystalline polymers in MEX printing. It sheds light on the complex relationship between the printing process, the structure of the material, and the final properties of the printed object. This work not only advances our knowledge in 3D printing but also paves the way for more sophisticated modeling approaches, optimizing the MEX process and expanding its potential applications.

Page generated in 0.0653 seconds