Spelling suggestions: "subject:"sentiment analysis"" "subject:"centiment analysis""
281 |
Sentiment Analysis of MOOC learner reviews : What motivates learners to complete a course?Knöös, Johanna, Rääf, Siri Amanda January 2021 (has links)
In the last decade, development of Information and Communication Technology (ICT) thatsupports online learning has increased the demand for e-learning and Massive Open OnlineCourses (MOOCs). Despite their increased popularity, MOOCs are struggling with highdropout rates and only a small percentage of learners complete the courses they enrolled in. Thepurpose of this thesis is to gain knowledge about MOOC learner behaviour. The aim of thestudy is to identify the motivations of learners and how these differ between learners whocompleted a course and those who dropped out. Research on MOOC learners has mostly beencarried out using a quantitative approach. While quantitative methodologies are effective inhandling the large amount of data produced by MOOCs, qualitative methods can give deeperinsights into online learners’ motivations. Therefore, this thesis employs an explanatorysequential mixed methods research, in which sentiment analysis and topic modeling of learnerreviews from the platform Coursera are further explained by qualitative interviews with MOOClearners. In the study 28,000 reviews scraped from five courses within the fields of data sciencewere analyzed and ten interviews were held with learners who either completed, dropped outfrom or both completed and dropped out from a MOOC. In the quantitative analysis nine coursefactors were found that learners wrote about: content, delivery, assessment, learning experience,tools, video material, teaching style, instructor skills and course provider. In addition, eighteenthemes were yielded from the interviews: self-discipline, just for fun, certificates, personaldevelopment, knowledge, career, time, equipment, practical exercise, interaction, instructor,reality, structure, external material, cost, community, degree of difficulty and other. In thediscussion the empirical findings are reflected upon using the theoretical framework of theresearch and the literature review. The result does not reveal any differences in motivationsbetween learners who completed a course and those who dropped out, however, it does identifyfactors that caused learners’ to drop out and the topics that most negative learner reviews wereabout. This research contributes to the body of knowledge in the field of research on MOOClearner retention and motivations. The topic is relevant for research in education informaticsand for continued improvements in delivery of MOOCs.
|
282 |
Sentimentanalys av svenskt aktieforum för att förutspå aktierörelse / Sentiment analysis of Swedish stock trading forum for predicting stock market movementOuadria, Michel Sebastian, Ciobanu, Ann-Stephanie January 2020 (has links)
Förevarande studie undersöker möjligheten att förutsäga aktierörelse på en dagligbasis med sentimentanalys av inlägg från ett svenskt aktieforum. Sentimentanalys används för att finna subjektivitet i form av känslor (sentiment) ur text. Textdata extraherades från ett svenskt aktieforum för att förutsäga aktierörelsen för den relaterade aktien. All data aggregerades inom en bestämd tidsperiod på två år. Undersökningen utnyttjade maskininlärning för att träna tre maskininlärningsmodeller med textdata och aktiedata. Resultatet påvisade ingen tydlig korrelation mellan sentiment och aktierörelse. Vidare uppnåddes inte samma resultat som tidigare arbeten inom området. Den högst uppnådda noggrannheten med modellerna beräknades till 64%. / The present study examines the possibility of predicting stock movement on a daily basis with sentiment analysis of posts in a swedish stock trading forum. Sentiment analysis is used to find subjectivity in the form of emotions (sentiment) from text. Textdata was extracted from a stock forum to predict the share movement of the related share. All data was aggregated within a fixed period of two years. The analysis utilizes machine learning to train three machine learning models with textdata and stockdata. The result showed no clear correlation between sentiment and stock movement. Furthermore, the result was not able to replicate accuracy as previous work in the field. The highest accuracy achieved with the models was calculated at 64%.
|
283 |
Public Sentiment on Twitter and Stock Performance : A Study in Natural Language Processing / Allmänna sentimentet på Twitter och aktiemarknaden : En studie i språkteknologiHenriksson, Jimmy, Hultberg, Carl January 2019 (has links)
Since recent years, the use of non-traditional data sources by hedge funds in order to support investment decisions has increased. One of the data sources which has increased most is social media and it has become popular to analyze the public opinion with help of sentiment analysis in order to predict the performance of a company. In order to evaluate the public opinion one need big sets of Twitter data. The Twitter data was collected by streaming the Twitter feed and the stock data was collected from a Bloomberg Terminal. The aim of this study was to examine if there is a correlation between the public opinion of a stock and the stock price, and also what affects this relationship. While such a relationship cannot be established in general, we are able to show that if the data quality is good, there is a high correlation between the public opinion and stock price, and that significant events surrounding the company results in a higher correlation during that period. / De senaste åren har användandet av icke-traditionella datakällor ökat av hedgefonder för att ta investeringsbeslut. En av datakällorna som blivit populära är sociala medier och det har blivit vanligt att analysera folkopinionen med hjälp av sentimentanalys för att kunna förutspå ett företags resultat. För att analysera folkopinionen krävdes stora mängder Twitterdata. Twitter-datan hämtades genom att strömma Twitter-flödet och aktiedatan hämtades från en Bloomberg Terminal. Målet med studien var att undersöka ifall det finns en korrelation mellan folkopinionen av en aktie och aktiens prisutveckling, och även vad som påverkar denna relationen. Även om en sådan relation inte kan fastställas i allmänhet så kan vi visa att om datakvaliten är god, så finns det en hög korrelation mellan folkopinionen och aktiepriset, samt att vid betydande händelser som rör företaget, så resultar det i en hög korrelation under den perioden.
|
284 |
Exploration of Knowledge Distillation Methods on Transformer Language Models for Sentiment Analysis / Utforskning av metoder för kunskapsdestillation på transformatoriska språkmodeller för analys av känslorLiu, Haonan January 2022 (has links)
Despite the outstanding performances of the large Transformer-based language models, it proposes a challenge to compress the models and put them into the industrial environment. This degree project explores model compression methods called knowledge distillation in the sentiment classification task on Transformer models. Transformers are neural models having stacks of identical layers. In knowledge distillation for Transformer, a student model with fewer layers will learn to mimic intermediate layer vectors from a teacher model with more layers by designing and minimizing loss. We implement a framework to compare three knowledge distillation methods: MiniLM, TinyBERT, and Patient-KD. Student models produced by the three methods are evaluated by accuracy score on the SST-2 and SemEval sentiment classification dataset. The student models’ attention matrices are also compared with the teacher model to find the best student model for capturing dependencies in the input sentences. The comparison results show that the distillation method focusing on the Attention mechanism can produce student models with better performances and less variance. We also discover the over-fitting issue in Knowledge Distillation and propose a Two-Step Knowledge Distillation with Transformer Layer and Prediction Layer distillation to alleviate the problem. The experiment results prove that our method can produce robust, effective, and compact student models without introducing extra data. In the future, we would like to extend our framework to support more distillation methods on Transformer models and compare performances in tasks other than sentiment classification. / Trots de stora transformatorbaserade språkmodellernas enastående prestanda är det en utmaning att komprimera modellerna och använda dem i en industriell miljö. I detta examensarbete undersöks metoder för modellkomprimering som kallas kunskapsdestillation i uppgiften att klassificera känslor på Transformer-modeller. Transformers är neurala modeller med staplar av identiska lager. I kunskapsdestillation för Transformer lär sig en elevmodell med färre lager att efterlikna mellanliggande lagervektorer från en lärarmodell med fler lager genom att utforma och minimera förluster. Vi genomför en ram för att jämföra tre metoder för kunskapsdestillation: MiniLM, TinyBERT och Patient-KD. Elevmodeller som produceras av de tre metoderna utvärderas med hjälp av noggrannhetspoäng på datasetet för klassificering av känslor SST-2 och SemEval. Elevmodellernas uppmärksamhetsmatriser jämförs också med den från lärarmodellen för att ta reda på vilken elevmodell som är bäst för att fånga upp beroenden i de inmatade meningarna. Jämförelseresultaten visar att destillationsmetoden som fokuserar på uppmärksamhetsmekanismen kan ge studentmodeller med bättre prestanda och mindre varians. Vi upptäcker också problemet med överanpassning i kunskapsdestillation och föreslår en tvåstegs kunskapsdestillation med transformatorskikt och prediktionsskikt för att lindra problemet. Experimentresultaten visar att vår metod kan producera robusta, effektiva och kompakta elevmodeller utan att införa extra data. I framtiden vill vi utöka vårt ramverk för att stödja fler destillationmetoder på Transformer-modeller och jämföra prestanda i andra uppgifter än sentimentklassificering.
|
285 |
App segments: A sentiment analysis study of Reddit posts discussing Instant Apps and App ClipsGustafsson, Fredrik, Jansson, Emma January 2023 (has links)
Google’s Instant Apps and Apple’s App Clips are technologies that enable small segments of full scale apps to run on a mobile device, without needing to have the app installed. By restricting the size of these segments, they are able to download and run almost instantly. Marketed as an effective way to order food, rent bikes, and pay for parking, the technology has not been widely adopted. Furthermore, publicly available research on the topic is very limited. In this study, attitudes towards Instant Apps and App Clips found in user submitted posts on Reddit were examined. By conducting a sentiment analysis, the aim is to gain insight into how the opinions on these technologies have changed over time since their introduction. The results show that the sentiment has become slightly more positive over time. Additionally, differences in sentiment between the two technologies were found, but the limited number of data rows prevent the possibility of drawing reliable conclusions on this. / Googles Instant Apps och Apples App Clips är teknologier som möjliggör att små segment av mobilapplikationer i fullstorlek kan köras på en enhet utan att enheten behöver ha applikationen installerad. Genom att storleken på dessa segment begränsas kan de laddas ned och köras nästan omedelbart. Tekniken marknadsförs som ett smidigt och effektivt sätt att t.ex. beställa mat, hyra cyklar eller betala för parkering. Dock har den adopterats i låg grad. Mängden tillgänglig forskning på dessa teknologier är mycket begränsad. I denna studie undersöks attityder gentemot Instant Apps och App Clips så som de representeras i användarinlägg på Reddit. Genom sentimentanalys ämnas att få insikt om hur åsikterna kring dessa teknologier förändrats sedan de offentliggjordes på marknaden. Resultatet visar att sentimentet blivit något mer positivt över tid. Skillnader mellan sentimentet för de olika teknologierna hittades också, men tillförlitliga slutsatser om detta kan dock inte dras på grund av den begränsade datamängden.
|
286 |
Covid-19 Related Conspiracy Theories on Social Media : How to identify misinformation through patterns in language usage on social media / Covid-19 relaterade konspirationsteorier på sociala medierSavinainen, Oskar, Hvidbjerg Hansen, Thor January 2022 (has links)
Distinguishing between information and disinformation is an ever growing issue. The dramatic structure of a conspiracy theory easily captures a large audience and with the advent of social media, this disinformation can spread at an ever growing rate. This is especially true with the infodemic following the Covid-19 pandemic in early 2020, where there was a drastic increase in Covid-19 related misinformation on social media. When misinformation replaces fact, some people will inevitably follow borderline dangerous advice. This could unfortunately be seen in the ivermection issue where people injected this substance in hope of preventing/curing a Covid-19 infection. This is why finding patterns in disinformation that distinguishes it from facts would allow us to take measures against the spread of conspiracy theories. We have found patterns in our dataset suggesting that there is a significant difference in the language patterns for terms relating to conspiracy theories, and non-conspiratorial terms. We find that the sentiment of conspiracy theories is very volatile when compared to that of non-conspiratorial terms which follow a more neutral pattern in terms of sentiment. Suggesting that the language usage in a post can be used as a factor when determining the credibility of its content. We also find that conspiracy theories tend to see a drastic increase in mentions when previously being relatively lowin mentions. The result of this thesis could therefore be used as a start for developing tools and processes which would seek to combat the spread of conspiracy theories and limit the potential harm that could come from them.
|
287 |
Predicting Stock Market Movement Using Machine Learning : Through r/wallstreetbets sentiment & Google Trends, Herding versus Wisdom of CrowdsNorinder, Niklas January 2022 (has links)
Stock market analysis is a hot-button topic, especially with the growth of online communities surrounding trading and investment. The goal of this paper is to examine the sentiment of r/wallstreetbets and the Google Trends score for a number of stocks – and then understanding whether the herding nature of investors on r/wallstreetbets is better at predicting the movement of the stock market than the WOC nature of Google Trends scores. Some combination of the herding and WOC values will also be used in predicting stock market fluctuations. Analysis will be done through the machine learning algorithms RFC and MLP. Through the mean and median precisions presented by the different machine learning algorithms the effectiveness of the predictor can be understood. This paper finds no real connection between either r/wallstreetbets sentiment or Google Trends data regarding predicting stock value fluctuations – with r/wallstreetbets yielding approximately 51%-52% mean precision depending on the machine learning algorithm used, and Google Trends precisions sitting at around 51%. The combination of r/wallstreetbets data and Google Trends data did not produce any significantly higher precision either, being between 51%-52%.
|
288 |
Data Fusion and Text Mining for Supporting Journalistic WorkZsombor, Vermes January 2022 (has links)
During the past several decades, journalists have been struggling with the ever growing amount of data on the internet. Investigating the validity of the sources or finding similar articles for a story can consume a lot of time and effort. These issues are even amplified by the declining size of the staff of news agencies. The solution is to empower the remaining professional journalists with digital tools created by computer scientists. This thesis project is inspired by an idea to provide software support for journalistic work with interactive visual interfaces and artificial intelligence. More specifically, within the scope of this thesis project, we created a backend module that supports several text mining methods such as keyword extraction, named entity recognition, sentiment analysis, fake news classification and also data collection from various data sources to help professionals in the field of journalism. To implement our system, first we gathered the requirements from several researchers and practitioners in journalism, media studies, and computer science, then acquired knowledge by reviewing literature on current approaches. Results are evaluated both with quantitative methods such as individual component benchmarks and also with qualitative methods by analyzing the outcomes of the semi-structured interviews with collaborating and external domain experts. Our results show that there is similarity between the domain experts' perceived value and the performance of the components on the individual evaluations. This shows us that there is potential in this research area and future work would be welcomed by the journalistic community.
|
289 |
Image Emotion Analysis: Facial Expressions vs. Perceived ExpressionsAyyalasomayajula, Meghana 20 December 2022 (has links)
No description available.
|
290 |
COVID-19: Анализ эмоциональной окраски сообщений в социальных сетях (на материале сети «Twitter») : магистерская диссертация / COVID-19: Social network sentiment analysis (based on the material of "Twitter" messages)Денисова, П. А., Denisova, P. A. January 2021 (has links)
Работа посвящена изучению анализа тональности текстов в социальных сетях на примере сообщений-твитов из социальной сети Twitter. Материал исследования составили 818 224 сообщения по 17-ти ключевым словам, из которых 89 025 твитов содержали слова «COVID-19» и «Сoronavirus». В первой части работы рассматриваются общие теоретические и методологические вопросы: вводится понятие Sentiment Analysis, анализируются различные подходы к классификации тональности текстов. Особое внимание в задачах классификации текстов уделяется Байесовскому классификатору, который показывает высокую точность работы. Изучаются особенности анализа тональности текстов в социальных сетях во время эпидемий и вспышек болезней. Описывается процедура и алгоритм анализа тональности текста. Большое внимание уделяется анализу тональности текстов в Python с помощью библиотеки TextBlob, а также выбирается ещё один из инструментов «SaaS» - программное обеспечение как услуга, который позволяет реализовать анализ тональности текстов в режиме реального времени, где нет необходимости в большом опыте машинного обучения и обработке естественного языка, в сравнении с языком программирования Python. Вторая часть исследования начинается с построения выборок, т.е. определения ключевых слов, по которым в работе осуществляется поиск и экспорт необходимых твитов. Для этой цели используется корпус - Coronavirus Corpus, предназначенный для отражения социальных, культурных и экономических последствий коронавируса (COVID-19) в 2020 году и в последующий период. Анализируется динамика использования слов по изучаемой тематике в течение 2020 года и проводится аналогия между частотой их использования и происходящими событиями. Далее по выбранным ключевым словам осуществляется поиск твитов и, основываясь на полученных данных, реализуется анализ тональности cообщений с помощью библиотеки Python - TextBlob, созданной для обработки текстовых данных, и онлайн - сервиса Brand24. Сравнивая данные инструменты, отмечается схожесть полученных результатов. Исследование помогает быстро и в реальном времени понять общественные настроения по поводу вспышки COVID-19, способствуя тем самым пониманию развивающихся событий. Также данная работа может быть использована в качестве модели для определения эмоционального состояния интернет-пользователей в различных ситуациях. / The work is devoted to the sentiment analysis study of messages in Twitter social network. The research material consisted of 818,224 messages and 17 keywords, whereas 89,025 tweets contained the words "COVID-19" and "Coronavirus". In the first part, theoretical and methodological issues are considered: the concept of sentiment analysis is introduced, various approaches to text classification are analyzed. Particular attention in the problems of text classification is given to Naive Bayes classifier, which shows high accuracy of work. The features of sentiment analysis in social networks during epidemics and disease outbreaks are studied. The procedure and algorithm for analyzing the sentiment of the text are described. Much attention is paid to the analysis of sentiment of texts in Python using TextBlob library, and also one of the SaaS tools is chosen - software as a service, which allows real-time sentiment analysis of texts, where there is no need for extensive experience in machine learning and natural language processing against Python programming language. The second part of the study begins with sampling, i.e. definition of keywords by which the search and export of the necessary tweets is carried out. For this purpose, the Coronavirus Corpus is used, designed to reflect the social, cultural and economic consequences of the coronavirus (COVID-19) in 2020 and beyond. The dynamics of the topic words usage during 2020 is analyzed and an analogy is drawn between the frequency of their usage and the events in place. Next, the selected keywords are used to search for tweets and, based on the data obtained, the sentiment analysis of messages is carried out using the Python library - TextBlob, created for processing textual data, and the Brand24 online service. Comparing these tools, the results are similar. The study helps to understand quickly and in real-time public sentiments about the COVID-19 outbreak, thereby contributing to the understanding of developing events. Also, this work can be used as a model for determining the emotional state of Internet users in various situations.
|
Page generated in 0.1059 seconds