• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sur certains aspects géométriques et arithmétiques des variétés de Shimura orthogonales / On some geometrical and arithmetical aspects of orthogonal Shimura varieties

Tayou, Salim 17 June 2019 (has links)
Cette thèse a pour objet l'étude de quelques propriétés arithmétiques et géométriques des variétés de Shimura orthogonales. Ces variétés apparaissent naturellement comme espaces de modules de structures de Hodge de type K3. Dans certains cas, elles paramètrent des objets géométriques tels que les surfaces K3 et leurs analogues en dimensions supérieures, les variétés hyperkähleriennes. Ce point de vue modulaire sera notre fil conducteur tout au long de ce mémoire. Ainsi, dans la première partie, on démontre un résultat d'équirépartition du lieu de Hodge dans les variations de structures de Hodge de type K3 au dessus d'une courbe complexe quasi-projective. Dans la deuxième partie, on étudie des analogues arithmétiques du résultat précédent. Un exemple d'énoncés qu'on obtient est le suivant: étant donnée une surface K3 définie sur un corps de nombres et ayant partout bonne réduction, alors sous certaine hypothèse d'approximation, il existe une spécialisation telle que le nombre de Picard géométrique croît strictement. Dans la troisième partie, on relie les problèmes du saut de nombre de Picard dans les familles de surfaces K3 à la question de construction de courbes rationnelles sur ces surfaces. Enfin, on étend un résultat de Bogomolov et Tschinkel. On montre notamment que toute surface K3 définie sur un corps algébriquement clos de caractéristique quelconque et admettant une fibration elliptique non-isotriviale contient une infinité de courbes rationnelles. / This thesis deals with some arithmetical and geometrical aspects of orthogonal Shimura varieties. These varieties appear naturally as moduli spaces of Hodge structures of K3 type. In some cases, they parametrize geometric objects as K3 surfaces and their analogous in higher dimensions, the hyperkähler varieties. This modular point of view will be our guiding principle throughout this dissertation. In the first part, we prove an equidistribution result of the Hodge locus in variations of Hodge structures of K3 type above complex quasi-projective curves. In the second part, we study analogous results in the arithemtic setting. An example of statements we get is the following: given a K3 surface having everywhere good reduction and satisfying an approximation hypothesis, there exists a specialization with strictly increasing geometric Picard rank. In both cases, our methods take advantage of the rich arithmetic, automorphic and geometric structure of orthogonal Shimura varieties as well as the Kuga-Satake construction that links them to moduli spaces of abelian varieties. Finally, we extend a result of Bogomolov and Tschinkel. In particular, we show that any K3 surface defined over an algebraically closed field of arbitrary characteristic and admitting a non-isotrivial elliptic fibration contains infinitely many rational curves.
12

Semi-simplicity of l-adic representations with applications to Shimura varieties / Semi-simplicité des représentations l-adiques et applications aux variétés de Shimura

Fayad, Karam 29 September 2015 (has links)
On étudie dans un cadre abstrait des critères de semi-simplicité pour des représentations l-adiques de groupes profinis. On applique les résultats obtenus pour montrer que les relations d'Eichler-Shimura généralisées entraînent la semi-simplicitéde certaines représentations galoisiennes non triviales qui apparaissent dans la cohomologie des variétés de Shimura unitaires. Les résultats les plus intéressants sont obtenus pour les variétés de Shimura unitaires de signature $(n,0)^a \times (n-1,1)^b \times (1,n-1)^c \times (0,n)^d$. / We prove several abstract criteria for semi-simplicity of l-adic representations for profinite groups. As an application, we show that generalised Eichler-Shimura relations imply the semi-simplicity of a non-trivial subspace of middle cohomology of unitary Shimura varieties. The most complete results are obtained for unitary Shimura varieties of signature $(n,0)^a \times (n-1,1)^b \times (1,n-1)^c \times (0,n)^d$.
13

La conjecture d'André-Pink : orbites de Hecke et sous-variétés faiblement spéciales / The André-Pink conjecture : Hecke orbits and weakly special subvarieties

Orr, Martin 25 September 2013 (has links)
La conjecture d'André-Pink affirme qu'une sous-variété d'une variété de Shimura ayant une intersection dense avec une orbite de Hecke est faiblement spéciale. On démontre cette conjecture dans le cas de courbes dans une variété de Shimura de type abélien, ainsi que dans certains cas de sous-variétés de dimension supérieure. Ceci est un cas spécial de la conjecture de Zilber-Pink. C'est une généralisation de théorèmes d'Edixhoven et Yafaev quand l'orbite de Hecke se compose de points spéciaux, de Pink quand l'orbite de Hecke se compose de points Galois génériques, et de Habegger et Pila quand la variété de Shimura est un produit de courbes modulaires. Notre démonstration de la conjecture d'André-Pink pour les courbes dans l'espace de modules des variétés abéliennes principalement polarisées est basée sur la méthode de Pila et Zannier, utilisant une variante forte du théorème de comptage de Pila-Wilkie. On obtient les bornes galoisiennes requises grâce au théorème d'isogénie de Masser et Wüstholz. Afin de relier les bornes sur les isogénies aux hauteurs, on démontre également diverses bornes concernant l'arithmétique des formes hermitiennes sur l'anneau d'endomorphismes d'une variété abélienne. Afin d'étendre le résultat sur la conjecture d'André-Pink aux courbes dans les variétés de Shimura de type abélien et à certains cas de sous-variétés de dimension supérieure, on étudie les propriétés fonctorielles de plusieurs variantes des orbites de Hecke. Un chapitre concerne les rangs des groupes de Mumford-Tate de variétés abéliennes complexes. On y démontre une minoration de ces rangs en fonction de la dimension de la variété abélienne, étant donné que ses sous-variétés abéliennes simples sont deux à deux non isogènes. / The André-Pink conjecture predicts that a subvariety of a Shimura variety which has dense intersection with a Hecke orbit is weakly special. We prove this conjecture for curves in a Shimura variety of abelian type, as well as for certain cases for subvarieties of higher dimension. This is a special case of the Zilber-Pink conjecture. It generalises theorems of Edixhoven and Yafaev when the Hecke orbit consists of special points, of Pink when the Hecke orbit consists of Galois generic points, and of Habegger and Pila when the Shimura variety is a product of modular curves. Our proof of the André-Pink conjecture for curves in the moduli space of principally polarised abelian varieties is based on the Pila-Zannier method, using a strong form of the Pila-Wilkie counting theorem. The necessary Galois bounds are obtained from the Masser-Wüstholz isogeny theorem. In order to relate isogeny bounds to heights, we also prove various bounds concerning the arithmetic of Hermitian forms over the endomorphism ring of an abelian variety. In order to extend the result on the André-Pink conjecture to curves in Shimura varieties of abelian type and to some cases of higher-dimensional subvarieties, we study the functorial properties of Hecke orbits and variations thereof. One chapter concerns the ranks of Mumford-Tate groups of complex abelian varieties. We prove a lower bound for these ranks in terms of the dimension of the abelian variety, subject to the condition that the simple abelian subvarieties are pairwise non-isogenous.
14

O-minimality, nonclassical modular functions and diophantine problems

Spence, Haden January 2018 (has links)
There now exists an abundant collection of conjectures and results, of various complexities, regarding the diophantine properties of Shimura varieties. Two central such statements are the Andre-Oort and Zilber-Pink Conjectures, the first of which is known in many cases, while the second is known in very few cases indeed. The motivating result for much of this document is the modular case of the Andre-Oort Conjecture, which is a theorem of Pila. It is most commonly viewed as a statement about the simplest kind of Shimura varieties, namely modular curves. Here, we tend instead to view it as a statement about the properties of the classical modular j-function. It states, given a complex algebraic variety V, that V contains only finitely many maximal special subvarieties, where a special variety is one which arises from the arithmetic behaviour of the j-function in a certain natural way. The central question of this thesis is the following: what happens if in such statements we replace the j-function with some other kind of modular function; one which is less well-behaved in one way or another? Such modular functions are naturally called nonclassical modular functions. This question, as we shall see, can be studied using techniques of o-minimality and point-counting, but some interesting new features arise and must be dealt with. After laying out some of the classical theory, we go on to describe two particular types of nonclassical modular function: almost holomorphic modular functions and quasimodular functions (which arise naturally from the derivatives of the j-function). We go on to prove some results about the diophantine properties of these functions, including several natural Andre-Oort-type theorems, then conclude by discussing some bigger-picture questions (such as the potential for nonclassical variants of, say, Zilber-Pink) and some directions for future research in this area.
15

Géométrie p-adique des variétés de Shimura de type P.E.L et familles de formes automorphes / P-adic geometry of P.E.L type Shimura varieties and families of automorphic forms

Hernandez, Valentin 28 June 2017 (has links)
Dans cette thèse nous étudions les propriétés p-adiques des variétés de Shimura de type P.E.L qui ont bonne réduction en p et pour lesquelles le lieu ordinaire est vide. Dans un premier chapitre on construit des invariants qui découpent dans les variétés de Shimura un ouvert dense, le lieu mu-ordinaire, et nous étudions les propriétés géométriques de ces invariants. Dans le second chapitre nous étendons au cas mu-ordinaire la théorie du sous-groupe canonique, et construisons donc pour des familles de groupes p-divisibles “presque” mu-ordinaire une filtration canonique de la p^n-torsion. Cela s’applique en particulier à certains voisinages rigides stricts du lieu mu-ordinaires des variétés de Shimura étudiées. Dans le troisième chapitre, qui est un travail en commun avec Stéphane Bijakowski, nous reconstruisons des invariants dans un cadre plus étendu que dans le premier chapitre sur certains modèles locaux de variétés de Shimura, lorsque l’on autorise le nombre premier p à ramifier dans la donnée de Shimura locale. Enfin, dans le quatrième chapitre on met en application les constructions des deux premiers chapitres pour construire une variété rigide, une variété de Hecke, qui paramètre les familles p-adiques de formes modulaires de Picard de pente finie, lorsque p est inerte dans le corps quadratique imaginaire de la donnée de Picard. / In this thesis we study the p-adic properties of P.E.L. type Shimura varieties which have good reduction at p and for which the ordinary locus is empty. In the first chapter, we construct locally some invariants that cuts out inside the Shimura varieties an open and dense locus, the mu-ordinary locus, and study the geometric properties of these invariants. In the second chapter we extend to the unramified mu-ordinary case the theory of the canonical subgroup. Thus, we construct for ’nearly’ mu-ordinary families of p-divisible groups a canonical filtration of the p^n-torsion. This applies in particular to some strict rigid neighbourhoods of the mu-ordinary locus of the Shimura varieties previously studied. In the third chapter, which is a collaboration with Stéphane Bijakowski, we extend the construction of the invariants of the first chapter to some local integral models of Shimura varieties where the prime p can be ramified in the local datum. Finally, in the last chapter, we use the constructions of the first two chapter to construct a rigid variety, the Eigenvariety, which parametrises the finite slope p-adic families of Picard automorphic forms when the prime p is inert in the quadratic imaginary field of the Picard datum.
16

The mixed Ax-Lindemann theorem and its applications to the Zilber-Pink conjecture / Le théorème d’Ax-Lindemann mixte et ses applications à la conjecture de Zilber-Pink

Gao, Ziyang 24 November 2014 (has links)
La conjecture de Zilber-Pink est une conjecture diophantienne concernant les intersections atypiques dans les variétés de Shimura mixtes. C’est une généralisation commune de la conjecture d’André-Oort et de la conjecture de Mordell-Lang. Le but de cette thèse est d’étudier Zilber-Pink. Plus concrètement, nous étudions la conjecture d’André-Oort, selon laquelle une sous-variété d’une variété de Shimura mixte est spéciale si son intersection avec l’ensemble des points spéciaux est dense, et la conjecture d’André-Pink-Zannier, selon laquelle une sous-variété d’une variété de Shimura mixte est faiblement spéciale si son intersection avec une orbite de Hecke généralisée est dense. Cette dernière conjecture généralise Mordell-Lang comme expliqué par Pink.Dans la méthode de Pila-Zannier, un point clef pour étudier la conjecture de Zilber-Pink est de démontrer le théorème d’Ax-Lindemann qui est une généralisation du théorème classique de Lindemann-Weierstrass dans un cadre fonctionnel. Un des résultats principaux de cette thèse est la démonstration du théorème d’Ax-Lindemann dans sa forme la plus générale, c’est- à-dire le théorème d’Ax-Lindemann mixte. Ceci généralise les résultats de Pila, Pila-Tsimerman, Ullmo-Yafaev et Klingler-Ullmo-Yafaev concernant Ax-Lindemann pour les variétés de Shimura pures.Un autre résultat de cette thèse est la démonstration de la conjecture d’André-Oort pour une grande collection de variétés de Shimura mixtes : in- conditionnellement pour une variété de Shimura mixte arbitraire dont la par- tie pure est une sous-variété de AN6 (par exemple les produits des familles universelles des variétés abéliennes de dimension 6 et le fibré de Poincaré sur A6) et sous GRH pour toutes les variétés de Shimura mixtes de type abélien. Ceci généralise des théorèmes connus de Klinger-Ullmo-Yafaev, Pila, Pila-Tsimerman et Ullmo pour les variétés de Shimura pures.Quant à la conjecture d’André-Pink-Zannier, nous démontrons plusieurs cas valables lorsque la variété de Shimura mixte ambiante est la famille universelle des variétés abéliennes. Tout d’abord nous démontrons l’intersection d’André-Oort et André-Pink-Zannier, c’est-à-dire que l’on étudie l’orbite de Hecke généralisée d’un point spécial. Ceci généralise des résultats d’Edixhoven-Yafaev et Klingler-Ullmo-Yafaev pour Ag. Nous prouvons ensuite la conjecture dans le cas suivant : une sous-variété d’un schéma abélien au dessus d’une courbe est faiblement spéciale si son intersection avec l’orbite de Hecke généralisée d’un point de torsion d’une fibre non CM est Zariski dense. Finalement pour une orbite de Hecke généralisée d’un point algébrique arbitraire, nous démontrons la conjecture pour toutes les courbes. Ces deux derniers cas généralisent des résultats de Habegger-Pila et Orr pour Ag.Dans toutes les démonstrations, la théorie o-minimale, en particulier le théorème de comptage de Pila-Wilkie, joue un rôle important. / The Zilber-Pink conjecture is a diophantine conjecture concerning unlikely intersections in mixed Shimura varieties. It is a common generalization of the André-Oort conjecture and the Mordell-Lang conjecture. This dissertation is aimed to study the Zilber-Pink conjecture. More concretely, we will study the André-Oort conjecture, which predicts that a subvariety of a mixed Shimura variety having dense intersection with the set of special points is special, and the André-Pink-Zannier conjecture which predicts that a subvariety of a mixed Shimura variety having dense intersection with a generalized Hecke orbit is weakly special. The latter conjecture generalizes the Mordell-Lang conjecture as explained by Pink.In the Pila-Zannier method, a key point to study the Zilber-Pink conjec- ture is to prove the Ax-Lindemann theorem, which is a generalization of the functional analogue of the classical Lindemann-Weierstrass theorem. One of the main results of this dissertation is to prove the Ax-Lindemann theorem in its most general form, i.e. the mixed Ax-Lindemann theorem. This generalizes results of Pila, Pila-Tsimerman, Ullmo-Yafaev and Klingler-Ullmo-Yafaev concerning the Ax-Lindemann theorem for pure Shimura varieties.Another main result of this dissertation is to prove the André-Oort conjecture for a large class of mixed Shimura varieties: unconditionally for any mixed Shimura variety whose pure part is a subvariety of AN6 (e.g. products of universal families of abelian varieties of dimension 6 and the Poincaré bundle over A6) and under GRH for all mixed Shimura varieties of abelian type. This generalizes existing theorems of Klinger-Ullmo-Yafaev, Pila, Pila-Tsimerman and Ullmo concerning pure Shimura varieties.As for the André-Pink-Zannier conjecture, we prove several cases when the ambient mixed Shimura variety is the universal family of abelian varieties. First we prove the overlap of André-Oort and André-Pink-Zannier, i.e. we study the generalized Hecke orbit of a special point. This generalizes results of Edixhoven-Yafaev and Klingler-Ullmo-Yafaev for Ag. Secondly we prove the conjecture in the following case: a subvariety of an abelian scheme over a curve is weakly special if its intersection with the generalized Hecke orbit of a torsion point of a non CM fiber is Zariski dense. Finally for the generalized Hecke orbit of an arbitrary algebraic point, we prove the conjecture for curves. These generalize existing results of Habegger-Pila and Orr for Ag.In all these proofs, the o-minimal theory, in particular the Pila-Wilkie counting theorems, plays an important role.
17

The arithmetic volume of Shimura varieties of orthogonal type

Hörmann, Fritz 04 November 2010 (has links)
Das Ziel dieser Arbeit ist die Berechnung der arithmetischen Volumina der Shimuravarietäten vom orthogonalen Typ und der natürlichen Höhen der speziellen Zykel auf diesen. Wir entwickeln, für den Fall guter Reduktion, eine allgemeine Theorie ganzzahliger Modelle von toroidalen Kompaktifizierungen der Shimuravarietäten vom Hodge Typ (sowie des Standardhauptfaserbündels darüber). Dies ermöglicht, unter Verwendung der Theorie der Borcherdsprodukte, das arithmetische Voluminen einer zu einem Gitter L der Diskriminante D assoziierten Shimuravarietät, bis auf log(p) Beiträge zu Primzahlen p mit p^2|4D, zu berechnen. Dies ist eine Verallgemeinerung einer Arbeit von Burgos, Bruinier und Kühn. Die Höhen der speziellen Zykel werden im Falle von Kodimension 1 bis auf log(p)-Beiträge mit p|2D berechnet, sowie unter leichten zusätzlichen Einschränkungen im Falle von Kodimension > 1. The resultierenden Grössen sind spezielle Ableitungswerte gewisser L-Reihen. Im Falle der speziellen Zykel stimmen diese mit speziellen Ableitungswerten gewisser normalisierter Eisensteinreihen überein (zusätzlich, bis auf Beiträge bei unendlich). Dies bestätigt Vermutungen von Bruinier-Kühn, Kudla und anderen. / The overall aim of this thesis is to compute arithmetic volumes of Shimura varieties of orthogonal type and natural heights of the special cycles on them. We develop a general theory of integral models of toroidal compactifications of Shimura varieties of Hodge type (and of its standard principal bundle) for the case of good reduction. This enables us, using the theory of Borcherds products, and generalizing work of Burgos, Bruinier and Kühn, to calculate the arithmetic volume of a Shimura variety associated with a lattice L of discriminant D, up to log(p)-contributions from primes p such that p^2|4D. The heights of the special cycles are calculated in the codimension 1 case up to log(p), p|2D, and with some additional restrictions in the codimension > 1 case. The values obtained are special derivatives of certain L-series. In the case of the special cycles they are equal to special derivatives of Fourier coefficients of certain normalized Eisenstein series (in addition, up to contributions from infinity) in accordance with conjectures of Bruinier-Kühn, Kudla, and others.

Page generated in 0.5125 seconds