Spelling suggestions: "subject:"deries temporais"" "subject:"3series temporais""
131 |
[pt] AGRUPAMENTO DE AÇÕES POR EMBEDDINGS TEXTUAIS NA PREVISÃO DE PREÇOS / [en] STOCK CLUSTERING BASED ON TEXTUAL EMBEDDINGS APPLIED TO PRICE PREDICTIONANDRE DAVYS CARVALHO MELO DE OLIVEIRA 17 August 2020 (has links)
[pt] Realizar previsões de preços no mercado de ações é uma tarefa difícil devido ao fato de o mercado financeiro ser um ambiente altamente dinâmico, complexo e caótico. Para algumas teorias financeiras, usar as informações disponíveis para tentar prever o preço de uma ação a curto prazo é um esforço em vão já que ele sofre a influência de diversos fatores externos e, em decorrência, sua variação assemelha-se à de um passeio aleatório. Estudos recentes, como (37) e (51), abordam o problema com modelos de predição específicos para o comportamento do preço de uma ação isolada. Neste trabalho, apresenta-se uma proposta para prever variações de preço tendo como base conjuntos de ações consideradas similares. O objetivo é criar um modelo capaz de prever se o preço de diferentes ações tendem a subir ou não a curto prazo, considerando informações de ações pertencentes a conjuntos similares com base em duas fontes de informações: os dados históricos das ações e as notícias do Google Trends. No estudo proposto, primeiramente é aplicado um método para identificar conjuntos de ações similares para então criar um modelo de predição baseado em redes neurais LSTM (long shortterm memory) para esses conjuntos. Mais especificamente, foram conduzidos dois experimentos: (1) aplicação do algoritmo K-Means para a identificação dos conjuntos de ações similares, seguida da utilização de uma rede neural LSTM para realizar as previsões, e (2) aplicação do algoritmo DBSCAN para a criação dos conjuntos seguida da mesma rede LSTM para prever as variações de preço. O estudo foi realizado em um conjunto com 51 ações do mercado acionário brasileiro, e os experimentos sugeriram que utilizar um método para criar conjuntos de ações similares melhora os resultados em aproximadamente 7 porcento de acurácia e f1-score, e 8 porcento de recall e precision quando comparados a modelos para ações isoladas. / [en] Predicting stock market prices is a hard task. The main reason for that is due to the fact its environment is highly dynamic, intrinsically complex and chaotic. The traditional economic theories tell us that trying to predict short-term stock price movements is a wasted effort because the market is influenced by several external events and its behavior approximates a random walk. Recent studies, such as (37) and (51), address this problem and create specific prediction models for the price behavior of an isolated stock. This work presents a proposal to predict price movements based on stock sets considered similar. Our goal is building a model to identify whether the price tends to bullishness or bearishness in the (near) future, considering stock information from similar sets based on two sources of information: historical stock data and Google Trends news. Firstly, the proposed study applies a method to identify similar stock sets and then creates a predictive model based on LSTM (long short-term memory) for these sets. More specifically, two experiments were conducted: (1) using the K-Means algorithm to identify similar stock sets and then using a LSTM neural network to predict stock price movements for these stock sets; (2) using the DBSCAN algorithm to identify similar stock sets and then using the same LSTM neural network to forecast stock price movements. The study was conducted over 51 stocks of the brazilian stock market. The results suggested that using an algorithm to identify similar stock clusters yields an improvement of approximately 7 percent in accuracy and f1-score and 8 percent in recall and precision when compared to specific models for isolated stocks.
|
132 |
[en] MODEL FOR PREDICTING SHORT-TERM SPEED USING HOLT-WINTERS / [pt] MODELO PARA PREVISÃO DE CURTO PRAZO DE VELOCIDADE DE VENTO USANDO HOLT-WINTERSCAMILA MARIA DO NASCIMENTO MONTEIRO 05 August 2014 (has links)
[pt] Após o choque de racionamento de energia elétrica, decorrente do desequilíbrio entre oferta e demanda, os vários setores da sociedade brasileira constataram a real e iminente necessidade de diversificação das fontes de geração de energia elétrica e de seu uso racional. Busca-se hoje novas fontes, entre as quais a energia eólica, uma alternativa nova e promissora. A energia eólica está aumentando no mundo todo e o Brasil tem um enorme potencial devido a sua localização geográfica e o governo tem investido neste tipo de energia. O principal objetivo desta dissertação é estudar e desenvolver modelos de previsão de velocidade de vento, de curto prazo da velocidade do vento. Os métodos de amortecimento exponencial, em particular o método de Holt-Winters e suas variações, são apropriados para este contexto devido à sua alta adaptabilidade e robustez. Para aplicação da metodologia considerou-se o município de São João do Cariri (Estado de Paraíba), onde está localizada uma das estações de referência do projeto SONDA (Sistema Nacional de Dados Ambientais para o setor de energia). Será utilizado o método de Holt-Winters, que será comparado com os modelos: de persistência, neuro-fuzzy (ANFIS) e estatísticos. / [en] After the shock of electricity rationing, due to the imbalance between supply and demand, the various sectors of the Brazilian society found a real and imminent need to diversify sources of electricity generation and its rational use. New sources are searched today, including wind power, a promising new alternative. Wind energy has been increasing worldwide and Brazil has huge potential due to its geographical location and the government has invested in this type of energy. The main objective of this thesis is to study and develop forecasting models, of short-term wind speed. The methods of exponential smoothing, in particular the method Holt-Winters and its variations, are suitable in this context because of its high adaptability and robustness. The city of São João do Cariri (State of Paraíba), where it is located one of the reference stations of project SONDA (National Environmental Data for the energy sector) was chosen in order to apply the methodology. The method that will be used is Holt-Winters, who will be compared with the models: persistence, neuro-fuzzy (ANFIS) and statistics.
|
133 |
[en] FILTER DESIGN FOR THE SEASONAL ADJUSTMENT ROBUST TO VARIATIONS IN THE SEASONAL PATTERNS / [pt] PROJETO DE FILTROS PARA AJUSTE SAZONAL ROBUSTOS A VARIAÇÕES NA SAZONALIDADEMARCELA COHEN MARTELOTTE 20 March 2015 (has links)
[pt] Quando há mudanças no padrão sazonal de uma série temporal, ao longo do tempo, fica caracterizada a presença de sazonalidade móvel. Existem evidências de séries macroeconômicas que apresentam um grau considerável de sazonalidade móvel. Atualmente, para a realização do ajuste sazonal, o programa utilizado pelo IBGE é o X-12-ARIMA, que implementa o método X-11 de ajuste sazonal. O X-11 é um dos métodos mais utilizados no mundo pelos órgãos oficiais de estatística, no entanto, quando existe sazonalidade móvel, ele não consegue tratá-la de forma adequada. Este trabalho propõe dois projetos de filtros de extração da componente sazonal, no domínio da frequência, que são adequados tanto para séries com sazonalidade estável quanto para aquelas que apresentam sazonalidade móvel. O primeiro projeto de filtros, intitulado de filtro sazonal-WLS, utiliza critérios baseados em mínimos quadrados. O desempenho do filtro sazonal-WLS é avaliado com base em sinais sazonais artificiais, para séries mensais e trimestrais, baseados nas características das séries macroeconômicas. Os resultados são comparados com o método X-11 e são identificadas as situações nas quais ele é superior ao X-11. Considerando que o filtro sazonal-WLS é tanto superior ao X-11 quanto maior for a razão entre a variação da sazonalidade e a intensidade da componente irregular, foi desenvolvido o projeto de um segundo filtro. Este novo filtro combina a abordagem de mínimos quadrados ponderados com as características dos filtros de Chebyshev, minimizando simultaneamente o erro na estimativa da sazonalidade e a influência da componente irregular. A ele intitulou-se filtro sazonal-WLS-Chebyshev. Os resultados do filtro sazonal-WLS-Chebyshev são comparados com o filtro sazonal-WLS onde observam-se algumas melhorias. / [en] A time series is said to have moving seasonality when there are changes in the seasonal pattern. There is evidence that macroeconomic series show moving seasonality. Currently, to perform a seasonal adjustment, IBGE uses the program X-12-ARIMA, which implements the seasonal adjustment method X-11. This method is worldwide adopted by official statistical agencies. However, when a time series shows changing seasonal patterns, the X-11 seasonal adjustment method generates unreliable estimates. This thesis proposes two designs of filters to extract seasonal components in the frequency domain, that are suitable for series with stable seasonality and for those with moving seasonality. The first filter, named WLS-seasonal filter, uses criteria based on least squares. The performance of this filter is assessed based on artificial seasonal series for monthly and quarterly data, based on the characteristics of real macroeconomic series. The results are compared with the ones of X-11 method, and the situations in which this filter is superior to X-11 are identified. Taking into account the fact that the performance of the WLS-seasonal filter improves in relation to the one of X-11 the higher the ratio between the variation of seasonality and irregular intensity, the design of a second filter was developed. This new filter combines the approach of weighted least squares with the Chebyshev filters characteristics, simultaneously minimizing the error in estimating the seasonal component and the influence of the irregular component. It was named WLS-Chebyshev-seasonal filter. The performance of this new filter is compared with the one of the WLS-seasonal filter, and some improvements are observed.
|
134 |
[en] EMPIRICAL ANALYSIS OF THE QUANTILE AUTOREGRESSION MODELS / [pt] ANÁLISE EMPÍRICA DOS MODELOS DE AUTO-REGRESSÃO QUANTÍLICAFABIANO DOS SANTOS SOUZA 11 September 2007 (has links)
[pt] Modelos auto-regressivos (AR(p)) de séries temporais
supõem que a
dinâmica da série contém uma dependência linear nas
observações passadas até uma defasagem p, e um erro
aleatório independente e identicamente
distribuído (i.i.d). Modelos de auto-regressão
quantílica
(QAR(p)) são uma
generalização dos AR(p) em que os coeficientes auto-
regressivos variam com
o quantil da distribuição condicional, não sendo
necessária, portanto, uma
componente explícita de erro aleatório. Esta dissertação
estuda a inferência
estatística proposta para modelos QAR(p) por Koenker e
Xiao (2004), com
o auxílio de simulações de Monte Carlo. Enquanto a
estimação mostra-se
bem precisa, os resultados do teste de hipóteses, onde a
hipótese nula supõe
um modelo auto-regressivo (AR), não apresentam bons
resultados, variando
estes com o modelo gerador de dados. / [en] Autoregressive models (AR(p)) for time series assume that
the series dynamics has a linear dependence on past
observations up to a lag p, plus
an independent and identically distributed (i.i.d.) random
error. Quantile
autoregressive models (QAR(p)) generalize the AR(p) by
allowing different
autoregressive coefficients for different quantiles of the
conditional distribution and so there is no need for an
explicit random error component.
This dissertation studies the statistical inference
proposed by Koenker e
Xiao (2004) for QAR(p) models, by means of Monte Carlo
simulations.
While the estimation tools show themselves very accurate,
the hypothesis
test which considers an AR model as the null hypothesis
yields poor results,
and these vary with the data generating process
|
135 |
[en] HIGH FREQUENCY DATA AND PRICE-MAKING PROCESS ANALYSIS: THE EXPONENTIAL MULTIVARIATE AUTOREGRESSIVE CONDITIONAL MODEL - EMACM / [pt] ANÁLISE DE DADOS DE ALTA FREQÜÊNCIA E DO PROCESSO DE FORMAÇÃO DE PREÇOS: O MODELO MULTIVARIADO EXPONENCIAL - EMACMGUSTAVO SANTOS RAPOSO 04 July 2006 (has links)
[pt] A modelagem de dados que qualificam as transações de ativos
financeiros,
tais como, preço, spread de compra e venda, volume e
duração, vem despertando
o interesse de pesquisadores na área de finanças, levando a
um aumento crescente
do número de publicações referentes ao tema. As primeiras
propostas se
limitaram aos modelos de duração. Mais tarde, o impacto da
duração sobre a
volatilidade instantânea foi analisado. Recentemente,
Manganelli (2002) incluiu
dados referentes aos volumes transacionados dentro de um
modelo vetorial. Neste
estudo, nós estendemos o trabalho de Manganelli através da
inclusão do spread de
compra e venda num modelo vetorial autoregressivo, onde as
médias condicionais
do spread, volume, duração e volatilidade instantânea são
descritas a partir de
uma formulação exponencial chamada Exponential Multivariate
Autoregressive
Conditional Model (EMACM). Nesta nova proposta, não se
fazem necessárias a
adoção de quaisquer restrições nos parâmetros do modelo, o
que facilita o
procedimento de estimação por máxima verossimilhança e
permite a utilização de
testes de Razão de Verossimilhança na especificação da
forma funcional do
modelo (estrutura de interdependência). Em paralelo, a
questão de antecipar
movimentos nos preços de ativos financeiros é analisada
mediante a utilização de
um procedimento integrado, no qual, além da modelagem de
dados financeiros de
alta freqüência, faz-se uso de um modelo probit ordenado
contemporâneo. O
EMACM é empregado com o objetivo de capturar a dinâmica
associada às
variáveis e sua função de previsão é utilizada como proxy
para a informação
contemporânea necessária ao modelo de previsão de preços
proposto. / [en] The availability of high frequency financial transaction
data - price,
spread, volume and duration -has contributed to the
growing number of scientific
articles on this topic. The first proposals were limited to
pure duration models.
Later, the impact of duration over instantaneous volatility
was analyzed. More
recently, Manganelli (2002) included volume into a vector
model. In this
document, we extended his work by including the bid-ask
spread into the analysis
through a vector autoregressive model. The conditional
means of spread, volume
and duration along with the volatility of returns evolve
through transaction events
based on an exponential formulation we called Exponential
Multivariate
Autoregressive Conditional Model (EMACM). In our proposal,
there are no
constraints on the parameters of the VAR model. This
facilitates the maximum
likelihood estimation of the model and allows the use of
simple likelihood ratio
hypothesis tests to specify the model and obtain some clues
about the
interdependency structure of the variables. In parallel,
the problem of stock price
forecasting is faced through an integrated approach in
which, besides the
modeling of high frequency financial data, a contemporary
ordered probit model
is used. Here, EMACM captures the dynamic that high
frequency variables
present, and its forecasting function is taken as a proxy
to the contemporaneous
information necessary to the pricing model.
|
136 |
[en] A SUGGESTION FOR THE STRUCTURE IDENTIFICATION OF LINEAR AND NON LINEAR TIME SERIES BY THE USE OF NON PARAMETRIC REGRESSION / [pt] UMA SUGESTÃO PARA IDENTIFICAÇÃO DA ESTRUTURA DE SÉRIES TEMPORAIS, LINEARES E NÃO LINEARES, UTILIZANDO REGRESSÃO NÃO PARAMÉTRICAROSANE MARIA KIRCHNER 10 February 2005 (has links)
[pt] Esta pesquisa fundamenta-se na elaboração de uma
metodologia para identificação da estrutura de séries
temporais lineares e não lineares, baseada na estimação não
paramétrica e semi-paramétrica de curvas em modelos do tipo
Yt=E(Yt|Xt) +e, onde Xt=(Yt-1, Yt-2,...,Yt-d). Um modelo de
regressão linear paramétrico tradicional assume que a forma
da função E(Yt|Xt) é linear. O processo de estimação é
global, isto é, caso a suposição seja, por exemplo, a de
uma função linear, então a mesma reta é usada ao longo do
domínio da covariável. Entretanto, tal abordagem pode ser
inadequada em muitos casos. Já a abordagem não paramétrica,
permite maior flexibilidade na possível forma da função
desconhecida, sendo que ela pode ser estimada através de
funções núcleo local. Desse modo, somente pontos na
vizinhança local do ponto xt , onde se deseja estimar
E(Yt|Xt=xt), influenciarão nessa estimativa. Isto é,
através de estimadores núcleo, a função desconhecida será
estimada através de uma regressão local, em que as
observações mais próximas do ponto onde se deseja estimar a
curva receberão um peso maior e as mais afastadas, um peso
menor. Para estimação da função desconhecida, o parâmetro
de suavização h (janela) foi escolhido automaticamente com
base na amostra via minimização de resíduos, usando o
critério de validação cruzada. Além desse critério,
utilizamos intencionalmente valores fixos para o parâmetro
h, que foram 0.1, 0.5, 0.8 e 1. Após a estimação da função
desconhecida, calculamos o coeficiente de determinação para
verificar a dependência de cada defasagem. Na metodologia
proposta, verificamos que a função de dependência da
defasagem (FDD) e a função de dependência parcial da
defasagem (FDPD), fornecem boas aproximações no caso linear
da função de autocorrelação (FAC) e da função de
autocorrelação parcial (FACP), respectivamente, as quais
são utilizadas na análise clássica de séries lineares. A
representação gráfica também é muito semelhante àquelas
usadas para FAC e FACP. Para a função de dependência
parcial da defasagem (FDPD), necessitamos estimar funções
multivariadas. Nesse caso, utilizamos um modelo aditivo,
cuja estimação é feita através do método backfitting
(Hastie e Tibshirani-1990). Para a construção dos
intervalos de confiança, foi utilizada a técnica Bootstrap.
Conduzimos o estudo de forma a avaliar e comparar a
metodologia proposta com metodologias já existentes. As
séries utilizadas para esta análise foram geradas de acordo
com modelos lineares e não lineares. Para cada um dos
modelos foi gerada uma série de 100 ou mais observações.
Além dessas, também foi exemplificada com o estudo da
estrutura de duas séries de demanda de energia elétrica,
uma do DEMEI- Departamento Municipal de Energia de Ijuí,
Rio Grande do Sul e outra de uma concessionária da região
Centro-Oeste. Utilizamos como terceiro exemplo uma série
econômica de ações da Petrobrás. / [en] This paper suggests an approach for the identification of
the structure of inear and non-linear time series through
non-parametric estimation of the unknown curves in models
of the type Y)=E(Yt|Xt =xt) +e , where Xt=(Yt-1,Yt-2,...,Yt-
d). A traditional nonlinear parametric model assumes that
the form of the function E(Yt,Xt) is known. The estimation
process is global, that is, under the assumption of a
linear function for instance, then the same line is used
along the domain of the covariate. Such an approach may be
inadequate in many cases, though. On the other hand,
nonparametric regression estimation, allows more
flexibility in the possible form of the unknown function,
since the function itself can be estimated through a local
kernel regression. By doing so, only points in the local
neighborhood of the point Xt, where E(Yt|Xt =xt) is to be
estimated, will influence this estimate. In other words,
with kernel estimators, the unknown function will be
estimated by local regression, where the nearest
observations to the point where the curve is to be
estimated will receive more weight and the farthest ones, a
less weight. For the estimation of the unknown function, the
smoothing parameter h (window) was chosen automatically
based on the sample through minimization of residuals,
using the criterion of cross-validation. After the
estimation of the unknown function, the determination
coefficient is calculated in order to verify the dependence
of each lag. Under the proposed methodology, it was
verified that the Lag Dependence Function (LDF) and the
Partial Lag Dependence Function (PLDF) provide good
approximations in the linear case to the function of
autocorrelation (ACF) and partial function of
autocorrelation (PACF) respectively, used in classical
analysis of linear time series. The graphic representation
is also very similar to those used in ACF and PACF.
For the Partial Lag Dependence Function (PLDF) it becomes
necessary to estimate multivariable functions. In this
case, an additive model was used, whose estimate is
computed through the backfitting method, according to
Hastie and Tibshirani (1990). For the construction of
confidence intervals, the bootstrap technique was used.
The research was conducted to evaluate and compare the
proposed methodology to traditional ones. The simulated
time series were generated according to linear and nonlinear
models. A series of one hundred observations was generated
for each model. The approach was illustrated with the study
of the structure of two time series of electricity demand
of DEMEI- the city department of energy of Ijui, Rio Grande
do Sul, Brazil and another of a concessionary of the Centro-
Oeste region. We used as third example an economical series
of Petrobras.
|
137 |
Medidas de dependência entre séries temporais: estudo comparativo, análise estatística e aplicações em neurociências / Measures of dependence between time series: Comparative study, statistical analysis and applications in neuroscienceBrito, Carlos Stein Naves de 29 July 2010 (has links)
Medidas de dependência entre séries temporais são estudadas com a perspectiva de evidenciar como diferentes regiões do cérebro interagem, por meio da aplicação a sinais eletrofisiológicos. Baseado na representação auto-regressiva e espectral de séries temporais, diferentes medidas são comparadas entre si, incluindo coerência espectral e a coerência parcial direcionada, e introduz-se uma nova medida, denominada transferência parcial direcionada. As medidas são analisadas pelas propriedades de parcialização, relações diretas ou indiretas e direcionalidade temporal, e são mostradas suas relações com a correlação quadrática. Conclui-se que, entre as medidas analisadas, a coerência parcial direcionada e a transferência parcial direcionada possuem o maior número de características desejáveis, fundamentadas no conceito de causalidade de Granger. A estatística assintótica é desenvolvida para todas as medidas, incluindo intervalo de confiança e teste de hipótese nula, assim como sua implementação computacional. A aplicação a séries simuladas e a análise de dados eletrofisiológicos reais ilustram o estudo comparativo e a aplicabilidade das novas estatísticas apresentadas. / Measures of dependence between temporal series are studied in the context of revealing how different brain regions interact, through their application to electrophysiology. Based on the spectral and autoregressive model of time series, different measures are compared, including coherence and partial directed coherence, and a new measure is introduced, named partial directed transfer. The measures are analyzed through the properties of partialization, direct or indirect relations and temporal directionality, and their relation to quadratic correlation is shown. It results that among the presented measures, partial directed coherence and partial directed transfer reveal the highest number of desirable properties, being grounded on the concept of Granger causality. The asymptotic statistics for all measures are developed, including confidence intervals and null hypothesis testing, as well as their computational implementation. The application to simulated series and the analysis of electrophysiological data illustrate the comparative study and the applicability of the newly presented statistics.
|
138 |
[en] MONITORING OF THE CORUMBÁ-I DAM INSTRUMENTATION BY NEURAL NETWORKS AND THE BOX & JENKINSNULL MODELS / [pt] MONITORAMENTO DA INSTRUMENTAÇÃO DA BARRAGEM DE CORUMBÁ I POR REDES NEURAIS E MODELOS DE BOX & JENKINSJOSE LUIS CARRASCO GUTIERREZ 02 December 2003 (has links)
[pt] Neste trabalho empregou-se a técnica de redes neurais
artificiais e modelos de Box & Jenkins (1970) para análise,
modelagem e previsão dos valores de vazão e de cargas de
pressão na barragem Corumbá I, do sistema Furnas Centrais
Elétricas, a partir dos dados de instrumentação disponíveis
desde 1997. A previsão de valores prováveis pode auxiliar
em tomadas de decisão durante a operação da barragem.
A utilização de métodos estatísticos e de redes neurais
artificiais é especialmente recomendado em situações onde a
solução através de métodos determinísticos, analíticos ou
numéricos, torna-se difícil por envolver modelagens
tridimensionais, com condições de contorno complexas e
incertezas na variação espacial e temporal das propriedades
dos materiais que constituem a barragem e sua fundação.
Tradicionalmente, as análises de séries temporais são
normalmente abordadas sob a perspectiva de métodos
estatísticos, como os modelos de Box & Jenkins. No entanto,
redes neurais artificiais têm-se constituído ultimamente em
uma alternativa atraente para investigações de séries
temporais por sua capacidade de análise de problemas de
natureza não-linear e não-estacionários. Neste trabalho são
apresentadas três aplicações envolvendo o comportamento da
barragem Corumbá I: previsão das vazões através da fundação
junto à ombreira esquerda, previsão das cargas de pressão
em piezômetros instalados no núcleo central da barragem e
no solo residual de fundação e, finalmente, a previsão dos
valores das leituras em um piezômetro supostamente
danificado em determinado instante de tempo. Em todos estes
casos, os resultados obtidos pelos modelos de Box & Jenkins
e redes neurais artificiais foram bastante satisfatórios. / [en] In this work, artificial neural networks and the Box &
Jenkins models (1970) were used for analysis, modeling and
forecasts of water discharges and pressure head development
in the Corumbá-I dam, owned by Furnas Centrais Elétricas,
from the instrumentation data recorded since 1997.
Prediction of the probable values can be a powerful tool
for early detection of abnormal conditions during the dam
operation. The use of statistical methods and artificial
neural network techniques are specially recommend in
situations where a solution with a deterministic approach,
analytical or numerical, is difficult for involving three-
dimensional modeling, complex boundary conditions and
uncertainty with respect to the spatial and temporal
variation of the material properties of the dam and its
foundation. Time series analyses are traditionally carried
out using a statistical approach, such as the Box & Jenkins
models. However, artificial neural networks have become in
the recent years an attractive alternative for time series
problems due to their inherent ability to analyze nonlinear
and non-stationary phenomena. Three applications of time
series analysis, related to the instrumentation data
collected from Corumba-I dam, are presented and discussed
in this thesis: forecast of water discharges through the
foundation near the dam left abutment, prediction of
pressure heads in piezometers installed in the impermeable
central core and the residual soil foundation and, finally,
prediction of the pressure heads that would be read in a
piezometer that, at a given instant of time, stops working
being supposedly damaged. In all these cases, the results
obtained from the Box & Jenkins models as well as the
artificial neural networks are quite satisfactory.
|
139 |
[en] COMBINING TO SUCCEED: A NOVEL STRATEGY TO IMPROVE FORECASTS FROM EXPONENTIAL SMOOTHING MODELS / [pt] COMBINANDO PARA TER SUCESSO: UMA NOVA ESTRATÉGIA PARA MELHORAR A PREVISÕES DE MODELOS DE AMORTECIMENTO EXPONENCIALTIAGO MENDES DANTAS 04 February 2019 (has links)
[pt] A presente tese se insere no contexto de previsão de séries temporais. Nesse sentido, embora muitas abordagens tenham sido desenvolvidas, métodos simples como o de amortecimento exponencial costumam gerar resultados extremamente competitivos muitas vezes superando abordagens com maior nível de complexidade. No contexto previsão, papers seminais na área mostraram que a combinação de previsões tem potencial para reduzir de maneira acentuada o erro de previsão. Especificamente, a combinação de
previsões geradas por amortecimento exponencial tem sido explorada em papers recentes. Apesar da combinação de previsões utilizando Amortecimento Exponencial poder ser feita de diversas formas, um método proposto recentemente e chamado de Bagged.BLD.MBB.ETS utiliza uma técnica chamada
Bootstrap Aggregating (Bagging) em combinação com métodos de amortecimento exponencial para gerar previsões mostrando que a abordagem é capaz de gerar previsões mensais mais precisas que todos os benchmarks analisados. A abordagem era considerada o estado da arte na utilização de Bagging e Amortecimento Exponencial até o desenvolvimento dos resultados obtidos nesta tese. A tese em questão se ocupa de, inicialmente, validar o método Bagged.BLD.MBB.ETS em um conjunto de dados relevante
do ponto de vista de uma aplicação real, expandindo assim os campos de aplicação da metodologia. Posteriormente, são identificados motivos relevantes para redução do erro de e é proposta uma nova metodologia que utiliza Bagging, Amortecimento Exponencial e Clusters para tratar o efeito covariância, até então não identificado anteriormente na literatura do método. A abordagem proposta foi testada utilizando diferentes tipo de séries temporais da competição M3, CIF 2016 e M4, bem como utilizando dados
simulados. Os resultados empíricos apontam para uma redução substancial na variância e no erro de previsão. / [en] This thesis is inserted in the context of time series forecasting. In this sense, although many approaches have been developed, simple methods such as exponential smoothing usually produce extremely competitive results, often surpassing approaches with a higher level of complexity. Seminal papers
in time series forecasting showed that the combination of forecasts has the potential to dramatically reduce the forecast error. Specifically, the combination of forecasts generated by Exponential Smoothing has been explored in recent papers. Although this can be done in many ways, a specific method called Bagged.BLD.MBB.ETS uses a technique called Bootstrap Aggregating (Bagging) in combination with Exponential Smoothing methods to generate forecasts, showing that the approach can generate more accurate monthly forecasts than all the analyzed benchmarks. The approach was considered the state of the art in the use of Bagging and Exponential Smoothing until the development of the results obtained in this thesis. This thesis initially deals with validating Bagged.BLD.MBB.ETS in a data set relevant from the point of view of a real application, thus expanding the fields of application of the methodology. Subsequently, relevant motifs for error reduction are identified and a new methodology using Bagging, Exponential Smoothing and Clusters is proposed to treat the covariance effect, not previously identified in the method s literature. The proposed approach was tested using data from three time series competitions (M3, CIF 2016 and M4), as well as using simulated data. The empirical results point to a substantial reduction in variance and forecast error.
|
140 |
Modelos arch heterogêneos e aplicações à análise de dados de alta freqüência / heterogeneous ARCH models and applications to analyse high frequency datas.Ruilova Teran, Juan Carlos 26 April 2007 (has links)
Neste trabalho estudamos diferentes variantes dos modelos GARCH quando consideramos a chegada da informação heterogênea sob a forma de dados de alta freqüência. Este tipo de modelos, conhecidos como HARCH(n), foram introduzidos por Muller et al. (1997). Para entender a necessidade de incorporar esta característica da heterogeneidade da informação, estudamos o problema da agregação temporal para processos GARCH e a modelagem destes em dados de alta freqüência e veremos quais são as desvantagens destes modelos e o porquê da necessidade de corrigi-lo. Propusemos um novo modelo que leva em conta a heterogeneidade da informação do mercado financeiro e a memória longa da volatilidade, generalizando assim o modelo proposto por Müller et al.(1997), e estudamos algumas das propriedades teóricas do modelo proposto. Utilizamos estimação via máxima verossimilhança e amostrador de Griddy-Gibbs, e para avaliar o desempenho destes métodos realizamos diversas simulações. Também fizemos aplicações a duas séries de alta freqüência, a taxa de câmbio Euro- Dólar e o índice Ibovespa. Uma modificação ao algoritmo de Griddy-Gibbs foi proposta, para ter uma janela móvel de pontos, para a estimação das distribuições condicionais, a cada iteração. Este procedimento foi validado pela proximidade das estimações com a técnica de máxima verossimilhança. Disponibilizaremos algumas bibliotecas para o pacote S-Plus em que as análises descritas neste trabalho poderão ser reproduzidas. Informações relativas a tais bibliotecas estarão disponíveis na página Web http://www.ime.usp.br/~ruilova. / In this work we study different variants of GARCH models to analyze the arrival of heterogeneous information in high frequency data. These models, known as HARCH(*n*) models, were introduced by Müller et al.(1997). To understand the necessity to incorporate this characteristic, heterogeneous information, we study temporal aggregation on GARCH processes for high frequency data, and show some problems in the application of these models and the reason why it is necessary to develop new models. We propose a new model, that incorporates the heterogeneous information present in the financial market and the long memory of the volatility, generalizing the model considered by Müller et al.(1997). We propose to estimate the model via maximum likelihood and Griddy-Gibbs sampler. To assess the performance of the suggested estimation procedures we perform some simulations and apply the methodology to two time series, namely the foreign exchange rate Euro-Dollar and the series of the Ibovespa index. A modification of the algorithm of Griddy-Gibbs sampler was proposed to have a grid of points in a mobile window, to estimate the condicional distributions, in each iteration. This was validated by the similar results between maximum likelihood and Griddy-Gibbs sampler estimates obtained. We implemented the methods described in this work creating some libraries for the SPlus package. Information concerning these libraries is available in the Web page http://www.ime.usp.br/~ruilova.
|
Page generated in 0.0875 seconds