Spelling suggestions: "subject:"sequências espectral (matemática)"" "subject:"sequências espectral (latemática)""
1 |
Grupos abelianos-por-nilpotentes do tipo homologico 'FP IND.3' / Abelian-by-nilpotent of homological type 'FP IND.3'Rodrigues, Claudenir Freire 12 April 2006 (has links)
Orientador: Dessislava H. Kochloukova / Tese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-07T18:15:42Z (GMT). No. of bitstreams: 1
Rodrigues_ClaudenirFreire_D.pdf: 1150293 bytes, checksum: 63045fd15f6ef421699cbcf26de55d92 (MD5)
Previous issue date: 2006 / Resumo: Neste trabalho estudamos grupos abstratos finitamente gerados G que são extensões cindidas de um grupo abeliano A por um grupo Q nilpotente de classe 2. Mostramos que se G tem tipo homológico F P3, então o quociente G/N também tem tipo homológico F P3 onde N é o fecho normal do centro de Q em G. Observamos que não existe classificação quando G pode ter tipo FP3, nem classificação para tipo F P2 ou ser finitamente apresentável. Por causa disso nós trabalhamos com um quociente especifico de G. Ainda fica em aberto se cada quociente de G tem tipo FP3 quando G tem tipo FP3. Observamos que isso vale quando G é grupo metabeliano, nesse caso a teoria de Bieri-Strebel pode ser aplicada / Abstract: We study abstract finitely generated groups G that are split extensions from A abelian group by Q nilpotent group of class two. We show that if G has homological type FP3 then the quotient group GjN has homological type FP3 too, where N is the normal closure of the center of Q in G. Since there is no classification when G is of type FP3, nor when G is of type FP2 or finitely presented we work with one specific quotient. It is an open problem whether every quotient of G has type F P3. This holds if G is a metabelian group and in this case the Bieri-Strebel theory applies / Doutorado / Doutor em Matemática
|
2 |
Sequências espectrais de Lyndon-Hochschild-Serre e de Cartan-Leray, e algumas aplicações /Gomes, Neila Mara. January 2009 (has links)
Orientador: Ermínia de Lourdes Campello Fanti / Banca: Luiz Queiroz Pegher / Banca: João Peres Vieira / Resumo: Neste trabalho apresentamos um estudo da sequência espectral associada à uma filtração (finita) de um complexo de cadeias de módulos sobre um anel arbitrário R. Em especial, destacamos as sequências espectrais de Lyndon-Hochschild-Serre e de Cartan-Leray, e algumas aplicações na teoria de homologia. / Abstract: In this work we present a study of the spectral sequence associated to the filltration (finite) of a chain complex of modules on an arbitrary ring R. In special, we emphasize the spectral sequences of Lyndon-Hochschild-Serre and Cartan-Leray and some applications in the homology theory. / Mestre
|
3 |
Sequências espectrais e aplicações aos cálculos de cohomologias de espaços fibrados /Souza, Beethoven Adriano de. January 2009 (has links)
Orientador: João Peres Vieira / Banca: Gorete Carreira Andrade / Banca: Dirceu Penteado / Resumo: Este trabalho tem como objetivo principal o cálculo dos grupos de Cohomologia de alguns Grupos Clássicos como o Grupo das Rotações do Espaço Euclidiano Rn (SO(n)), o Grupo Unitário (U(n)), o Grupo Especial Unitário (SU(n)) e o Grupo Simplético (Sp(n)). Além disso calcularemos também o grupo de Cohomologia do Espaço Projetivo Complexo (CP(n)). Para esses cálculos usaremos sequências espectrais e o Teorema de Serre para Cohomologia. / Abstract: The main purpose of this work is to calculate the cohomology groups of some classical groups as the rotation groups of the euclidean space Rn, SO(n), the unitary group U(n), your special unitary subgroup SU(n) and the symplectic group Sp(n). Moreover we also calculate the cohomology groups of complex projective space CP(n). For these calculus we will use spectral sequences and the Serre's Theorem for Cohomology. / Mestre
|
4 |
A homologia de uma fibração /Pagotto, Pablo Gonzalez. January 2016 (has links)
Orientador: Alice Kimie Miwa Libardi / Banca: Pedro Luiz Queiroz Pergher / Banca: Denise de Mattos / Resumo: O objetivo principal deste trabalho é apresentar um estudo sobre Homologia de Espaços Fibrados, baseado no livro Elements of Homotopy Theory de G.W.Whitehead. O conceito de fibração apareceu em torno de 1930 e pode ser visto como uma extensão da teoria de fibrados. Existe uma sequência exata longa que relaciona os grupos de homotopia dos espaços base, total e da fibra de uma fibração. Porém, relacionar os grupos de homologia desses espaços é uma tarefa mais complicada. O caso geral é feito utilizando sequências espectrais. Porém, há casos particulares em que podemos obter relações sem utilizar a maquinaria das sequências espectrais / Abstract: The main goal of this work is to present a study on Homology of Fibre Spaces, based on the book of G.W. Whitehead: "Elements of Homotopy Theory". The concept of fibration appeared around 1930 and can be seen as an extension of the theory of bundles. There is a long exact sequence that relates the homotopy groups of the total, base and fiber spaces of a fibration. However, relating the homology groups of such spaces is more complicated. The general case is obtained using spectral sequences. Nevertheless there are particular cases where one can obtain such relations without the need of the machinery of spectral sequences / Mestre
|
5 |
Sobre (H,G)-coincidências de aplicações com domínio em espaços com ações de grupos finitos /Souza, Bruno Caldeira Carlotti de. January 2017 (has links)
Orientador: Maria Gorete Carreira Andrade / Banca: Ermínia de Lourdes Campello Fanti / Banca: Pedro Luiz Queiroz Pergher / Resumo: O objetivo principal deste trabalho é apresentar detalhadamente um estudo sobre um critério, que aparece na referência Coincidence for maps of spaces with finite group action de D. L. Gonçalves, J. Jaworowski, P. L. Q. Pergher e A. Volovikov, para a existência de (H,G)-coincidências de aplicações cujo contradomínio é um CW-complexo finito Y de dimensão k e cujo domínio é um espaço X paracompacto, Hausdorff, conexo e localmente conexo por caminhos e munido de uma G-ação livre, de modo que exista um inteiro m tal que os grupos i-dimensionais de homologia de X sejam triviais nas dimensões 0<i<m e a cohomologia (m+1)-dimensional de G não seja trivial. Para a realização deste estudo foram necessários alguns resultados da teoria de cohomologia de grupos finitos, com ênfase em grupos de cohomologia periódica segundo a teoria de cohomologia de Tate, alguns resultados da teoria de fibrados e algumas noções da teoria de sequências espectrais cohomológicas / Abstract: The main objective of this work is to present in detail a study about a criterion, which appears in the reference [11], for the existence of (H, G)-coincidences of maps into a finite CW-complex Y with dimension k and whose domain is a paracompact, Hausdorff, connect and locally pathconnected space X with a free action of G, in a way that there exists m ∈ Z such that Hi(X; Z) = 0 for 0 < i < m and Hm+1(G;Z) ... / Mestre
|
6 |
A dinamica por tras da sequencia espectral / The dynamic behind the spectral sequenceSilveira, Mariana Rodrigues da 30 April 2008 (has links)
Orientador: Ketty Abaroa de Rezende / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T21:02:39Z (GMT). No. of bitstreams: 1
Silveira_MarianaRodriguesda_D.pdf: 1531895 bytes, checksum: 3c73a8eb791483b1f0216d6f2627969b (MD5)
Previous issue date: 2008 / Resumo: Neste trabalho, apresentamos um algoritmo para um complexo de cadeias C e sua diferencial dada por uma matriz de conexão _ que determina uma seqüência espectral associada (Er, dr). Mais especificamente, um sistema gerador de Er em termos da base original de C é obtido bem como a identificação de todas as diferenciais dr p : Er p ! Er p-r. Explorando a implicação dinâmica da diferencial não nula, mostramos a existência de um caminho unindo a singularidade que gera E0 p e a singularidade que gera E0 p-r no caso em que a conexão direta pelo fluxo não existe. Este caminho é composto pela justaposição de órbitas do fluxo e do fluxo reverso e prova ser importante em algumas aplicações / Abstract: In this work, we present an algorithm for a chain complex C and its di_erential given by a connection matrix _ which determines an associated spectral sequence (Er, dr). More specifically, a system spanning Er in terms of the original basis of C is obtained as well as the identi_cation of all di_erentials dr p : Er p ! Er p-r. In exploring the dynamical implication of a nonzero di_erential, we prove the existence of a path joining the singularities generating E0 p and E0 p-r in the case that a direct connection by a _ow line does not exist. This path is made up of juxtaposed orbits of the _ow and of the reverse _ow and which proves to be importantin some applications / Doutorado / Geometria e Topologia/Sistemas Dinamicos / Doutor em Matemática
|
7 |
O complexo de Morse-Witten via sequências espectrais / The Morse-Witten complex via spectral sequencesVieira, Ewerton Rocha, 1987- 17 August 2018 (has links)
Orientador: Ketty Abaroa de Rezende / Dissertação (mestrado) - Universidade Estadual de Campiknas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T15:05:58Z (GMT). No. of bitstreams: 1
Vieira_EwertonRocha_M.pdf: 3301438 bytes, checksum: 3fe2a609518ad6e7e190afc243b53ea4 (MD5)
Previous issue date: 2011 / Resumo: Nesse trabalho, estudaremos o complexo de Morse-Witten via sequências espectrais, utilizando a matriz de conexão sobre z que codifica as orbitas de conexão do uso de Morse associado ao complexo. O algoritmo do Método da Varredura aplicado à matriz de conexão sobre z produz uma sequência espectral (Er; dr), que por sua vez nos fornece informações importantes sobre a dinâmica. Dada a necessidade de computarmos os geradores dos -modulos Erp,q e as diferencias drp,q da seqüência espectral, utilizamos o software Sweeping Algorithm,que calcula os Erp,q e drp,q de forma rápida e eficiente. Apresentamos uma forma de estender o complexo de Morse-Witten, conforme [BaC1] e [BaC]. Tal complexo apresenta informações entre pontos críticos não consecutivos, ate então não obtidas pelo complexo de Morse-Witten. Para esse complexo estendido temos também uma seqüência espectral associada, através da qual obtemos informações dinâmicas, conforme os trabalhos [BaC1] e [BaC] / Abstract: In this work, we study the Morse-Witten Complex via spectral sequences, using the connection matrix over z, which codi_es the connecting orbits of the Morse ow associated to the complex. The Sweeping Method algorithm applied to the connection matrix over z produces a spectral sequence (Er; rd), which in turn gives us important information on the dynamics. Given the need to compute the generators of Z-modules Erp,q and the diferentials drp,q of the spectral sequence, we use the software Sweeping Algorithm, calculates Erp,q and drp,q quickly and efficiently. We present a way to extend the Morse-Witten as [BaC1] and [BaC]. This complex exhibits information between non-consecutive critical points, not obtainable using the Morse-Witten complex. For this extended Morse Complex we also have an associated spectral sequence, whereby dynamical information is also obtained as in [BaC1] and [BaC] / Mestrado / Mestre em Matemática
|
8 |
Propagação de ondas usando modelos de elementos finitos de fatias de guias de ondas estruturais / Wave propgation using finite element models of structural waveguide slicesNascimento, Rangel Ferreira do 13 August 2018 (has links)
Orientador: Jose Roberto de França Arruda / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-13T08:53:33Z (GMT). No. of bitstreams: 1
Nascimento_RangelFerreirado_D.pdf: 7547341 bytes, checksum: 0793f0ff7763f81b44868f59db73aab6 (MD5)
Previous issue date: 2009 / Resumo: Esta tese estuda e investiga o problema de propagação de ondas em estruturas periódicas usando o método de elemento espectral, a relação entre a matriz dinâmica e a matriz de transferência é mostrada para alguns casos, tais como, viga, barra, placa de Levy e modelo de Minddlin Hermman. A partir destas teorias, o método de propagação de ondas usando um modelo de elementos finitos de uma fatia do guia de ondas, WFEM é apresentado e o problema de prever os modos de propagação e os números de onda correspondentes. O objetivo deste trabalho é mostrar que usando o método WFEM e uma fatia do guia de onda modelado com elementos finitos sólido é possível construir elementos finitos espectrais para ser usado em guias de ondas homogêneos sem precisar de malha de refinamento. Tais elementos podem ser usados para modelar guias de ondas com seção transversal constante. A matriz de rigidez dinâmica para o elemento de barra elementar e para o elemento de viga de Euler Bernoulli são obtidos usando a formulação espectral padrão e obtidas usando uma fatia do guia de onda modelado pelo método FEM, são mostrados resultados do método proposto. / Abstract: This thesis, studies and investigates wave propagation problem in periodic structures using the spectral element method, the relation between the dynamic matrix and the transfer matrix is shown for some cases, such as, beam, bar, Levy plate and Mindlin-Herrmann's model. From these theories, the Wave Finite Element Method, WFEM is presented and the problem of predicting the wave propagation modes and the respective wavenumbers. The purpose of this work is to show that using the WFEM method and a slice of the waveguide modeled with solid finite elements, it is possible to develop spectral finite elements to be used in long homogeneous waveguides without the need of mesh refinement. Such elements can be used to model waveguides with constant cross section and long spans. The dynamic stiffness matrix of a simple rod and Bernoulli Euler beam element obtained using the standard spectral formulation and obtained via the FEM model of a slice are shown to be similar, thus validating the proposed method. / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Doutor em Engenharia Mecânica
|
9 |
Dynamical spectral sequences for Morse-Novikov and Morse-Bott complexes / Sequências espectrais dinâmicas para complexos de Morse-Novikov e Morse-BottLima, Dahisy Valadão de Souza, 1986- 25 August 2018 (has links)
Orientador: Ketty Abaroa de Rezende / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T10:15:50Z (GMT). No. of bitstreams: 1
Lima_DahisyValadaodeSouza_D.pdf: 22146296 bytes, checksum: c88725de657b032422b9e4614ccd91a9 (MD5)
Previous issue date: 2014 / Resumo: O tema principal desta tese é o estudo de fluxos gradientes associados a campos vetoriais $-\nabla f$ em variedades fechadas, onde $f$ é uma função do tipo Morse, Morse circular e Morse-Bott. Para obter informações dinâmicas em cada caso, utilizamos ferramentas algébricas e topológicas, tais como sequências espectrais e matrizes de conexão. No contexto de Morse, consideramos um complexo de cadeias $(C,\Delta)$ gerado pelos pontos críticos de $f$ onde $\Delta$ conta (com sinal) o número de linhas do fluxo entre dois pontos críticos consecutivos. Uma análise via sequências espectrais $(E^{r},d^{r})$ é feita para se obter resultados de continuação global em superfícies. Nós relacionamos as diferenciais da $r$-ésima página de $(E^{r},d^{r})$ com cancelamentos dinâmicos entre pontos críticos. No caso de função de Morse circular $f:M \rightarrow S^{1}$, o método da varredura para um complexo de Novikov $(\mathcal{N},\Delta)$ associado $f$ e gerado pelos pontos críticos de $f$ é definido sobre o anel $\mathbb{Z}((t))$. Este método produz a cada etapa matrizes de Novikov. Provamos que a matriz final produzida pelo método da varredura tem entradas polinomiais, o que é surpreendente, já que as matrizes intermediárias podem ter séries infinitas como entradas. Apresentamos resultados que mostram que os módulos e diferenciais de uma sequência espectral associada a $(\mathcal{N},\Delta)$ podem ser recuperados através do método da varredura. Para fluxos gradientes associados a funções de Morse-Bott, as singularidades formam variedades críticas. Usamos a teoria do índice de Conley para obter uma caracterização do conjunto de matrizes de conexão para fluxos Morse-Bott. Obtemos resultados sobre o efeito no conjunto de matrizes de conexão causado por mudanças na ordem parcial e na decomposição de Morse de um conjunto invariante isolado / Abstract: The main theme in this thesis is the study of gradient flows associated to a vector field $-\nabla f$ on closed manifolds, where $f$ is either a Morse function, a circle-valued Morse function or a Morse-Bott function. In order to obtain dynamical information, we make use of algebraic and topological tools such as spectral sequences and connection matrices. In the Morse context, consider a chain complex $(C,\Delta)$ generated by the critical points of $f$, where $\Delta$ counts the number of flow lines between consecutive critical points with signs. A spectral sequence $(E^{r},d^{r})$ analysis is used to obtain results on global continuation of flows on surfaces. A link is established between the differentials on the $r$-th page of $(E^{r},d^{r})$ and cancellation of critical points. In the circle-valued Morse case $f:M \rightarrow S^{1}$, a sweeping algorithm for the Novikov chain complex $(\mathcal{N},\Delta)$ associated to $f$ and generated by the critical points of $f$ is defined over the ring $\mathbb{Z}((t))$. This algorithm produces at each stage Novikov matrices. We prove that the last Novikov matrix has polynomial entries which is quite surprising since the matrices in the intermediary stages may have infinite series entries. We also present results showing that the modules and differentials of the spectral sequence associated to $(\mathcal{N},\Delta)$ can be retrieved through the sweeping algorithm. For gradient flows associated to Morse-Bott functions, the singularities form critical manifolds. We use the Conley index theory for the critical manifolds in order to characterize the set of connection matrices for Morse-Bott flows. Results are obtained on the effects on the set of connection matrices caused by a change in the partial ordering and Morse decomposition of isolated invariant sets / Doutorado / Matematica / Doutora em Matemática
|
10 |
Transition matrix theory = Teoria da matriz de transição / Teoria da matriz de transiçãoVieira, Ewerton Rocha, 1987- 03 May 2015 (has links)
Orientador: Ketty Abaroa de Rezende / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:09:01Z (GMT). No. of bitstreams: 1
Vieira_EwertonRocha_D.pdf: 1632095 bytes, checksum: 5dc3208efc5649260ca62805c3e8e1b6 (MD5)
Previous issue date: 2015 / Resumo: Nessa tese, apresentamos uma unificação da teoria das matrizes de transição algébrica, singular, topológica e direcional ao introduzir a matriz de transição (generalizada), a qual engloba todas as quatros citadas anteriormente. Alguns resultados de existência são apresentados bem como a verificação de que cada matriz de transição supracitada são casos particulares da matriz de transição (generalizada). Além disso, nós abordamos como as aplicações das quatros matrizes de transiçao, na teoria do índice de Conley, se traduzem para a matriz de transição (generalizada). Quando a matriz de transição (generalizada) satisfizer o requerimento adicional de cobrir o isomorfismo do índice de Conley F definido pelo fluxo, pode-se provar propriedades de existência e de conexão de órbitas. Essa matriz de transição com a propriedade de cobrir o isomorfismo F é definida como matriz de transição topológica generalizada e a utilizamos para obter conexões de órbitas num fluxo Morse-Smale sem órbitas periódicas bem como para obter conexões de órbitas numa continuação associada à sequência espectral dinâmica / Abstract: In this thesis, we present a unification of the theory of algebraic, singular, topological and directional transition matrices by introducing the (generalized) transition matrix which encompasses each of the previous four. Some transition matrix existence results are presented as well as the verification that each of the previous transition matrices are cases of the (generalized) transition matrix. Furthermore, we address how applications of the previous transition matrices to the Conley Index theory carry over to the (generalized) transition matrix. When this more general transition matrix satisfies the additional requirement that it covers flow-defined Conley-index isomorphisms, one proves algebraic and connection-existence properties. These general transition matrices with this covering property are referred to as generalized topological transition matrices and are used to consider connecting orbits of Morse-Smale flows without periodic orbits, as well as those in a continuation associated to a dynamical spectral sequence / Doutorado / Matematica / Doutor em Matemática
|
Page generated in 0.0932 seconds