Spelling suggestions: "subject:"shortchain fatty acids""
71 |
The Effects of Resistant Starch Intake in African-American Americans at Increased Risk for Type 2 DiabetesPenn-Marshall, Michelle 01 August 2006 (has links)
Background: African-Americans are a vulnerable population group with disproportionately elevated rates of type 2 Diabetes Mellitus (DM). Resistant starch is a promising food ingredient that has the potential to reduce the risk factors involved in the development of type 2 DM. To date, there is a dearth of published research studies on the effect of resistant starch on African-Americans who are at increased risk for type 2 DM.
Objective: The major objective of this study was to determine if daily consumption of approximately twelve grams of high-maize™ 260 resistant starch (RS) added to bread improved glucose homeostasis by monitoring changes in fasting plasma glucose, fructosamine, hemoglobin A1c, insulin, glucagon-like peptide-1, C-reactive protein, homeostasis model assessment insulin resistant (HOMA- IR) and beta-cell function (HOMA-Beta), serum acetate, propionate, and butyrate levels.
Design: A fourteen-week, randomized, double-blind, within-subject crossover design feeding study was carried out in African-American males (n=8) and females (n=7) at increased risk for type 2 DM who resided in Southwest Virginia. All participants consumed bread containing added RS or control bread (no added RS) for six-weeks. RS and control bread feedings were separated by a two-week washout period.
Results: Fasting Plasma Glucose (FPG) levels were significantly lower (P = 0.0179) after six-week control bread feedings compared to baseline. FPG levels were also significantly lower (P < 0.0001) after two-week washout period than at baseline. FPG levels were significantly higher (P < 0.0001) after six-week resistant starch bread feeding than at washout. FPG levels due to consumption of resistant starch versus control bread approached significance (P = 0.0574). Fructosamine levels were significantly lower (P = 0.0054) after control bread and resistant starch bread (P < 0.0012) consumption compared to baseline. No significant differences were found in fructosamine levels due to resistant bread intake versus control (P = 0.9692). Mean baseline HbA1c levels were 6.9% (n=15). This value was slightly lowered to 6.79% (n=14) at the end of the fourteen-week study, although statistical significance was not found. Mean ± standard errors for HbA1c values were 6.9% ± 0.18% and 6.9% ± 0.14% at baseline for the sequence groups, resistant starch first (n=7) and control treatment first (n=8) groups, respectively. Mean± standard error HbA1c values were 6.7%± 0.27% and 6.9% ± 0.27% at the conclusion of fourteen-week study for sequence groups, resistant starch first group (n=7) and control treatment first group, respectively. Baseline mean and standard errors C-reactive Protein (CRP) levels for male and female combined results were 0.62 ± 0.16 mg/dL (n=15). Mean CRP levels were 0.53 ± 0.12 mg/dL for resistant starch bread and 0.64 ± 0.21 mg/dL for control bread feeding periods. No significant differences were found for treatment, gender, or sequence effects for C-reactive protein levels during the fourteen-week study (P > 0.05). Mean HOMA-IR levels following six-week resistant starch and control bread consumption decreased to normal values (> 2.5), although no significant differences were found for treatment (P = 0.5923).
Conclusions: Eighty-seven grams of Hi- maize™ 260 Resistant Starch added to baked loaves of bread consumed by a free-living African-American population at increased risk for type 2 diabetes did not consistently show significance in all clinical indicators and biochemical markers assessed. On the basis of the evidence in this study we do not have evidence that this amount of resistant starch in this population's diet will prevent the onset of diabetes. However, results are suggestive that higher levels of resistant starch in a more controlled experiment could reduce clinical risk factors for type 2 diabetes. / Ph. D.
|
72 |
Transport kurzkettiger Fettsäuren über die basolaterale Membran des ovinen Pansenepithels: Mechanismen und Regulation auf Genebene: Transport kurzkettiger Fettsäuren über diebasolaterale Membran des ovinen Pansenepithels:Mechanismen und Regulation auf GenebeneDengler, Franziska 09 December 2014 (has links)
Einleitung: Kurzkettige Fettsäuren (SCFA) stellen das hauptsächliche Energiesubstrat für Wiederkäuer dar. In Anbetracht des - bedingt durch höhere Milch-, Mast und Reproduktionsleistung - steigenden Energiebedarfs von Hauswiederkäuern wie Milchkuh und Mastbulle ist es von zentraler Bedeutung, die Mechanismen zur Resorption dieser Energielieferanten bzw. Ansatzpunkte für die Beeinflussung dieser Transportprozesse genau zu kennen. Dieses Wissen kann möglicherweise dabei helfen, zukünftig die Energieaufnahme der Tiere zu unterstützen bzw. sogar effizienter zu gestalten.
Ziele der Untersuchungen: Deshalb war es Ziel der vorliegenden Arbeit, die Mechanismen zur Resorption von SCFA zu charakterisieren, wobei der Schwerpunkt auf den Transport aus den Pansenepithelzellen ins Blut gelegt wurde, da hierzu im Gegensatz zu ihrer Aufnahme aus dem Pansenlumen in die Epithelzellen noch sehr wenig bekannt war. In einem zweiten Schritt sollte untersucht werden, inwiefern die nachgewiesenen Mechanismen einer Regulation unterliegen und über welche Signalwege diese vermittelt werden könnte.
Materialien und Methoden: Zur Charakterisierung der beteiligten Resorptionsmechanismen wurden Epithelstücke aus dem ventralen Pansensack von Schafen in Ussing-Kammern eingespannt und mit Hilfe radioaktiv markierten Azetats, Butyrats und L-Laktats der Transport dieser Substrate unter verschiedenen Bedingungen sowie verschiedenen Hemmstoffeinflüssen untersucht. Zur Charakterisierung regulativer Einflüsse wurden die Epithelstücke über sechs bzw. 24 Stunden mit Butyrat inkubiert und anschließend RNA bzw. Totalprotein extrahiert. Hiermit konnten Veränderungen in mRNA- und Proteinexpression mittels quantitativer Echtzeit-PCR bzw. Western Blot nachgewiesen werden.
Ergebnisse: Die Untersuchungen der vorliegenden Arbeit konnten zeigen, dass der Transport von SCFA über die basolaterale Membran des Pansenepithels hauptsächlich proteinvermittelt erfolgt. Eine signifikante Beteiligung lipophiler Diffusion, d.h. ein passiver Transport, kann weitgehend ausgeschlossen werden. Der aktive Transport wies eine bikarbonatabhängige und eine bikarbonatunabhängige Komponente auf. Der Einsatz von Hemmstoffen verschiedener Transportproteine ergab deutliche Hinweise darauf, dass der Monocarboxylattransporter (MCT) 1 eine Rolle beim bikarbonatgekoppelten Transport von Azetat bzw. allgemein unmetabolisierten SCFA spielt. Diese Hinweise wurden untersetzt durch die Beobachtung, dass MCT 1, aber auch der apikal bzw. intrazellulär lokalisierte MCT 4 durch langfristige Inkubation des Epithels mit Butyrat sowohl auf mRNA- als auch auf Proteinebene signifikant erhöht exprimiert wurden, was als Anpassungsreaktion an eine Substratakkumulation interpretiert werden kann. Außerdem wurde auch die mRNA-Expression des Putativen Anionentransporters (PAT) 1 durch Inkubation mit Butyrat erhöht, was für eine Beteiligung auch dieses Transportproteins am SCFA-Transport über das Pansenepithel spricht. Allerdings ist im Gegensatz zu MCT 1 die Lokalisation des PAT 1 in der basolateralen Membran noch fraglich. Die Expressionssteigerung von Zielgenen des Nukleären Faktors ĸB und des Peroxisomenproliferator-aktivierten Rezeptors α sowie des Hypoxie-induzierbaren Faktors selbst deuten weiterhin darauf hin, dass die Steigerung der Transportkapazitäten von MCT 1 und 4 und auch PAT 1 über diese Signalwege vermittelt wird.
Schlussfolgerungen: Zusammenfassend konnte in dieser Arbeit erstmals der Transport von SCFA über die basolaterale Membran des Pansenepithels näher charakterisiert werden, sodass es nun möglich ist, zusammen mit den bereits vorliegenden Befunden für die apikale Membran ein komplettes Modell dafür zu erstellen. Auch wurden Erkenntnisse zu regulativen Einflüssen auf diesen Transport gewonnen, die es zukünftig ermöglichen könnten, die Resorption der SCFA aus dem Pansen nutritiv oder eventuell pharmakologisch zu beeinflussen.:Inhaltsverzeichnis
1 Einleitung 1
2 Literaturübersicht 3
2.1 Bedeutung kurzkettiger Fettsäuren für Wiederkäuer 3
2.2 Metabolismus von SCFA im Pansenepithel 4
2.2.1 Aufrechterhaltung des Konzentrationsgradienten vom Pansenlumen ins Epithel 4
2.2.2 Produktion von HCO3- aus CO2 durch die Carboanhydrase 5
2.2.3 Bereitstellung von Energie für die Epithelzellen 5
2.2.4 Bereitstellung von wasserlöslichen, glukosesparenden Energiesubstraten für die periphere Zirkulation 5
2.2.5 Verhinderung möglicher Schädigungen durch Butyrat 6
2.3 Transportmechanismen für kurzkettige Fettsäuren 7
2.3.1 Para- versus transzelluläre Resorption 7
2.3.2 Transzelluläre Resorption mittels lipophiler Diffusion 7
2.3.3 Proteinvermittelte SCFA-Permeation 9
2.3.4 Permeation von SCFA aus dem Epithel ins Blut 11
2.4 Beeinflussung der SCFA-Resorption auf Genexpressionsebene 17
2.4.1 Beeinflussung der Genexpression durch Butyrat 17
2.4.2 Beeinflussung der Genexpression durch Hypoxie 20
2.4.3 Mechanismen für die Regulation der Genexpression durch Butyrat
(-Metaboliten) und Hypoxie 21
2.5 Fragestellungen dieser Arbeit 26
3 Ergebnisse 28
3.1 Publikation 1 28
3.2 Publikation 2 41
4 Diskussion 54
4.1 Transport von SCFA über die basolaterale Membran des Pansenepithels 54
4.1.1 Transport mittels lipophiler Diffusion 57
4.1.2 SCFA werden bevorzugt über die basolaterale Membran transportiert 58
4.1.3 SCFA(-Metaboliten) werden bikarbonatabhängig über die basolaterale Membran transportiert 59
4.1.4 SCFA(-Metaboliten) werden durch einen Anionenaustauschmechanismus ins Blut ausgeschleust 61
4.1.5 Azetat wird durch einen pHMB- und CHC-sensitiven Mechanismus
transportiert 63
4.2 Der Transport von SCFA über das Pansenepithel unterliegt regulativen
Einflüssen 68
4.2.1 Einfluss von Butyrat(-Metaboliten) auf die Expression von potentiellen SCFA Transportern 68
4.2.2 Mechanismen für die Regulation der Expression durch Butyrat(-Metaboliten) 72
4.3 Theoretisches Modell des SCFA-Transports und dessen Regulation auf Genexpressionsebene auf Grundlage der Ergebnisse der vorliegenden Arbeit 74
5 Zusammenfassung 76
6 Summary 78
7 Literaturverzeichnis 80
Danksagung 98 / Introduction: The main energy source for ruminants are short chain fatty acids (SCFA). Considering the ever increasing energy requirements of cattle due to increasing milk yield and meat production, it is crucial to identify the mechanisms for the resorption of these energy sources as well as possibilities to influence these transport mechanisms. This knowledge could help support the animals’ energy uptake or even making it more efficient.
Aim: Thus, the aim of the present study was to characterise mechanisms for the resorption of SCFA focusing on their transport from the epithelial cells into the blood. In particular, since – compared to the research findings on the uptake of SCFA from ruminal lumen into the cells – so far only very little was known regarding this side of the epithelium. In a second step, the study aimed to elucidate whether the mechanisms observed are subject to regulatory processes and which signalling pathways are involved.
Materials and methods: To characterise the transport mechanisms involved, epithelial pieces from the ventral sac of ovine rumen were mounted in Ussing chambers. Using radioactively labelled acetate, butyrate and L-lactate, the transport of these substrates was investigated under different conditions and by applying different inhibitors for potential SCFA transport proteins. To characterise regulatory influences, epithelial pieces were incubated with butyrate for six and 24 hours, respectively. Subsequently, total RNA and protein were extracted to detect changes in mRNA and protein expression using quantitative real time PCR and western blot, respectively.
Results: The present study could show that transport of SCFA across the basolateral membrane of rumen epithelium is mainly realised by protein-mediated mechanisms. A significant participation of lipophilic diffusion, i.e. a passive transport, can almost entirely be excluded. The active transport could be divided into a bicarbonate-dependent and a bicarbonate-independent part. The experiments with inhibitors of different transport proteins showed clear evidence of an involvement of monocarboxylate transporter (MCT) 1 in the bicarbonate-dependent transport of acetate and non-metabolised SCFA in general. This evidence was supported by the finding that the expression of MCT 1 but also of the apically and intracellularly localised MCT 4 was increased significantly on both mRNA- and protein-level after long-term incubation of the epithelium with butyrate. This can be interpreted as an adaptation to a substrate accumulation. Additionally, butyrate incubation led to an increased mRNA expression of putative anion transporter (PAT) 1, which makes an involvement of this transport protein in SCFA transport across ruminal epithelium likely as well. However, in contrast to MCT 1 the localisation of PAT 1 in the basolateral membrane is still questionable. The increased expression of target genes of nuclear factor ĸB and peroxisome-proliferator activated receptor α as well as of hypoxia inducible factor strongly point to an involvement of these pathways in the increased expression of MCT 1 and 4 as well as PAT 1.
Conclusions: In summary, this study could characterise the transport of SCFA across the basolateral membrane of ruminal epithelium in detail for the first time. This enables us to draw a complete model of ruminal SCFA transport. Also, evidence for regulatory influence on this transport processes was found, perhaps making it possible to influence resorption of SCFA from rumen by nutritive or pharmacological means in the future.:Inhaltsverzeichnis
1 Einleitung 1
2 Literaturübersicht 3
2.1 Bedeutung kurzkettiger Fettsäuren für Wiederkäuer 3
2.2 Metabolismus von SCFA im Pansenepithel 4
2.2.1 Aufrechterhaltung des Konzentrationsgradienten vom Pansenlumen ins Epithel 4
2.2.2 Produktion von HCO3- aus CO2 durch die Carboanhydrase 5
2.2.3 Bereitstellung von Energie für die Epithelzellen 5
2.2.4 Bereitstellung von wasserlöslichen, glukosesparenden Energiesubstraten für die periphere Zirkulation 5
2.2.5 Verhinderung möglicher Schädigungen durch Butyrat 6
2.3 Transportmechanismen für kurzkettige Fettsäuren 7
2.3.1 Para- versus transzelluläre Resorption 7
2.3.2 Transzelluläre Resorption mittels lipophiler Diffusion 7
2.3.3 Proteinvermittelte SCFA-Permeation 9
2.3.4 Permeation von SCFA aus dem Epithel ins Blut 11
2.4 Beeinflussung der SCFA-Resorption auf Genexpressionsebene 17
2.4.1 Beeinflussung der Genexpression durch Butyrat 17
2.4.2 Beeinflussung der Genexpression durch Hypoxie 20
2.4.3 Mechanismen für die Regulation der Genexpression durch Butyrat
(-Metaboliten) und Hypoxie 21
2.5 Fragestellungen dieser Arbeit 26
3 Ergebnisse 28
3.1 Publikation 1 28
3.2 Publikation 2 41
4 Diskussion 54
4.1 Transport von SCFA über die basolaterale Membran des Pansenepithels 54
4.1.1 Transport mittels lipophiler Diffusion 57
4.1.2 SCFA werden bevorzugt über die basolaterale Membran transportiert 58
4.1.3 SCFA(-Metaboliten) werden bikarbonatabhängig über die basolaterale Membran transportiert 59
4.1.4 SCFA(-Metaboliten) werden durch einen Anionenaustauschmechanismus ins Blut ausgeschleust 61
4.1.5 Azetat wird durch einen pHMB- und CHC-sensitiven Mechanismus
transportiert 63
4.2 Der Transport von SCFA über das Pansenepithel unterliegt regulativen
Einflüssen 68
4.2.1 Einfluss von Butyrat(-Metaboliten) auf die Expression von potentiellen SCFA Transportern 68
4.2.2 Mechanismen für die Regulation der Expression durch Butyrat(-Metaboliten) 72
4.3 Theoretisches Modell des SCFA-Transports und dessen Regulation auf Genexpressionsebene auf Grundlage der Ergebnisse der vorliegenden Arbeit 74
5 Zusammenfassung 76
6 Summary 78
7 Literaturverzeichnis 80
Danksagung 98
|
73 |
Modulation pH-regulativer Transportproteine durch Fettsäurerezeptoren im Pansenepithel des SchafesBaaske, Lisa 24 November 2021 (has links)
Einleitung: Ruminal werden Futterpflanzen zu kurzkettigen Fettsäuren (SCFAs) abgebaut. Diese bilden die Hauptenergiequelle für den Wiederkäuerorganismus. Da diese Fettsäuren jedoch auch maßgeblich die pH-Homöostase der Vormagenschleimhaut beeinflussen, muss das Pansenepithel in der Lage sein, Änderungen im Substrat- und Protonenangebot festzustellen und anschließend regulative Prozesse anzupassen, um Stoffwechselentgleisungen und so auch einer Pansenazidose vorzubeugen. In anderen Spezies erwiesen sich sogenannte „Freie Fettsäurerezeptoren“ (FFARs) als potenzielle Sensoren veränderter SCFA-Mengen im Darmlumen, die u. a. durch Modulation der intrazellulären Spiegel an zyklischem Adenosinmonophosphat (cAMP) ihre Wirkung vermitteln.
Ziele der Untersuchungen: Es sollte in der vorliegenden Arbeit untersucht werden, ob FFARs im Pansenepithel des Schafes vorkommen und durch SCFAs aktiviert sowie intrazelluläre Signalwege über cAMP moduliert werden können. Im Anschluss sollte erarbeitet werden, inwiefern der nachgewiesene Einfluss von Butyrat auf die epithelialen cAMP-Spiegel Auswirkungen auf die epitheliale pH-Modulation infolge einer veränderten Aktivität von Monocarboxylattransportern (MCTs) und Na+/H+-Austauschern (NHEs) hat.
Tiere, Material und Methoden: Sämtliche Untersuchungen wurden an Geweben des Vormagens von Schafen (Ovis gmelini aries) durchgeführt. Mittels Reverse-Transkriptase-Polymerase-Kettenreaktion (RT-PCR) und immunhistochemischer Färbungen wurde das Vorliegen verschiedener FFARs in nativem Pansengewebe untersucht. Zur funktionellen Charakterisierung wurden Epithelstücke aus dem ventralen Pansensack in Ussing-Kammern inkubiert und anschließend die cAMP-Spiegel im Epithel mittels einer quantitativen, kompetitiven Analyse bestimmt. Dabei wurde der Einfluss von Forskolin (ein Stimulator der cAMP-synthetisierenden Adenylylzyklasen), von Butyrat sowie von Niacin (ein FFAR-Agonist) betrachtet. Mithilfe von radioaktiv markiertem Azetat wurde der Effekt variierender cAMP-Spiegel auf die Transportaktivität von MCTs unter Zuhilfenahme von zwei verschiedenen MCT-Hemmstoffen (Cyanohydroxyzimtsäure und p-Hydroxymercuribenzoesäure) in Ussing-Kammern evaluiert. Die Aktivität der NHEs wurde an kultivierten Pansenepithelzellen durch Messung des intrazellulären pH-Wertes mittels Spektrofluorometrie unter Einfluss des NHE-Inhibitors 5-N-Ethyl-N-Isopropyl Amilorid ermittelt. Auch hierbei wurden in den Zellen unterschiedliche cAMP-Spiegel durch Forskolin-Applikation induziert. Die Daten der verschiedenen Untersuchungen wurden an 5-8 Tieren je Versuchsansatz erhoben. Die Normalverteilung wurde mittels Kolmogorov–Smirnov-Test ermittelt. Ein Friedman-Test mit anschließendem Dunn-Test wurde für die Analyse der cAMP-Experimente genutzt. MCT und NHE Experimente wurden mithilfe einer einfachen, geblockten Varianzanalyse und anschließendem Tukey-Test ausgewertet.
Ergebnisse: Die FFARs GPR109A und FFAR2 konnten an allen untersuchten Lokalisationen (Netzmagen, Pansenvorhof, dorsaler und ventraler Pansensack, Psalter) über RT-PCR bzw. im ventralen Pansensack auch über die immunhistochemischen Färbungen detektiert werden, wohingegen FFAR3 lediglich als mRNA im Vorhof nachweisbar war. Dies lässt die beiden Rezeptoren GPR109A und FFAR2 als mögliche Strukturen zur Detektion von SCFAs im Pansenepithel erscheinen. Die Analyse der intrazellulären cAMP-Spiegel in Epithelien aus dem ventralen Pansensack konnte einen hemmenden Einfluss von Butyrat auf diesen Botenstoff darlegen, was auf eine Beteiligung der genannten FFARs hindeutet. Die Applikation des GPR109A-Agonisten Niacin hatte jedoch keinen Effekt auf die cAMP-Spiegel, sodass eine Wirkungsvermittlung von Butyrat über diesen Rezeptor unwahrscheinlich scheint. Mit Blick auf die funktionellen Auswirkungen dieser cAMP-Modulation hatten variierende cAMP-Level im Kontrast zu Erkenntnissen aus Nicht-Wiederkäuerspezies keinen Einfluss auf die Transportaktivität des ruminalen MCT1 unter den gewählten in vitro-Versuchsbedingungen. Andererseits konnte die Regulation des intrazellulären pH-Wertes von kultivierten Pansenepithelzellen tendenziell durch erhöhte cAMP-Spiegel gehemmt werden, was auf einer Hemmung von NHEs durch den second messenger beruhen könnte.
Schlussfolgerungen: Die Expression von GPR109A und FFAR2 lassen diese zwei FFARs als potenzielle Sensoren der intraruminalen bzw. intraepithelialen Nährstoffkonditionen erscheinen. Dabei deuten die vorliegenden Untersuchungen auf eine Aktivierung des FFAR2 durch Butyrat und dessen Metaboliten in den basalen Schichten des Pansenepithels hin. Infolge der Rezeptoraktivierung kommt es vermutlich zu einer Verminderung der intraepithelialen cAMP-Spiegel, welche wiederum einen (schwachen) Einfluss auf die Regulation des intrazellulären pH-Wertes mithilfe von NHEs zu haben scheinen. Entgegen unserer Ausgangshypothese scheinen aber die FFARs des ovinen Pansenepithels die pH-Homöostase des Epithels nur geringfügig zu beeinflussen. Ihre genaue physiologische Bedeutung – insbesondere des GPR109A – bleibt somit noch spekulativ.:1 Einleitung 1
2 Literaturübersicht 3
2.1 Bedeutung kurzkettiger Fettsäuren für den Wiederkäuer 3
2.2 Transport kurzkettiger Fettsäuren über das Pansenepithel 3
2.2.1 Apikale Aufnahme in das Pansenepithel 4
2.2.2 Basolaterale Ausschleusung in den Blutstrom 6
2.3 Metabolisierung kurzkettiger Fettsäuren im Pansenepithel 8
2.4 pH-Homöostase 9
2.4.1 pH-Regulation des Pansenlumens 9
2.4.2 pH-Regulation des Pansenepithels 10
2.5 Anpassungsmechanismen des Pansenepithels 12
2.6 Rolle des Butyrats 15
2.7 Fettsäurerezeptoren 16
2.7.1 G-Protein-gekoppelte Rezeptoren 17
2.7.2 GPRs für SCFAs 17
2.7.2.1 FFAR2 17
2.7.2.2 FFAR3 18
2.7.2.3 GPR109A 19
2.7.3 FFARs im Wiederkäuerorganismus 20
2.8 Monocarboxylattransporter 22
2.8.1 Die Familie der MCTs 22
2.8.2 Regulation der MCTs 23
2.8.3 MCTs im Pansenepithel 24
2.9 Natrium-Protonen-Austauscher 26
2.9.1 Die Familie der NHEs 26
2.9.2 Regulation der NHEs 27
2.9.3 NHEs im Pansenepithel 28
2.10 Fragestellungen der vorliegenden Arbeit 30
3 Publikationen 32
3.1 Publikation 1 32
3.2 Publikation 2 41
3.2.1 Supporting Information 56
4 Diskussion 57
4.1 Nachweis von FFARs im Pansenepithel 57
4.1.1 Regulation intrazellulärer Signalwege durch FFARs 59
4.1.2 GPR109A als potenzieller Butyrat-Rezeptor im Pansenepithel 62
4.1.3 FFAR2 als potenzieller Rezeptor für Butyrat 63
4.2 Seitenabhängigkeit der Butyrat-Effekte 64
4.3 pH-Abhängigkeit der cAMP-Spiegel 66
4.4 Einfluss von cAMP auf die Aktivität der MCTs 68
4.5 Einfluss von cAMP auf die NHE-Aktivität 70
4.6 Schlussfolgerungen 73
5 Zusammenfassung 75
6 Summary 77
7 Literaturverzeichnis 79
8 Anhang 101
8.1 Im Rahmen dieser Dissertation gehaltene Präsentationen 101
Danksagung 103 / Introduction: Forage plants are ruminally degraded to short chain fatty acids (SCFAs). These serve as the main energy source for ruminants. As SCFAs also influence the pH-homeostasis of the ruminal mucosa, the epithelium must be able to detect changes of both substrate and proton accumulation and adapt transport processes accordingly, in order to prevent metabolic dysfunction and thus the risk of ruminal acidosis. Studies in non-ruminant species detected so-called ‘free fatty acid receptors’ (FFARs) as potential SCFA-sensors in the gut lumen. It has been shown that these receptors transduce their information by modulation of intracellular levels of cyclic adenosine monophosphate (cAMP).
Aim: This study intended to investigate if FFARs are located in the ovine ruminal epithelium. It should further be evaluated if FFARs can be stimulated by SCFAs leading to a modulation of intracellular pathways via cAMP. Finally, the study aimed to elucidate the influence of low epithelial cAMP-levels after butyrate application on the regulation of pH-homeostasis in the ruminal epithelium by modulating the activity of transport proteins such as monocarboxylate transporters (MCTs) and Na+/H+ exchangers (NHEs).
Animals, material, and methods: All experiments were conducted with ovine (Ovis aries) ruminal tissues. The expression of different FFARs was investigated in native tissues using a reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical staining. For functional analysis, epithelial cAMP levels were determined by a quantitative and competitive assay after incubation of epithelia of the ruminal ventral sac in Ussing chambers. The influence of forskolin (a stimulator of the adenylyl cyclases), butyrate, as well as niacin (an FFAR agonist) was evaluated. Further, the effect of varying cAMP levels on transport activity of MCTs was characterised on Ussing chamber-mounted epithelia with radioactively labelled acetate and two MCT inhibitors (cyano-hydroxycinnamic acid and p-hydroxymercuribenzoic acid). Finally, the activity of NHEs was assessed in cultured ruminal epithelial cells. The intracellular pH was evaluated by spectrofluorometry while the cells were incubated with forskolin (to modify intracellular cAMP levels) or the NHE inhibitor 5-(N-ethyl-N-isopropyl)-amiloride.
The data for the different set-ups were acquired from 5-8 animals each. Kolmogorov–Smirnov test was used for testing normality. For cAMP level analyses, the Friedman test followed by Dunn's test was performed. MCT and NHE measurements were analysed using one-way randomized block analysis of variance followed by Tukey's test.
Results: GPR109A and FFAR2 were detected in all ovine ruminal epithelia examined (reticulum, atrium ruminis, ruminal ventral and dorsal sac, omasum) by RT-PCR and in ruminal ventral sac also by immunohistochemical staining. FFAR3, however, was detected solely on mRNA level in tissues of the ovine atrium ruminis. Thus, the two immunohistochemically detected receptors may serve as potential sensors for SCFAs in the ruminal epithelium. The analysis of intraepithelial cAMP levels revealed an inhibiting influence of butyrate application on cAMP pointing to an activation of FFARs by this SCFA. Nonetheless, the incubation with the GPR109A agonist niacin did not show any effect on cAMP levels. This finding contradicts the theory of an activation of GPR109A by butyrate. Looking at functional consequences of varying cAMP levels, in contrast to studies on non-ruminant species ruminal MCT1 activity was not influenced by different cAMP levels, at least under the conditions chosen in this in vitro study. However, regulation of intracellular pH in cultured ruminal epithelial cells tended to decrease with augmented cAMP levels. This might be mediated by an inhibition of NHEs.
Conclusions: The expression of GPR109A and FFAR2 points at a participation of these receptors in sensing intraruminal and intraepithelial energy status. The present data hint at an activation of FFAR2 by butyrate or its metabolites in the basal layers of the epithelium. Activation of the receptor leads to decreased cAMP levels. This in turn seems to slightly modify the regulation of intracellular pH via NHEs. Contradicting our initial hypothesis, ovine ruminal FFARs seem to play only a minor role in modulation of epithelial pH homeostasis. The main physiological role of ruminal FFARs – especially of GPR109A – remains to be clarified.:1 Einleitung 1
2 Literaturübersicht 3
2.1 Bedeutung kurzkettiger Fettsäuren für den Wiederkäuer 3
2.2 Transport kurzkettiger Fettsäuren über das Pansenepithel 3
2.2.1 Apikale Aufnahme in das Pansenepithel 4
2.2.2 Basolaterale Ausschleusung in den Blutstrom 6
2.3 Metabolisierung kurzkettiger Fettsäuren im Pansenepithel 8
2.4 pH-Homöostase 9
2.4.1 pH-Regulation des Pansenlumens 9
2.4.2 pH-Regulation des Pansenepithels 10
2.5 Anpassungsmechanismen des Pansenepithels 12
2.6 Rolle des Butyrats 15
2.7 Fettsäurerezeptoren 16
2.7.1 G-Protein-gekoppelte Rezeptoren 17
2.7.2 GPRs für SCFAs 17
2.7.2.1 FFAR2 17
2.7.2.2 FFAR3 18
2.7.2.3 GPR109A 19
2.7.3 FFARs im Wiederkäuerorganismus 20
2.8 Monocarboxylattransporter 22
2.8.1 Die Familie der MCTs 22
2.8.2 Regulation der MCTs 23
2.8.3 MCTs im Pansenepithel 24
2.9 Natrium-Protonen-Austauscher 26
2.9.1 Die Familie der NHEs 26
2.9.2 Regulation der NHEs 27
2.9.3 NHEs im Pansenepithel 28
2.10 Fragestellungen der vorliegenden Arbeit 30
3 Publikationen 32
3.1 Publikation 1 32
3.2 Publikation 2 41
3.2.1 Supporting Information 56
4 Diskussion 57
4.1 Nachweis von FFARs im Pansenepithel 57
4.1.1 Regulation intrazellulärer Signalwege durch FFARs 59
4.1.2 GPR109A als potenzieller Butyrat-Rezeptor im Pansenepithel 62
4.1.3 FFAR2 als potenzieller Rezeptor für Butyrat 63
4.2 Seitenabhängigkeit der Butyrat-Effekte 64
4.3 pH-Abhängigkeit der cAMP-Spiegel 66
4.4 Einfluss von cAMP auf die Aktivität der MCTs 68
4.5 Einfluss von cAMP auf die NHE-Aktivität 70
4.6 Schlussfolgerungen 73
5 Zusammenfassung 75
6 Summary 77
7 Literaturverzeichnis 79
8 Anhang 101
8.1 Im Rahmen dieser Dissertation gehaltene Präsentationen 101
Danksagung 103
|
74 |
Gut Microbiota Regulation of P-Glycoprotein in the Mammalian Intestinal Epithelium to Suppress Aberrant Inflammation and Maintain HomeostasisFoley, Sage E. 22 March 2022 (has links)
P-glycoprotein (P-gp) protects the mammalian intestinal epithelium by effluxing toxins from the epithelial cells as well as release of human endocannabinoids that inhibit neutrophil infiltration. Diminished or dysfunctional P-gp is associated with intestinal inflammation including ulcerative colitis (UC). Due to the microbiome dysbiosis associated with UC, we hypothesize that the healthy microbiota promote colonic P-gp expression.
Utilizing mouse models of antibiotic treatment, microbiota reconstitution, and metabolite perturbation, we have shown butyrate and secondary bile acids, dependent on vancomycin-sensitive bacteria, induce P-gp expression in vivo. We have shown these metabolites together potentiate induction of P-gp in intestinal epithelial cell lines in vitro, which is sufficient to inhibit primary human neutrophil transmigration. Furthermore, in UC patients we find diminished P-gp expression is coupled to reduction of anti-inflammatory endocannabinoids and luminal content with reduced capability to induce P-gp expression. Additionally, we have found butyrate contributes to P-gp expression via histone deacetylase inhibition, and secondary bile acids regulate P-gp expression via nuclear receptors pregnane X receptor and vitamin D receptor. Employing RNA sequencing (RNAseq) in IECs uncovered signaling networks that are uniquely triggered with the combination of butyrate and secondary bile acids, suggesting additional pathways required for maximal P-gp expression in the colon.
Together we identify a mechanistic link between cooperative functional outputs of the complex microbial community and suppression of intestinal inflammation. These data emphasize the importance of the intestinal microbiome in driving the P-gp axis to suppress aberrant neutrophil infiltration and identify potential therapeutic targets for promoting P-gp expression in an inflamed colon to reset homeostasis.
|
75 |
Elucidation of Inositol Polyphosphate Dephosphorylation Pathways using Stable-Isotope Labelling and NMR spectroscopyNguyen Trung, Minh 29 September 2023 (has links)
Inositolpolyphosphate (InsPs) bilden eine ubiquitäre Gruppe an hochphosphorylierten, intrazellulären Signalmolekülen in eukaryotischen Zellen. Trotz deren Beteiligung an unzähligen biologischen Prozessen bleibt die Detektion von InsPs (insb. einzelner Enantiomere) eine Herausforderung, da die momentan verfügbaren Analysemethoden immer noch limitiert sind. In der vorliegenden Arbeit wird die stabile Isotopenmarkierung von myo-Inositol (Ins) und InsPs in Kombination mit Kernspinresonanzspektroskopie (engl. Nuclear Magnetic Resonance spectroscopy, NMR) erkundet, um diese Lücke zu schließen. Die Abhängigkeit von NMR-Daten und chemischer Struktur erlaubte die Analyse komplexer Mixturen aus InsPs aus in vitro-Experimenten und biologischen Proben. Durch stereospezifische 13C-Markierung konnten sogar Enantiomere voneinander unterschieden werden. Mit Hilfe dieser Methode wurden mehrere InsP-Stoffwechselwege untersucht. Als Erstes wurde das menschliche, Phytase-artige Enzym MINPP1 (engl. Multiple Inositol Polyphosphate Phosphatase 1) detailliert in vitro und in lebenden Zellen charakterisiert. Dabei wurde ein bisher unbeschriebener InsP-Stoffwechselweg in menschlichen Zellen erstmals beschrieben. Als Zweites wurden InsP verdauende Bakterien aus der menschlichen Darmflora untersucht, sodass der Abbauweg von Inositolhexakisphosphat beleuchtet werden konnte. Als Drittes wurden DUSP-Enzyme (engl. Dual-Specificity Phosphatases) identifiziert und in vitro charakterisiert, die in der Lage sind, die Phosphoanhydrid-Bindung von Inositolpyrophosphaten (PP-InsPs) zu spalten. Die vorliegende Arbeit demonstriert, dass 13C-Markierung in Verbindung mit NMR ein mächtiges Werkzeug darstellt, um InsP-Stoffwechselvorgänge zu untersuchen. / Inositol polyphosphates (InsPs) comprise a ubiquitous group of densely phosphorylated intracellular messengers in eukaryotic cells. Despite their contributions to a myriad of biological processes the detection of InsPs remains challenging to this day, especially with regards to differentiating enantiomers, as the available analytical toolset is still limited. In this thesis the use of stable isotope labelling of myo-inositol (Ins) and InsPs is explored to address this shortcoming. Combining 13C-labelling and nuclear magnetic resonance spectroscopy (NMR) provides both enhanced sensitivity and makes use of NMR’s strong structure-data dependency. This enabled the deconvolution of complex mixtures of InsPs from in vitro experiments or biological samples. With stereo-specific 13C-labels InsP mixtures could be resolved to individual enantiomers. Using this technique several InsP metabolic pathways were examined. Firstly, the human phytase-like enzyme Multiple Inositol Polyphosphate Phosphatase (MINPP1) was characterized in depth in vitro and in living cells, establishing a hitherto undescribed inositol polyphosphate metabolic path in humans. Secondly, inositol phosphate digesting bacteria isolated from the human gut microbiome were investigated, shedding light on the metabolic fate of inositol hexakisphosphate in the digestive track. Thirdly, a set of Dual-Specificity Phosphatases (DUSPs) were identified to be able to hydrolyze the phosphoanhydride bond of inositol pyrophosphates (PP-InsPs) and characterized in vitro. The 13C-labelling approach of InsPs in junction with NMR represents a powerful tool for the study of inositol polyphosphate metabolism. In the thesis at hand, this method has facilitated our understanding of inositol polyphosphate pathways and it will be continuing doing so in the future in several biological contexts.
|
76 |
Impact de la leucémie lymphoblastique aiguë pédiatrique et du méthotrexate sur le développement des complications cardiométaboliques dans un modèle murin xénogéniqueNormandeau, Chloé 01 1900 (has links)
Problématique. Bien que la survie des enfants atteints de la leucémie lymphoblastique aiguë (LLA) se soit grandement améliorée dans les dernières décennies, les survivants de la LLA de l’enfant sont nombreux à développer des comorbidités métaboliques sévères, comme l’obésité, des perturbations du métabolisme des glucides et des lipides ainsi que des maladies cardiovasculaires. À ce jour, peu de données probantes sont disponibles concernant les mécanismes sous-jacents au développement de ces complications cardiométaboliques. Cependant, les impacts de la maladie, du traitement et de la dysbiose intestinale sur le développement de ces désordres métaboliques sont des exemples d’hypothèses émises dans la littérature.
Objectifs. Les objectifs sont de déterminer les impacts de la LLA pédiatrique et du méthotrexate sur le poids, la dyslipidémie et la résistance à l’insuline. De plus, nous souhaitons déterminer la relation entre le microbiote intestinal et le développement de complications métaboliques et évaluer les différences sexuelles concernant la réponse métabolique à la maladie et au traitement.
Méthodes. Quarante souris NOD-SCID IL2Rγnull (NSG) avec un nombre égal de mâles et de femelles ont été divisés en 3 groupes : contrôle (injection de tampon phosphate salin (PBS), non traitée, n=8), non-traité (greffe de LLA, non traitée, n=16) et traité (greffe de LLA, traitée au méthotrexate, n=16) avec une dose de 5 mg/kg, 4 jours consécutifs pour une durée de 8 semaines. Un test d’hyperglycémie orale provoquée a été exécuté afin d’évaluer la tolérance au glucose. Le poids, la glycémie, les lipides sanguins, des échantillons de selles et certains tissus (le foie, les intestins et le tissu adipeux) ont été collectés à plusieurs moments durant l’expérience. Des Western blot ont été effectués afin de mesurer l’expression protéique de protéines clef du métabolisme dans le foie. La composition (abondance relative) et la diversité (α-diversité et β-diversité) du microbiote intestinal et la teneur fécale en acides gras à chaîne courte (AGCC) ont été mesurées. Les différences entre les groupes, intrasexe et longitudinales ont été analysées.
Résultats. Nos résultats démontrent que la maladie elle-même a un impact sur les niveaux de cholestérol total dans le plasma et dans le foie des souris femelles. Le traitement au méthotrexate a induit une dysglycémie, à la fois à court terme et à long terme après le traitement, et a augmenté les niveaux de HDL-c dans le plasma des souris femelles. Dans le foie, une augmentation de l’activité de l’AMPKα et une diminution de l’expression protéique de FAS ont été observées chez les souris leucémiques, comparativement aux contrôles. L’analyse longitudinale du microbiote intestinal démontre des différences dans la composition du microbiote intestinal (abondance relative de la famille bactérienne S24_7 chez les mâles et β-diversité chez les femelles) et une réduction considérable du contenu fécal en acides gras en chaînes courtes (AGCC) après les traitements. Au sacrifice, les souris traitées avaient un ratio Firmicutes/Bacteriodetes inférieur comparé aux contrôles. Les souris mâles leucémiques avaient des niveaux moyens d’AGCC supérieurs et les femelles leucémiques avaient des niveaux d’AGCC inférieurs aux contrôles et cette différence était plus marquée chez les femelles traitées.
Conclusion. La maladie seule provoque des changements dans le métabolisme lipidique, alors que le traitement avec le méthotrexate aggrave ces désordres en plus d’affecter les paramètres glucidiques. Ces effets ont principalement été observés chez les souris femelles. Des changements des protéines hépatiques clés impliquées dans la régulation du métabolisme des lipides et des glucides et au niveau du microbiote intestinal pourraient être des mécanismes expliquant le développement de ces complications chez les femelles. / Context. Although survival of children with acute lymphoblastic leukemia (ALL) has greatly improved in recent decades, many survivors of childhood ALL develop severe metabolic comorbidities, such as obesity, disturbances in carbohydrate and lipid metabolism, and cardiovascular disease. To date, little evidence is available concerning the mechanisms underlying the development of these cardiometabolic complications. However, the impact of the disease, the treatment and intestinal dysbiosis on the development of these metabolic disorders are examples of hypotheses put forward in the literature.
Objectives. The objectives are to determine the impact of pediatric ALL and methotrexate on weight, dyslipidemia and insulin resistance. In addition, we aim to determine the relationship between the gut microbiota and the development of metabolic complications, and to assess sex differences in metabolic response to disease and treatment.
Methods. Forty NOD-SCID IL2Rγnull (NSG) mice with equal numbers of males and females were divided into 3 groups: control (Phosphate-buffered saline injection (PBS), non-treated, n=8), untreated (LLA graft, non-treated, n=16) and treated (LLA graft, treated with methotrexate, n=16) with a dose of 5 mg/kg, 4 consecutive days for 8 weeks. An OGTT test was performed to assess glucose tolerance. Weight, blood glucose, blood lipids, stool samples and selected tissues (liver, intestine and adipose tissue) were collected at several points during the experiment. Western blots were performed to measure protein expression of key metabolic proteins in liver. The composition (relative abundance) and diversity (α-diversity and β-diversity) of the gut microbiota and the fecal content of short-chain fatty acids (SCFAs) were measured. Differences between groups, within sex and between longitudinal data were analyzed.
Results. Our results show that the disease itself had an impact on the cholesterol levels in plasma and in the liver of female mice. Methotrexate treatment induced dysglycemia, both and in the long term after the treatment and increased plasma HDL-c levels of female mice. In the liver, an increase in AMPKα activity and a decrease in FAS protein expression were observed in leukemic mice, compared with controls. Longitudinal analysis of the gut microbiota demonstrated
differences in gut microbiota composition (relative abundance of the S24_7 bacterial family in males and β-diversity in females) and a considerable reduction in fecal short-chain fatty acid (SCFA) content after methotrexate treatment. At sacrifice, treated mice had a lower Firmicutes/Bacteriodetes ratio than controls. Male leukemic mice had higher mean SCFA levels, and female leukemic mice had lower SCFA levels than controls, with this difference being more marked in treated females.
Conclusion. The disease alone causes changes in lipid metabolism, while treatment with methotrexate aggravates these disorders and affects carbohydrate parameters. These effects were mainly observed in female mice. Changes in key hepatic proteins involved in the regulation of lipid and carbohydrate metabolism and in the intestinal microbiota could be mechanisms explaining the development of these complications in females.
|
Page generated in 0.0448 seconds