Spelling suggestions: "subject:"deries temporais"" "subject:"3series temporais""
161 |
[en] IDENTIFICATION MECHANISMS OF SPURIOUS DIVISIONS IN THRESHOLD AUTOREGRESSIVE MODELS / [pt] MECANISMOS DE IDENTIFICAÇÃO DE DIVISÕES ESPÚRIAS EM MODELOS DE REGRESSÃO COM LIMIARESANGELO SERGIO MILFONT PEREIRA 10 December 2002 (has links)
[pt] O objetivo desta dissertação é propor um mecanismo de
testes para a avaliação dos resultados obtidos em uma
modelagem TS-TARX.A principal motivação é encontrar uma
solução para um problema comum na modelagem TS-TARX : os
modelos espúrios que são gerados durante o processo de
divisão do espaço das variáveis independentes.O modelo é
uma heurística baseada em análise de árvore de regressão,
como discutido por Brieman -3, 1984-. O modelo proposto
para a análise de séries temporais é chamado TARX -
Threshold Autoregressive with eXternal variables-. A idéia
central é encontrar limiares que separem regimes que podem
ser explicados através de modelos lineares. Este processo é
um algoritmo que preserva o método de regressão por
mínimos quadrados recursivo -MQR-. Combinando a árvore de
decisão com a técnica de regressão -MQR-, o modelo se
tornou o TS-TARX -Tree Structured - Threshold
AutoRegression with external variables-.Será estendido aqui
o trabalho iniciado por Aranha em -1, 2001-. Onde a partir
de uma base de dados conhecida, um algoritmo eficiente gera
uma árvore de decisão por meio de regras, e as equações de
regressão estimadas para cada um dos regimes encontrados.
Este procedimento pode gerar alguns modelos espúrios ou por
construção,devido a divisão binária da árvore, ou pelo fato
de não existir neste momento uma metodologia de comparação
dos modelos resultantes.Será proposta uma metodologia
através de sucessivos testes de Chow -5, 1960- que
identificará modelos espúrios e reduzirá a quantidade de
regimes encontrados, e consequentemente de parâmetros a
estimar. A complexidade do modelo final gerado é reduzida a
partir da identificação de redundâncias, sem perder o poder
preditivo dos modelos TS-TARX .O trabalho conclui com
exemplos ilustrativos e algumas aplicações em bases de
dados sintéticas, e casos reais que auxiliarão o
entendimento. / [en] The goal of this dissertation is to propose a test
mechanism to evaluate the results obtained from the TS-TARX
modeling procedure.The main motivation is to find a
solution to a usual problem related to TS-TARX modeling:
spurious models are generated in the process of dividing
the space state of the independent variables.The model is a
heuristics based on regression tree analysis, as discussed
by Brieman -3, 1984-. The model used to estimate the
parameters of the time series is a TARX -Threshold
Autoregressive with eXternal variables-.The main idea is to
find thresholds that split the independent variable space
into regimes which can be described by a local linear
model. In this process, the recursive least square
regression model is preserved. From the combination of
regression tree analysis and recursive least square
regression techniques, the model becomes TS-TARX -Tree
Structured - Threshold Autoregression with eXternal
variables-.The works initiated by Aranha in -1, 2001- will
be extended. In his works, from a given data base, one
efficient algorithm generates a decision tree based on
splitting rules, and the corresponding regression equations
for each one of the regimes found.Spurious models may be
generated either from its building procedure, or from the
fact that a procedure to compare the resulting models had
not been proposed.To fill this gap, a methodology will be
proposed. In accordance with the statistical
tests proposed by Chow in -5, 196-, a series of consecutive
tests will be performed.The Chow tests will provide the
tools to identify spurious models and to reduce the
number of regimes found. The complexity of the final model,
and the number of parameters to estimate are therefore
reduced by the identification and elimination of
redundancies, without bringing risks to the TS-TARX model
predictive power.This work is concluded with illustrative
examples and some applications to real data that will help
the readers understanding.
|
162 |
[en] SEMIPARAMETRIC POISSON-GAMMA MODELS: A ROUGHNESS PENALTY APPROACH / [pt] MODELO POISSON-GAMA SEMI-PARAMÉTRICO: UMA ABORDAGEM DE PENALIZAÇÃO POR RUGOSIDADEWASHINGTON LEITE JUNGER 19 February 2004 (has links)
[pt] Neste trabalho, os modelos Poisson-gama são estendidos
para
uma formulação mais geral onde o preditor linear das
covariáveis é substituído por um preditor aditivo de
funções genéricas destas covariáveis. Como nos modelos
aditivos generalizados (MAG), as funções lineares das
covariáveis constituem um caso particular de modelo
aditivo
e as funções suavizadores utilizadas são as splines
cúbicas
naturais. A formulação semi-paramétrica permite ampliar o
campo de aplicação desta classe de modelos. Os modelos
semi-paramétricos são estimados por um processo iterativo
combinando maximização da verossimilhança e algoritmo
backfitting. Todos os algoritmos de estimação e
diagnósticos estão implementados nas linguagens de
programação R e C. / [en] This work is aimed at extending the Poisson-Gamma models
towards a more general specification, where the linear
predictor of covariates is replaced by an additive
predictor of generic functions of these covariates. Just
like the generalized additive models (GAM), the linear
functions of covariates are a particular case of additive
models and the natural cubic splines are used as smoothing
functions. The semiparametric specification allows to
enlarge the possibilities of application of these models.
The semiparametric models are fitted by an iterative
process that combines maximization of likelihood and
backfitting algorithm. All the routines for model fitting
and diagnostics are implemented in R and C programming
languages.
|
163 |
[en] IMPACT OF DEMAND FORECASTING INACCURACY ON THE SUPPLY CHAIN: A CASE STUDY IN THE BEVERAGE INDUSTRY / [pt] IMPACTO DA IMPRECISÃO DA PREVISÃO DE DEMANDA NA CADEIA LOGÍSTICA: UM ESTUDO DE CASO NA INDÚSTRIA DE BEBIDASPAULO MENDES DE OLIVEIRA JUNIOR 19 January 2005 (has links)
[pt] Esta dissertação teve como objetivo desenvolver uma metodologia e
aplicá-la em uma indústria de bebidas, a fim de mensurar o impacto da
imprecisão da previsão de demanda nos processos logísticos de gestão de
estoque, distribuição física e vendas, demonstrando a importância que a
previsão possui no planejamento e na execução dos processos logísticos.
Para atingir os objetivos propostos acima, foi realizada uma breve revisão
conceitual dos principais métodos de previsão de demanda e de cada um dos
três processos logísticos em estudo. Em seguida, foram detalhadas as etapas da
metodologia e aplicadas aos dados de 3 depósitos da empresa analisada. Como
desdobramento da aplicação da metodologia, foram identificadas oportunidades
de melhoria e elaboradas propostas de mudanças para o processo de previsão
atual.
A aplicação da metodologia e a implementação das alterações propostas
permitiu à empresa aumentar o nível de precisão da previsão de demanda de
todos os principais SKUs e melhorar a comunicação entre todos os elos da
cadeia de valor. Com esta maior precisão da previsão de demanda será possível
melhorar a alocação dos recursos físicos e humanos, reduzir os custos
operacionais e atingir os requisitos de nível de serviço requeridos pelos clientes. / [en] This thesis has the objective of developing and applying a
methodology to
measure the impact of demand forecast inaccuracy in the
supply chain of a
beverage industry, specifically in the inventory
management, physical distribution
and sales processes. The purpose is to create an awareness
of the importance of
forecasting area in the logistics planning and execution
activities.
To achieve these goals, a conceptual review of the major
demand
forecasting methods and of the three logistics processes
under analysis has been
made. After that, a methodology was defined and applied to
three different
warehouse data sets of the company analyzed. As a result of
the methodology
application, some opportunities for process improvement
were identified and
some changes were proposed for the current demand
forecasting process.
The results of methodology application and proposed actions
implementation allowed the company to increase the demand
forecasting
accuracy for the major SKUs and to improve communication
among the different
links of the supply chain. Based on more accurate
forecasts, the company will be
able to better allocate physical and human resources,
reduce operational costs
and achieve the required customer service level.
|
164 |
Memórias associativas L-fuzzy com ênfase em memórias associativas fuzzy intervalares / L-fuzzy associative memories with an emphasis on interval-valued fuzzy associative memoriesSchuster, Tiago, 1987- 26 August 2018 (has links)
Orientador: Peter Sussner / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T17:27:37Z (GMT). No. of bitstreams: 1
Schuster_Tiago_M.pdf: 2910336 bytes, checksum: 1f5147831dd6410a0fdb0c0fa53d94c8 (MD5)
Previous issue date: 2015 / Resumo: As últimas décadas têm testemunhado a emergência de uma variedade de abordagens à resolução de problemas com base na computação em reticulados como, por exemplo, as redes neurais morfológicas e os modelos neurocomputação e de raciocínio fuzzy em reticulados. Usamos aqui o termo "reticulado'' no sentido dado no trabalho seminal de Birkhoff. A teoria dos reticulados nasceu da álgebra booleana e tem um grande leque de aplicações como a análise de conceitos formais, a inteligência computacional, a teoria dos conjuntos fuzzy e a morfologia matemática (MM). A MM em reticulados completos representa a base teórica para uma série de modelos de inteligência computacional conhecidos como redes neurais morfológicas (MNNs), que incluem as memórias associativas morfológicas em tons de cinza e as memórias associativas morfológicas fuzzy (FMAMs). As últimas décadas têm testemunhado a emergência de uma variedade de abordagens à resolução de problemas com base na computação em reticulados como, por exemplo, as redes neurais morfológicas e os modelos neurocomputação e de raciocínio fuzzy em reticulados. Usamos aqui o termo "reticulado'' no sentido dado no trabalho seminal de Birkhoff. A teoria dos reticulados nasceu da álgebra booleana e tem um grande leque de aplicações como a análise de conceitos formais, a inteligência computacional, a teoria dos conjuntos fuzzy e a morfologia matemática (MM). A MM em reticulados completos representa a base teórica para uma série de modelos de inteligência computacional conhecidos como redes neurais morfológicas (MNNs), que incluem as memórias associativas morfológicas em tons de cinza e as memórias associativas morfológicas fuzzy (FMAMs). O advento de sistemas fuzzy tipo-2 sugere o desenvolvimento das FMAMs tipo-2 e em particular FMAMs tipo-2 intervalar, ou FMAMs intervalar (IV-FMAMs). Observemos aqui que a classe dos conjuntos fuzzy, assim como a dos conjuntos fuzzy tipo-2, fuzzy tipo-2 intervalar e fuzzy intervalar sobre um universo arbitrário em conjunção com diferentes escolhas de ordens parciais formam classes de conjuntos L-fuzzy, em que L denota um reticulado completo. Nessa dissertação de mestrado, introduzimos as memórias associativas L-fuzzy (L-FMAMs) com base na morfologia matemática L-fuzzy (L-FMM). Nosso foco está nas FMAMs fuzzy intervalar, uma vez que sistemas fuzzy intervalar têm sido aplicados com sucesso em problemas de engenharia, computação com palavras e raciocínio aproximado. Nós aplicamos os modelos de IV-FMAMs em conjunção com a técnica de clusterização fuzzy c-means intervalar a um problema de predição de série temporal, especificamente o prognóstico da vazão mensal de uma usina hidroelétrica localizada no sudeste brasileiro. Por fim, comparamos as predições produzidas pela abordagem das IV-FMAMs com aquelas produzidas por modelos competitivos da literatura / Abstract: The last decade has witnessed the emergence of a variety of lattice computing approaches towards computational intelligence such as morphological neural networks and fuzzy lattice reasoning / neuro-computing models. Here, the technical term "lattice" refers to a lattice in the mathematical sense of Birkhoff's seminal work. Lattice theory grew out of Boolean algebra and has found a wide range of applications such as mathematical morphology, formal concept analysis, computational intelligence, and fuzzy set theory. Mathematical morphology on complete lattices represents the theoretical basis for a range of computational intelligence models known as morphological neural networks (MNNs) including gray-scale and fuzzy morphological associative memories (FMAMs). The advent of type-2 fuzzy systems suggests the development of type-2 FMAMs and in particular interval type-2 FMAMs or interval-valued FMAMs. Recall that the class of fuzzy sets as well as the classes of type-2, interval type-2, and interval-valued fuzzy sets over an arbitrary universe together with different choices of partial orderings form classes of L-fuzzy sets, where L denotes a complete lattice. In this master's thesis, we introduce L-fuzzy morphological associative memories (L-FMAMs) on the basis of L-FMM. Our focus is on interval-valued FMAMs since interval type-2 fuzzy systems, have found various applications in engineering, computing with words, and approximate reasoning. We applied the aforementioned interval-valued FMAM models in conjunction with the interval-valued fuzzy c-means clustering technique to a time-series prediction problem in industry, namely the problem of forecasting the average monthly streamflow of a hydroelectric plant located in southeastern Brazil, and compared the predictions produced by the IV-FMAM approach with the ones produced by a number of competitive models from the literature / Mestrado / Matematica Aplicada / Mestre em Matemática Aplicada
|
165 |
Medidas de dependência entre séries temporais: estudo comparativo, análise estatística e aplicações em neurociências / Measures of dependence between time series: Comparative study, statistical analysis and applications in neuroscienceCarlos Stein Naves de Brito 29 July 2010 (has links)
Medidas de dependência entre séries temporais são estudadas com a perspectiva de evidenciar como diferentes regiões do cérebro interagem, por meio da aplicação a sinais eletrofisiológicos. Baseado na representação auto-regressiva e espectral de séries temporais, diferentes medidas são comparadas entre si, incluindo coerência espectral e a coerência parcial direcionada, e introduz-se uma nova medida, denominada transferência parcial direcionada. As medidas são analisadas pelas propriedades de parcialização, relações diretas ou indiretas e direcionalidade temporal, e são mostradas suas relações com a correlação quadrática. Conclui-se que, entre as medidas analisadas, a coerência parcial direcionada e a transferência parcial direcionada possuem o maior número de características desejáveis, fundamentadas no conceito de causalidade de Granger. A estatística assintótica é desenvolvida para todas as medidas, incluindo intervalo de confiança e teste de hipótese nula, assim como sua implementação computacional. A aplicação a séries simuladas e a análise de dados eletrofisiológicos reais ilustram o estudo comparativo e a aplicabilidade das novas estatísticas apresentadas. / Measures of dependence between temporal series are studied in the context of revealing how different brain regions interact, through their application to electrophysiology. Based on the spectral and autoregressive model of time series, different measures are compared, including coherence and partial directed coherence, and a new measure is introduced, named partial directed transfer. The measures are analyzed through the properties of partialization, direct or indirect relations and temporal directionality, and their relation to quadratic correlation is shown. It results that among the presented measures, partial directed coherence and partial directed transfer reveal the highest number of desirable properties, being grounded on the concept of Granger causality. The asymptotic statistics for all measures are developed, including confidence intervals and null hypothesis testing, as well as their computational implementation. The application to simulated series and the analysis of electrophysiological data illustrate the comparative study and the applicability of the newly presented statistics.
|
166 |
[en] AUTOMFIS: A FUZZY SYSTEM FOR MULTIVARIATE TIME SERIES FORECAST / [pt] AUTOMFIS: UM SISTEMA FUZZY PARA PREVISÃO DE SÉRIES TEMPORAIS MULTIVARIADASJULIO RIBEIRO COUTINHO 08 April 2016 (has links)
[pt] A série temporal é a representação mais comum para a evoluçãao no
tempo de uma variável qualquer. Em um problema de previsão de séries
temporais, procura-se ajustar um modelo para obter valores futuros da
série, supondo que as informações necessárias para tal se encontram no
próprio histórico da série. Como os fenômenos representados pelas séries
temporais nem sempre existem de maneira isolada, pode-se enriquecer o
modelo com os valores históricos de outras séries temporais relacionadas.
A estrutura formada por diversas séries de mesmo intervalo e dimensão
ocorrendo paralelamente é denominada série temporal multivariada. Esta
dissertação propõe uma metodologia de geração de um Sistema de Inferência
Fuzzy (SIF) para previsão de séries temporais multivariadas a partir de
dados históricos, com o objetivo de obter bom desempenho tanto em termos
de acurácia de previsão como no quesito interpretabilidade da base de regras
– com o intuito de extrair conhecimento sobre o relacionamento entre as
séries. Para tal, são abordados diversos aspectos relativos ao funcionamento
e à construção de um SIF, levando em conta a sua complexidade e claridade
semântica. O modelo é avaliado por meio de sua aplicação em séries
temporais multivariadas da base completa da competição M3, comparandose
a sua acurácia com as dos métodos participantes. Além disso, através
de dois estudos de caso com dados reais públicos, suas possibilidades
de extração de conhecimento são exploradas por meio de dois estudos
de caso construídos a partir de dados reais. Os resultados confirmam
a capacidade do AutoMFIS de modelar de maneira satisfatória séries
temporais multivariadas e de extrair conhecimento da base de dados. / [en] A time series is the most commonly used representation for the
evolution of a given variable over time. In a time series forecasting problem,
a model aims at predicting the series future values, assuming that all
information needed to do so is contained in the series past behavior.
Since the phenomena described by the time series does not always exist
in isolation, it is possible to enhance the model with historical data from
other related time series. The structure formed by several different time
series occurring in parallel, each featuring the same interval and dimension,
is called a multivariate time series. This dissertation proposes a methodology
for the generation of a Fuzzy Inference System (FIS) for multivariate
time series forecasting from historical data, aiming at good performance
in both forecasting accuracy and rule base interpretability – in order to
extract knowledge about the relationship between the modeled time series.
Several aspects related to the operation and construction of such a FIS
are investigated regarding complexity and semantic clarity. The model is
evaluated by applying it to multivariate time series obtained from the
complete M3 competition database and by comparing it to other methods
in terms of accuracy. In addition knowledge extraction possibilities are
explored through two case studies built from actual data. Results confirm
that AutoMFIS is indeed capable of modeling time series behaviors in a
satisfactory way and of extractig meaningful knowldege from the databases.
|
167 |
[pt] PREVISÃO DE VELOCIDADE DO VENTO UTILIZANDO SINGULAR SPECTRUM ANALYSIS / [en] WIND SPEED PREDICTION USING SINGULAR SPECTRUM ANALYSISLARISSA MORAES DANTAS CAMPOS 14 September 2020 (has links)
[pt] Uma mudança de paradigma no mundo todo foi ocasionada pelo aumento da preocupação quanto ao uso de combustíveis fósseis usados como principal fonte de geração elétrica, a correspondente mudança climática e os danos ambientais crescentes. Nos últimos anos, a energia eólica apresentou um crescimento incessante como alternativa sustentável para a produção de eletricidade, o que pode ser observado a partir do crescimento de sua capacidade instalada mundialmente. O Brasil está entre os dez países que tem as maiores capacidades instaladas, e apresentou 9,42 por cento de geração de energia elétrica advinda da fonte eólica em 2019. No entanto, a aleatoriedade e a intermitência do vento são os maiores desafios na integração dessa fonte no sistema de energia. Diante deste contexto, esta pesquisa propõe a aplicação da técnica Singular Spectrum Analysis (SSA) como método de previsão para uma série de velocidade eólica no Brasil, fazendo uma análise comparativa de modelos SSA considerando diferentes horizontes de previsão e conjunto de treinamento para diferentes dias de previsão, com diferentes tamanhos de série temporal. Deste modo, é comparada a série temporal do ano todo com somente o último mês desta série para prever os últimos sete dias do mês de dezembro. Os resultados dessa aplicação mostram que para a maioria dos dias a utilização do ano todo como conjunto de treinamento obteve melhor desempenho, indicando que o uso da técnica SSA pode ser uma alternativa para séries temporais com uma grande quantidade de dados. / [en] A paradigm shift around the world was caused by increased concern about the use of fossil fuels used as the main source of electricity generation, the corresponding climate change and increasing environmental damage. In recent years, wind energy has shown steady growth as a sustainable alternative for electricity production, which can be seen from the growth of its installed capacity worldwide. Brazil is among the ten countries that have the largest installed capacities, and presented 9.42 percent of electricity generation from the wind source in the last year. However, wind randomness and intermittency are the biggest challenges in integrating this source into the energy system. In this context, this research proposes the application of the Singular Spectrum Analysis (SSA) technique as a forecast method for a series of wind speed in Brazil, making a comparative analysis of SSA models considering different forecast horizons and training set for different days forecast, with different time series sizes. In this way, the time series of the whole year is compared with only the last month of this series to forecast the last seven days of the month of December. The results of this application show that for most days the use of the whole year as a training set obtained better performance, indicating that the use of the SSA technique can be an alternative for time series with a large amount of data.
|
168 |
[pt] MODELO VARIABLE STEP-SIZE EVOLVING PARTICIPATORY LEARNING WITH KERNEL RECURSIVE LEAST SQUARES APLICADO À PREVISÃO DE PREÇOS DO ÓLEO DIESEL NO BRASIL / [en] VARIABLE STEP-SIZE EVOLVING PARTICIPATORY LEARNING WITH KERNEL RECURSIVE LEAST SQUARES MODEL APPLIED TO GAS PRICES FORECASTING IN BRAZILEDUARDO RAVAGLIA CAMPOS QUEIROZ 30 April 2021 (has links)
[pt] Um modelo de previsão é uma ferramenta indispensável nos negócios, ajudando na tomada de decisões, seja a curto, médio ou longo prazo. Neste contexto, a implementação de técnicas de aprendizagem de máquina em
modelos de previsão de séries temporais assume notória relevância, visto que o processamento da informação e a extração de conhecimento são cada vez mais exigidos de forma eficiente e dinâmica. Este trabalho desenvolve um modelo denominado Variable Step-Size evolving Participatory Learning with Kernel Recursive Least Squares, VS-ePL-KRLS, aplicado à previsão de preços do óleo diesel S500 e S10. O modelo apresentado demonstra uma melhor acurácia em comparação com os modelos análogos na literatura, sem perda de desempenho computacional para todas as séries temporais analisadas. / [en] A prediction model is an indispensable tool in business, helping to make decisions, whether in the short, medium, or long term. In this context, the implementation of machine learning techniques in time series forecasting models has a notorious relevance, as information processing and efficient and dynamic knowledge uncovering are increasingly demanded. This work develops a model called Variable Step-Size evolving Participatory Learning with Kernel Recursive Least Squares, VS-ePL-KRLS, applied to the forecast of weekly prices for S500 and S10 diesel oil, at the Brazilian level, for biweekly and monthly horizons. The presented model demonstrates a better accuracy compared with analogous models in the literature, without loss of
computational performance for all time series analyzed.
|
169 |
[pt] MODELOS E APLICAÇÕES PARA SÉRIES TEMPORAIS HIERÁRQUICAS: ABORDAGENS DE RECONCILIAÇÃO ÓTIMA E PROPORÇÕES DE PREVISÃO / [en] MODELS AND APPLICATIONS TO HIERARCHICAL TIME SERIES: APPROACHES OF RECONCILIATION OPTIMAL AND FORECAST PROPORTIONSTHAISA DE FREITAS 30 August 2016 (has links)
[pt] Séries Temporais que podem ser organizadas em níveis de acordo com, por exemplo, o tipo de produto, região geográfica, classe de consumo, dentre outros, são chamadas de Séries Temporais Hierárquicas (ou agrupadas, quando possuem mais de uma variável de agregação). Informações referentes à previsão destas séries são fundamentais para a tomada de decisão seja no nível gerencial ou operacional de todo tipo de negócio. Para atender a essas informações, são utilizadas técnicas de previsão hierárquica, que têm como foco reduzir os custos e melhorar a acurácia da previsão. O objetivo deste trabalho é estudar abordagens para agregar/desagregar previsões feitas para Séries Temporais Hierárquicas ou Agrupadas. Como resultado do trabalho destaca-se a apresentação das abordagens que representam o estado da arte em previsão hierárquica: Reconciliação Ótima (também chamada de Combinação Ótima) e Top-Down baseada na Proporção das Previsões. Ainda referente aos resultados destaca-se a análise das diversas técnicas de previsão hierárquica encontradas na literatura aplicadas a duas séries clássicas do contexto brasileiro: a série agrupada de consumo de energia elétrica agregada por região do país e classe de consumo, e a série hierárquica de demanda de transporte aéreo representada pela variável RPK (Revenue Passenger Kilometers). O desempenho preditivo das abordagens foi avaliado com base na métrica MAPE, e o teste de Diebold-Mariano foi aplicado para verificar se a diferença no desempenho das abordagens novas e tradicionais é significativa. / [en] Time Series which can be arranged in levels according to, for example, the type of product, geography, consumption class, among others, are called Hierarchical Time Series (or grouped, if they have more than one aggregation variable). Information relating these series prediction is fundamental for decision-making at the management or operational level of all types of business. To meet these information, hierarchical forecasting techniques are used, which are focused on reducing costs and improving the accuracy of prediction. The objective of this work is to study approaches to aggregate / disaggregate predictions for Hierarchical or Grouped Time Series. As a result of the work there is the presentation of the approaches that represent the state of the art hierarchical forecast: Optimal Reconciliation approach (also called the Optimal Combination) and Top-Down Forecast Proportions approach. Still on the results highlight the analysis of the various hierarchical forecasting techniques found in the literature applied to two classic series of the Brazilian context: a grouped series of electricity consumption aggregated by region of the country and consumer class, and the hierarchical series air transport demand represented by the variable RPK (Revenue Passenger Kilometers). The predictive performance of the approaches was evaluated based on the metric MAPE and the Diebold-Mariano test was used to verify that the difference in performance of new and traditional approaches is significant.
|
170 |
[en] TEMPORAL MODELLING OF THE WATER DISCHARGES MEASUREMENTS ON FUNIL DAM (RJ) USING NEURAL NETWORK AND STATISTICAL METHODS / [pt] MODELAGEM TEMPORAL DAS MEDIDAS DE VAZÃO DE DRENOS NA BARRAGEM DE FUNIL (RJ) UTILIZANDO REDES NEURAIS E MÉTODOS ESTATÍSTICOSJANAINA VEIGA CARVALHO 15 September 2005 (has links)
[pt] Em obras de maior porte e grande responsabilidade (portos,
barragens,
usinas nucleares, etc.), a quantidade de instrumentações
pode se tornar suficiente
para permitir a construção de modelos de variabilidade
temporal das propriedades
de interesse com base em redes neurais artificiais. No caso
de barragens, o
monitoramento através da instalação de um sistema de
instrumentação
desempenha um papel fundamental na avaliação do
comportamento destas
estruturas, tanto durante o período de construção quanto no
período de operação.
Neste trabalho empregou-se a técnica de redes neurais
temporais (RNT) para
análise, modelagem e previsão dos valores de vazão na
barragem Funil, do
sistema Furnas Centrais Elétricas, a partir dos dados de
instrumentações
disponíveis no período compreendido entre 02/09/1985 e
25/02/2002. As redes
neurais temporais empregadas foram: RNT com arquitetura
feedforward associada
a técnica de janelamento, RNT recorrente Elman, RNT FIR e
RNT Jordan.
Adicionalmente, foram utilizadas duas técnicas para análise
das séries temporais:
os modelos de Box & Jenkins (1970) e métodos
geoestatísticos, com a finalidade
de comparar com o desempenho das RNT´s. Nesta pesquisa
estuda-se ainda a
geração de intervalos de confiança para RNT e para métodos
geoestatísticos. As
previsões de vazão analisadas neste trabalho, envolvendo o
comportamento da
barragem Funil, apresentaram resultados satisfatórios tanto
os obtidos pelos
modelos de redes neurais temporais como pelos de Box &
Jenkins e métodos
geoestatísticos. / [en] In works of great responsibility (ports, dams, nuclear
power, etc.), the
amount of instrumentation data may allow the construction
of models for the
temporary variability of the properties of interest based
on neural network
techniques. In case of dams, the monitoring through the
installation of an
instrumentation system plays a fundamental part in the
evaluation of the behavior
of these structures, during the construction period as well
as in the operation
period. In this work the technique of temporal neural
networks (TNN) was used
for analysis, modeling and forecast of the water discharges
values in the Funil
dam, from Furnas Centrais Elétricas system, starting from
the data of available
instrumentation in the period between 02/09/1985 and
25/02/2002. The temporal
neural networks used in this research were the following:
TNN with feedforward
architecture and the windowing technique, recursive TNN
Elman, TNN FIR and
TNN Jordan. Two additional techniques (Box & Jenkins and
geostatistical
models) were employed for analysis of the time series with
the purpose to
compare the results obtained with neural networks. In this
research the generation
of confidence intervals for TNN and geostatistical methods
were also investigated.
The discharge values forecasts analyzed in this work for
the Funil dam presented
satisfactory results, with respect to the neural network,
Box & Jenkins and
geostatistical methods.
|
Page generated in 0.0755 seconds