• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 10
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 64
  • 64
  • 64
  • 20
  • 14
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Construction and analysis of compact residual discretizations for conservation laws on unstructured meshes

Ricchiuto, Mario 21 June 2005 (has links)
This thesis presents the construction, the analysis and the verication of compact residual discretizations for the solution of conservation laws on unstructured meshes. The schemes considered belong to the class of residual distribution (RD) or fluctuation splitting (FS) schemes. The methodology presented relies on three main elements: design of compact linear first-order stable schemes for linear hyperbolic PDEs, a positivity preserving procedure mapping stable first-order linear schemes onto nonlinear second-order schemes with non-oscillatory shock capturing capabilities, and a conservative formulation enabling to extend the schemes to nonlinear CLs. These three design steps, and the underlying theoretical tools, are discussed in depth. The nonlinear RD schemes resulting from this construction are tested on a large set of problems involving the solution of scalar models, and systems of CLs. This extensive verification fills the gaps left open, where no theoretical analysis is possible. Numerical results are presented on the Euler equations of a perfect gas, on a two-phase flow model with highly nonlinear thermodynamics, and on the shallow-water equations. On irregular grids, the schemes proposed yield quite accurate and stable solutions even on very difficult computations. Direct comparisone show that these results are more accurate than the ones given by FV and WENO schemes. Moreover, our schemes have a compact nearest-neighbor stencil. This encourages to further develop our approach, toward the design of very high-order schemes, which would represent a very appealing alternative, both in terms of accuracy and efficiency, to now classical FV and ENO/WENO discretizations. These schemes might also be very competitive with respect to very high-order DG schemes.
52

The role of the complete Coriolis force in cross-equatorial transport of abyssal ocean currents

Stewart, Andrew L. January 2011 (has links)
In studies of the ocean it has become conventional to retain only the component of the Coriolis force associated with the radial component of the Earth’s rotation vector, the so-called “traditional approximation”. We investigate the role of the “non-traditional” component of the Coriolis force, corresponding to the non-radial component of the rotation vector, in transporting abyssal waters across the equator. We first derive a non-traditional generalisation of the multi-layer shallow water equations, which describe the flow of multiple superposed layers of inviscid, incompressible fluid with constant densities over prescribed topography in a rotating frame. We derive these equations both by averaging the three-dimensional governing equations over each layer, and via Hamilton’s principle. The latter derivation guarantees that conservation laws for mass, momentum, energy and potential vorticity are preserved. Within geophysically realistic parameters, including the complete Coriolis force modifies the domain of hyperbolicity of the multi-layer equations by no more than 5%. By contrast, long linear plane waves exhibit dramatic structural changes due to reconnection of the surface and internal wave modes in the long-wave limit. We use our non-traditional shallow water equations as an idealised model of an abyssal current flowing beneath a less dense upper ocean. We focus on the Antarctic Bottom Water, which crosses the equator in the western Atlantic ocean, where the bathymetry forms an almost-westward channel. Cross-equatorial flow is strongly constrained by potential vorticity conservation, which requires fluid to acquire a large relative vorticity in order to move between hemispheres. Including the complete Coriolis force accounts for the fact that fluid crossing the equator in an eastward/westward channel experiences a smaller change in angular momentum, and therefore acquires less relative vorticity. Our analytical and numerical solutions for shallow water flow over idealised channel topography show that the non-traditional component of the Coriolis force facilitates cross-equatorial flow through an almost-westward channel.
53

Couplage de modèles de dimensions hétérogènes et application en hydrodynamique / Dimensionally heterogeneous models coupling and hydrodynamic application

Tayachi, Manel 28 October 2013 (has links)
Les travaux de thèse présentés dans ce manuscrit portent sur l’étude d’électrodes de silicium, matériau prometteur pour remplacer le graphite en tant que matériau actif d’électrode négative pour accumulateur Li-ion. Les mécanismes de (dé)lithiation du silicium sont d’abord étudiés, par Spectroscopie des Electrons Auger (AES). En utilisant cette technique de caractérisation de surface, qui permet d’analyser les particules individuellement dans leur environnement d’électrode, nos résultats montrent que la première lithiation du silicium s’effectue selon un mécanisme biphasé cr-Si / a-Li3,1Si tandis que les processus de (dé)lithiation suivants apparaissent complètement différents et sont du type solution solide. Ces mécanismes d’insertion / désinsertion du lithium conduisent à des variations volumiques importantes des particules de matériau actif lors du cyclage, à l’origine d’une détérioration rapide des performances électrochimiques. En combinant plusieurs techniques de caractérisation, les mécanismes de dégradation d’une électrode de silicium sont étudiés au cours du vieillissement. En utilisant en particulier la spectroscopie d’impédance électrochimique et des analyses par porosimétrie mercure, une véritable dynamique de la porosité de l’électrode est mise en évidence lors du cyclage. Un modèle de dégradation, mettant en cause principalement l’instabilité de la Solid Electrolyte Interphase (SEI) à la surface des particules de silicium, est proposé. Pour tenter de stabiliser cette couche de passivation et ainsi améliorer les performances électrochimiques des électrodes de silicium, l’influence de deux paramètres est étudiée : l’électrolyte et le « domaine de lithiation » du silicium, ce dernier paramètre étant associé à l’évolution de la composition du matériau actif lors du cyclage. A l’issue de ces travaux, des performances prometteuses sont obtenues pour des accumulateurs Li-ion comprenant une électrode de silicium. / The work presented here focuses on electrodes made of silicon, a promising material to replace graphite as an anode active material for Li-ion Batteries (LIBs). The first part of the manuscript is dedicated to the study of silicon (de)lithiation mechanisms by Auger Electron Spectroscopy (AES). By using this technique of surface characterization, which allows investigating individual particles in their electrode environment, our results show that the first silicon lithiation occurs through a two-phase region mechanism cr-Si / a-Li3,1Si, whereas the following (de)lithiation steps are solid solution type process. Upon (de)alloying with lithium, silicon particles undergo huge volume variations leading to a quick capacity fading. By combining several techniques of characterization, the failure mechanisms of a silicon electrode are studied during aging. In particular, by using electrochemical impedance spectroscopy and mercury porosimetry analyses, an impressive dynamic upon cycling of the electrode porosity is shown. A model, which mainly attributes the capacity fading to the Solid Electrolyte Interphase instability at the silicon particles surface, is proposed. To try to stabilize this passivation layer and thus improve silicon electrodes electrochemical performances, the influence of two parameters is studied: the electrolyte and the “lithiation domain” of silicon; the latter is associated with the evolution of the active material composition upon cycling. Finally, by using these last results, promising performances are obtained for silicon electrode containing LIBs.
54

Mathematical model of multi-dimensional shear shallow water flows : problems and solutions / Modèle mathématique multi-dimensionnel d'écoulements cisaillés en eau peu profonde : problèmes et solutions

Ivanova, Kseniya 07 December 2017 (has links)
Cette thèse porte sur la résolution numérique du modèle multi-dimensionnel d'écoulement cisaillé en eau peu profonde. Dans le cas d'un mouvement unidimensionnel, ces équations coïncident avec les équations de la dynamique de gaz pour un choix particulier de l'équation d'état. Dans le cas multi-dimensionnel, le système est complètement différent du modèle de la dynamique de gaz. Il s'agit d'un système EDP hyperbolique 2D non-conservatif qui rappelle un modèle de turbulence barotrope. Le modèle comporte trois types d'ondes correspondant à la propagation des ondes de surface, des ondes de cisaillement et à celle de la discontinuité de contact. Nous présentons dans le cas 2D un schéma numérique basé sur une nouvelle approche de ``splitting" pour les systèmes d'équations non-conservatives. Chaque sous-système ne contient qu'une seule famille d'ondes: ondes de surface ou ondes de cisaillement, et discontinuité de contact. La précision d'une telle approche est testée sur des solutions exactes 2D décrivant l'écoulement lorsque la vitesse est linéaire par rapport aux variables spatiales, ainsi que sur des solutions décrivant des trains de rouleaux 1D. Finalement, nous modélisons un ressaut hydraulique circulaire formé dans un écoulement convergent radial d'eau. Les résultats numériques obtenus sont clairement similaires à ceux obtenus expérimentalement: oscillations du ressaut et son rotation avec formation du point singulier. L'ensemble des validations proposées dans ce manuscrit démontre les aptitudes du modèle et de la méthode numérique pour la résolution des problèmes complexes d'écoulements cisaillés en eau peu profonde multidimensionnels. / This thesis is devoted to the numerical modelling of multi-dimensional shear shallow water flows. In 1D case, the corresponding equations coincide with the equations describing non--isentropic gas flows with a special equation of state. However, in the multi-D case, the system differs significantly from the gas dynamics model. This is a 2D hyperbolic non-conservative system of equations which is reminiscent of a generic Reynolds averaged model of barotropic turbulent flows. The model has three families of characteristics corresponding to the propagation of surface waves, shear waves and average flow (contact characteristics). First, we show the ability of the one-dimensional conservative shear shallow water model to predict the formation of roll-waves from unstable initial data. The stability of roll waves is also studied.Second, we present in 2D case a new numerical scheme based on a splitting approach for non-conservative systems of equations. Each split subsystem contains only one family of waves (either surface or shear waves) and contact characteristics. The accuracy of such an approach is tested on exact 2D solutions describing the flow where the velocity is linear with respect to the space variables, and on the solutions describing 1D roll waves. Finally, we model a circular hydraulic jump formed in a convergent radial flow of water. Obtained numerical results are qualitatively similar to those observed experimentally: oscillation of the hydraulic jump and its rotation with formation of a singular point. These validations demonstrate the capability of the model and numerical method to solve challenging multi--dimensional problems of shear shallow water flows.
55

Hybird Central Solvers for Hyperbolic Conservation Laws

Maruthi, N H January 2015 (has links) (PDF)
The hyperbolic conservation laws model the phenomena of nonlinear waves including discontinuities. The coupled nonlinear equations representing such conservation laws may lead to discontinuous solutions even for smooth initial data. To solve such equations, developing numerical methods which are accurate, robust, and resolve all the wave structures appearing in the solutions is a challenging task. Among several discretization techniques developed for solving hyperbolic conservation laws numerically, Finite Volume Method (FVM) is the most popular. Numerical algorithms, in the framework of FVM, are broadly classified as upwind and central discretization methods. Upwind methods mimic the features of hyperbolic conservation laws very well. However, most of the popular upwind schemes are known to suffer from the shock instabilities. Many upwind methods are heavily dependent on eigen-structure, therefore methods developed for one system of conservation laws are not straightforwardly extended to other systems. On the contrary, central discretization methods are simple, independent of eigen-structure, and therefore, are easily extended to other systems. In the first part of the thesis, a hybrid central discretization method is introduced for Euler equations of gas dynamics. This hybrid scheme is then extended to other hyperbolic conservation laws namely, shallow water equations of oceanography and ideal magnetohydrodynamics equations. The baseline solver for the new hybrid scheme, Method of Optimal Viscosity for Enhanced Resolution of Shocks (MOVERS), is an accurate scheme capable of capturing grid aligned steady discontinuities exactly. This central scheme is free from complicated Riemann solvers and therefore is easy to implement. This low diffusive algorithm produces sonic glitches at the expansion regions involving sonic points and is prone to shock instabilities. Therefore it requires an entropy fix to avoid these problems. With the use of entropy fix the exact discontinuity capturing property of the scheme is lost, although sonic glitches and shock instabilities are avoided. The motivation for this work is to develop a numerical method which exactly preserves the steady contacts, is accurate, free of multi-dimensional shock instabilities and yet avoids the entropy fix. This is achieved by constructing a coefficient of numerical diffusion based on pressure gradient sensor. The pressure gradients are known to detect shocks and they vanish across contact discontinuities. This property of pressure sensor is utilized in constructing the coefficient of numerical diffusion. In addition to the numerical diffusion of the baseline solver, a numerical diffusion based on the pressure sensor, scaled by the maximum of eigen-spectrum, is used to avoid shock instabilities. At contact discontinuities, pressure gradients vanish and coefficient of numerical diffusion of MOVERS is automatically retained to capture steady contact discontinuities exactly. This simple hybrid central solver is accurate, captures steady contact discontinuities exactly and is free of multi-dimensional shock instabilities. This novel method is extended to shallow water and ideal magnetohydrodynamics equations in a similar way. In the second part of the thesis, an entropy stable central discretization method for hyperbolic conservation laws is introduced. In a quest for optimal numerical viscosity, development of entropy stable schemes gained importance in recent times. In this work, the entropy conservation equation is used as a guideline to fix the coefficient of numerical diffusion for smooth regions of the flow. At the large gradients, coefficient of numerical diffusion of baseline solver is used. Switch over between smooth and large gradients of the flow is done using limiter functions which are known to distinguish between smooth and high gradient regions of the flow. This simple and stable central scheme termed MOVERS-LE captures grid aligned steady discontinuities exactly and is free of shock instabilities in multi-dimensions. Both the above algorithms are tested on various well established benchmark test problems.
56

Non-Newtonian Flow Modelling Through A Venturi Flume / Modélisation d'écoulements non newtoniens le long de canaux Venturi

Mouzouri, Miloud 07 November 2016 (has links)
Lors d’une opération de forage, un certain nombre d’événements imprévus par rapport à l’écoulement du fluide de forage dans le puits, peuvent se produire assez rapidement. Des exemples de tels événements sont les afflux de pétrole ("kick") ainsi que les pertes de boue dans la formation. Un "kick" qui augmente en intensité peut entraîner, par ce que l’on nomme, un "blowout" (par exemple l’incident Deepwater Horizon en 2010). Les pertes et les gains sont habituellement détectés en contrôlant l’équilibre de la boue de forage dans le puits, en particulier en contrôlant le débit sortant du puits et en le comparant au débit entrant induit par les pompes. La plupart des méthodes de surveillance, de l’écoulement du puits en cours de forage, est d’utiliser un simple "paddle" (capteur qui mesure la hauteur du fluide de forage avec l’inclinaison d’une pagaie) dans la ligne d’écoulement de retour, ou d’utiliser un débitmètre de Coriolis (débitmètre connu pour sa précision, mais coûteux et nécessite une installation complexe en ajoutant un "by-pass"). Il y a un besoin évident d’un nouveau débitmètre précis, mais facile à installer et peu coûteux. Le canal Venturi a été utilisé comme débitmètre pendant des années dans l’industrie des eaux. Il apparaît comme une solution peu chère mais précise pour mesurer des débits importants. Beaucoup de personnes ont travaillé sur cette solution pour améliorer sa précision et élargir son champ d’application. Ils ont développé des modèles, sur la base d’un processus d’étalonnage, permettant de relier la hauteur en amont au débit. Cela signifie que les modèles actuels, comme ISO NORM 4359 [1], peuvent être uniquement utilisés pour l’écoulement d’eau et pour une géométrie bien spécifique. Comme nous le savons, les boues ont des comportement non- Newtonien, et donc ces modèles établis ne peuvent pas être utilisés avec ce type de fluides. Pour notre application, la forme trapézoïdale apparaît comme un bon compromis entre la précision et la portée des mesures de débit. Ainsi, nous avons développé un modèle capable de calculer le débit en prenant en compte les propriétés du fluide ainsi que les paramètres géométriques du canal. Ce modèle a été simplifié sous forme 1D en utilisant la théorie des eaux peux profondes, et a été complété par un modèle de friction tenant en compte de la variation des propriétés des fluides et de la géométrie du canal. Ce modèle a été validé par une série d’expériences avec les deux types de fluides: Newtonien et non-Newtonien, où nous avons mesuré le débit et la hauteur de l’écoulement à différents endroits le long du canal Venturi. Nous avons également réalisé des simulations 3D, en simulant des écoulements Newtoniens et non- Newtonien le long du canal. Pour généraliser cette étude, cette démarche a été étendue à une autre forme de Venturi plus adapté à un certain design de plate-forme pétrolière. Les corrélations et les modèles développés et validés expérimentalement au cours de cette étude peuvent être utilisés pour étendre l’utilisation des canaux Venturi à tous les fluides Newtonien mais aussi non-Newtonien. Il est maintenant l’occasion pour les industries de proposer une solution, peu chère mais précise pour mesurer les débits dans des canaux ouverts et pour tous types de fluides. / During a drilling operation, a certain number of unexpected events, related to the flow of drilling fluid in the well, may happen rather quickly. Examples of such events are formation fluid influx (kick) and mud loss to the formation. An uncontrolled kick that increases in intensity may result in what is known as a blowout (e.g. the Deepwater Horizon incident in 2010). Influxes and kicks are traditionally detected by monitoring the drilling mud balance in the well, in particular, by monitoring the flow out the well and comparing it to the incoming flow induced by the pumps. Most methods of monitoring the flow out of the well while drilling consists in using a simple paddle (sensor that measures the height of drilling fluid with the inclination of a paddle) in the return flow line, or in using a Coriolis flow meter (flow meter known for its accuracy but expensive and requires a complex installation by adding a bypass). There is a clear need of a new accurate flow meter, but easy to install and inexpensive. The Venturi flume has been used as flow meter for years in water industry. It appears as a cheap but accurate solution to measure large flow rates. Many people have worked on this solution to improve its accuracy and to expand its scope. They have developed models, based on a calibration process, to relate the upstream height to the flow rate. This means that current models, as ISO NORM 4359 [1], can be used only for water flow and specific geometry. As known, muds have non-Newtonian behavior and water models cannot be used with this kind of fluids. For our application, trapezoidal shape appears as a good compromise between accuracy and range of flow rate measurements. Thus, we built a model able to compute the flow rate with taking into account fluid properties and geometrical parameters. This model is simplified in 1D form by using the Shallow Water theory, and completed by a friction model taking into account the variation of fluid properties and geometry along the open channel. It have been validated by series of experiments with both Newtonian and non-Newtonian fluids, where we measured the flow rate and heights of the flow at different locations along the trapezoidal Venturi flume. It have been also completed by 3D CFD which has been simulated both Newtonian and non-Newtonian flows along the flume. To generalized this study, the work was extended to another shape of Venturi more suited to some rig design. The correlations and models developed and experimentally validated during this research can be used to extend the use of Venturi flume flow meters for any fluids : Newtonian and non- Newtonian. It is an opportunity for industries to propose a cheap but accurate solution to measure flow rates in open channels with any kind of fluids.
57

Développement de méthodologies et d'outils numériques pour l'évaluation du débit en réseau hydraulique à surface libre / Development of methodologies and numerical tools to evaluate the flow rate in free surface hydraulic systems

Isel, Sandra 31 January 2014 (has links)
L’évaluation du débit en réseaux hydrauliques à surface libre est une problématique actuelle sur le plan scientifique, à forts enjeux technologiques, économiques et écologiques. Dans cette thèse, de nouvelles méthodologies d’instrumentation, basées sur une synergie entre mesures non intrusives de hauteur d’eau et modélisation numérique ont été développées. Celles-ci s’appliquent d’une part à des collecteurs dont le fonctionnement hydraulique est complexe et, d’autre part, à des ouvrages non-standard (Venturi, déversoirs d’orage). Ce travail de thèse multidisciplinaire vise une meilleure compréhension de l’écoulement pour en déduire des relations Q=f(hi) plus robustes, spécifiques à chaque site et associées à leurs incertitudes; mais également l’identification de possibles modifications du site de mesure afin d’améliorer l’estimation du débit. Au final, l’applicabilité des méthodologies développées a été éprouvée au travers de plusieurs études sur sites réels. / The evaluation of the flow rate in free surface water systems is a current scientific problem, related to high technological, economical and ecological issues. In this study, new methods of instrumentation based on a synergy between non-intrusive water level measurements and numerical modeling have been developed. These methods are applied first to sewer pipes with complex hydraulic conditions then to non-standard hydraulic structures (Venturi flumes, Combined Sewer Overflows). This multidisciplinary work aims at a better understanding of the flow to identify more robust site-specific Q=f(hi) relationships related to their uncertainties. It also aims at the identification of possible modification of the measurement site in order to improve the flow rate evaluation. Finally, the applicability of the developed methodologies has been tested through several real site studies.
58

Numerical simulation of shallow water equations and related models / Méthodes numériques pour les équations de Saint-Venant et des modèles associés

Gunawan, Harry Putu 29 January 2015 (has links)
Cette thèse porte sur l'approximation numérique des équations de Saint-Venant et de quelques problèmes qui leur sont reliés. Dans la première partie, nous analysons les propriétés mathématiques et les applications des schémas numériques sur grilles décalées. La robustesse de ces schémas est prouvée sur des applications telles que les équations de Saint-Venant dans un domaine en rotation, en vue des écoulements géostrophiques, ainsi que l'extension de ces équations au cas visqueux. Dans la seconde partie, nous présentons des modèles basés sur les équations de Saint-Venant. Nous commençons par étudier le couplage avec l'équation d'Exner, qui porte sur le transport des sédiments. Nous observons des propriétés de convergence numérique vers la solution exacte dans un cas de solution analytique, et nous constatons un bon accord avec des données expérimentales dans le cas de la rupture de barrage avec fond érodable. Nous continuons par l'étude d'un schéma numérique, basé sur une méthode de volumes finis colocalisés (HLLC) pour l'approximation du modèle de Richard-Gavrilyuk. Ce modèle étend les équations de Saint-Venant au cas des écoulements avec cisaillement. Des tests numériques montrent la validité du schéma / This thesis is devoted to the numerical approximation of the shallow water equations and of some related models. In the first part, we analyze the mathematical properties and the applications of the staggered grid scheme. The robustness of this scheme is validated on various applications such as the rotating shallow water equations for geostrophic flows model and viscous shallow water equations. In the second part, we consider some related models. Firstly focusing on the coupling between the Exner equation and the shallow water equations, modelling bedload sediment transport, we observe in a particular case the numerical convergence of the scheme to the exact solution, as well as a good agreement with the experimental data in the dam-break with erodible bottom test. Secondly, we present a numerical scheme based on the finite volume collocated scheme (HLLC) in order to approximate the Richard-Gavrilyuk model. This model is an extension of the shallow water model, fit for modelling the shear shallow water flows. Some numerical tests provide a validation of the scheme
59

Simulation numérique d'écoulements compressibles complexes par des méthodes de type Lagrange-projection : applications aux équations de Saint-Venant / Numerical simulation of complex compressible flows by Lagrange-projection type methods : applications to shallow water equations

Stauffert, Maxime 05 October 2018 (has links)
On étudie dans le cadre de la thèse une famille de schémas numériques permettant de résoudre les équations de Saint-Venant. Ces schémas utilisent une décomposition d'opérateur de type Lagrange-projection afin de séparer les ondes de gravité et les ondes de transport. Un traitement implicite du système acoustique (relié aux ondes de gravité) permet aux schémas de rester stable avec de grands pas de temps. La correction des flux de pression rend possible l'obtention d'une solution approchée précise quel que soit le régime d'écoulement vis-à-vis du nombre de Froude. Une attention toute particulière est portée sur le traitement du terme source qui permet la prise en compte de l'influence de la topographie. On obtient notamment la propriété dite équilibre permettant de conserver exactement certains états stationnaires, appelés état du "lac au repos". Des versions 1D et 2D sur maillages non-structurés de ces méthodes ont été étudiées et implémentées dans un cadre volumes finis. Enfin, une extension vers des méthodes ordres élevés Galerkin discontinue a été proposée en 1D avec des limiteurs classiques ainsi que combinée avec une boucle MOOD de limitation a posteriori. / In this thesis we study a family of numerical schemes solving the shallow water equations system. These schemes use a Lagrange-projection like splitting operator technique in order to separate the gravity waves and the transport waves. An implicit-explicit treatment of the acoustic system (linked to the gravity waves) allows the schemes to stay stable with large time step. The correction of the pressure fluxes enables the obtain of a precise approximation solution whatever the regime flow is with respect to the Froude number. A particular attention has been paid over the source term treatment which permits to take the topography into account. We especially obtain the so-called well-balanced property giving the exact conservation of some steady states, namely the "lake at rest" state. 1D and 2D versions of this methods have been studied and implemented in the finite volumes framework. Finally, a high order discontinuous Galerkin extension has been proposed in 1D with classical limiters along with a combined MOOD loop a posteriori limiting strategy.
60

Modélisation des phénomènes de films liquides dans les turbines à vapeur / Modelling and simulation for liquid films in steam turbines

Simon, Amélie 11 January 2017 (has links)
Dans la production d'électricité, un des leviers centraux pour réduire les détériorations et les pertes causées par l'humidité dans les turbines à vapeur est l'étude des films liquides. Ces films minces, sont créés par la déposition de gouttes et sont fortement cisaillés. Des gouttes peuvent ensuite être arrachées du film. A l'heure actuelle, aucun modèle complet et valide n'existe pour décrire ce phénomène. Un modèle 2D à formulation intégrale associé à des lois de fermetures a été dérivé pour représenter ce film. Comparé aux équations classiques de Saint-Venant, le modèle prend en compte davantage d'effets : le transfert de masse, l'impact des gouttes, le cisaillement à la surface libre, la tension de surface, le gradient de pression et la rotation. Une analyse des propriétés du modèle (hyperbolicité, entropie, conservativité, analyse de stabilité linéaire, invariance par translation et par rotation) est réalisée pour juger de la pertinence du modèle. Un nouveau code 2D est implémenté dans un module de développement libre du code EDF Code Saturne et une méthode de volumes finis pour un maillage non-structure a été développée. La vérification du code est ensuite effectuée avec des solutions analytiques dont un problème de Riemann. Le modèle, qui dégénère en modèle classique de Saint-Venant pour le cas d'un film tombant sur un plan inclinée, est validé par l'expérience de Liu and Gollub, 1994, PoF et comparé à des modèles de références (Ruyer-Quil and Manneville, 2000, EPJ-B et Lavalle, 2014, PhD thesis). Un autre cas d'étude met en scène un film cisaillé en condition basse-pression de turbine à vapeur et, est validé par l'expérience de Hammitt et al., 1981, I. Enfin, le code film est couplé aux données 3D du champ de vapeur autour d'un stator d'une turbine basse-pression du parc EDF, issues de Blondel, 2014, PhD thesis. Cette application industrielle montre la faisabilité d'une simulation d'un film en condition réelle du turbine à vapeur. / In the electricity production, one central key to reduce damages and losses due to wetness in steam turbines is the study of liquid films. These thin films are created by the deposition of droplets and are highly sheared. This film may then be atomized into coarse water. At the moment, no comprehensive and validated model exists to describe this phenomenon. A 2D model based on a integral formulation associated with closure laws is developed to represent this film. Compared to classical Shallow-Water equation, the model takes into account additional effect : mass transfer, droplet impact, shearing at the free surface, surface tension, pressure gradient and the rotation. The model properties (hyperbolicity, entropy, conservativity, linear stability, Galilean invariance and rotational invariance) has been analyzed to judge the pertinence of the model. A new 2D code is implemented in a free module of the code EDF Code Saturne and a finite volume method for unstructured mesh has been developed. The verification of the code is then carried out with analytical solutions including a Riemann problem. The model, which degenerates into classical Shallow-Water equations for the case of a falling liquid film on a inclined plane, is validated by the experiment of Liu and Gollub, 1994, PoF and compared to reference models (Ruyer-Quil and Manneville, 2000, EPJ-B et Lavalle, 2014, PhD thesis). Another study depicts a sheared film under low-pressure steam turbine conditions and is validated by the experiment of Hammitt et al., 1981, FiI. Lastly, the code film is coupled to 3D steam data around a fixed blade of a BP100 turbine, from Blondel, 2014, PhD thesis. This industrial application shows the feasibility of liquid film's simulation in real steam turbine condition.

Page generated in 0.1011 seconds