Spelling suggestions: "subject:"silicium poreux"" "subject:"filicium poreux""
11 |
Périphérie triac à base de silicum poreux / Porous silicon based triac peripheryMenard, Samuel 04 December 2014 (has links)
Ces travaux de thèse portent sur le développement d’une périphérie innovante de TRIAC exploitant le caractère semiisolant du silicium poreux (PS). L’intégration de caissons PS type P à partir des profils de dopage du TRIAC est en effet accessible. Une revue des propriétés électriques du PS type P réalisée à partir de nos propres échantillons méso voire micro-poreux a donc été entreprise. Des mesures de capacités et des relevés I-V ont ainsi permis de déterminer l’évolution de la constante diélectrique relative du PS ainsi que sa résistivité en fonction de la porosité. Plus cette dernière est élevée et plus les propriétés diélectriques du PS se rapprochent de celles d’un isolant. L’analyse des résultats a également permis de clarifier les mécanismes de transport des porteurs au sein de la couche de PS. Des prototypes de TRIACs avec une terminaison de jonction à base de PS ont ensuite été conçus, fabriqués et étudiés. La localisation du PS et la gestion des contraintes mécaniques résultant de la formation du PS sont apparus comme les principaux verrous technologiques à surmonter. Des solutions ont été proposées, néanmoins les tenues en blocage atteintes se sont avérées insuffisantes. Des courants de fuite supérieurs à la dizaine de milliampères ont en effet été mesurés et ce pour des tensions de polarisation de l’ordre de 100 V. La géométrie des caissons PS et/ou la présence de charges fixes à l’interface PS / Silicium sont jugées responsables des résultats. Enfin, en s’appuyant sur un modèle macroscopique du PS, une nouvelle structure plus optimisée a été suggérée. / This PhD thesis deals with the development of a novel TRIAC periphery, exploiting the semi-insulating nature of porous silicon (PS). It is namely accessible to integrate P type PS wells through the doping profiles encountered in the TRIAC. Thus, a review of the P type PS electrical properties was achieved through dedicated samples. In this context, capacitance measurements and I-V plots were used to determine the evolution of the PS relative dielectric constant and its resistivity with the porosity. Higher the latter is, more insulating the PS is. By analyzing all the results, it was also possible to clarify the carrier transport mechanisms in the PS. Some TRIAC prototypes with a PS based junction termination were then designed, processed and studied. The stress coming from the PS formation and the PS masking were the main technological steps to solve. First solutions were proposed, nevertheless insufficient blocking performances were reached. Leakage currents higher than 10 mA were demonstrated while the bias voltage was only 100 V. The presence of fixed charges at the PS / Silicon interface and/or the geometry of the PS wells may explain these results. Finally, with the help of a macroscopic PS model, a more optimized structure was proposed.
|
12 |
Fabrication de semiconducteurs poreux pour améliorer l'isolation thermique des MEMSNewby, Pascal January 2014 (has links)
Résumé : L’isolation thermique est essentielle dans de nombreux types de MEMS (micro-systèmes électro-mécaniques). Elle permet de réduire la consommation d’énergie, améliorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les systèmes sur puce. Il existe quelques matériaux et techniques d’isolation pour les MEMS, mais ils sont limités. En effet, soit ils ne proposent pas un niveau d’isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles à intégrer.
Une approche intéressante pour l’isolation, démontrée dans la littérature, est de fabriquer des pores de taille nanométrique dans le silicium par gravure électrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivité thermique par un facteur de 100 à 1000, le transformant en isolant thermique. Cette solution est idéale pour l’intégration dans les procédés de fabrication existants des MEMS, car on garde le silicium qui est déjà utilisé pour leur fabrication, mais en le nanostructurant localement, on le rend isolant là où on en a besoin. Par contre sa porosité cause des problèmes : mauvaise résistance chimique, structure instable au-delà de 400°C, et tenue mécanique réduite. La facilité d’intégration des semiconducteurs poreux est un atout majeur, nous visons donc de réduire les désavantages de ces matériaux afin de favoriser leur intégration dans des dispositifs en silicium. Nous avons identifié deux approches
pour atteindre cet objectif : i) améliorer le Si poreux ou ii) développer un nouveau matériau.
La première approche consiste à amorphiser le Si poreux en l’irradiant avec des ions à haute énergie (uranium, 110 MeV). Nous avons montré que l’amorphisation, même partielle, du Si poreux entraîne une diminution de sa conductivité thermique, sans endommager sa structure poreuse. Cette technique réduit sa conductivité thermique jusqu’à un facteur de trois, et peut être combinée avec une pré-oxydation afin d’atteindre une réduction d’un facteur cinq. Donc cette méthode permet de réduire la porosité du Si poreux, et d’atténuer ainsi les problèmes de fragilité mécanique causés par la porosité élevée, tout en gardant un niveau d’isolation égal.
La seconde approche est de développer un nouveau matériau. Nous avons choisi le SiC poreux : le SiC massif a des propriétés physiques supérieures à celles du Si, et donc à priori le SiC poreux devrait conserver cette supériorité. La fabrication du SiC poreux a déjà été démontrée dans la littérature, mais avec peu d’études détaillées du procédé. Sa conductivité thermique et tenue mécanique n’ont pas été caractérisées, et sa tenue en température que de façon incomplète.
Nous avons mené une étude systématique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons implémenté un banc de mesure de la conductivité thermique par la méthode « 3 oméga » et l’avons utilisé pour mesurer la conductivité thermique du SiC poreux. Nous avons montré qu’elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montré que le SiC poreux est résistant à tous les produits chimiques typiquement utilisés en microfabrication sur silicium. D’après nos résultats il est stable jusqu’à au moins 1000°C et nous avons obtenu des résultats qualitatifs encourageants quant à sa tenue mécanique. Nos résultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut être intégré dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don’t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate.
A potentially interesting technique for thermal insulation, which has been demonstrated in
the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By
nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to
1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400◦C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material.
The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise
porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation.
The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised.
We have carried out a systematic study of the effects of HF concentration and current on
the porosification process. We have implemented a thermal conductivity measurement setup using the “3 omega” method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000◦C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.
|
13 |
Fabrication de semiconducteurs poreux pour am??liorer l'isolation thermique des MEMSNewby, Pascal January 2014 (has links)
R??sum?? : L???isolation thermique est essentielle dans de nombreux types de MEMS (micro-syst??mes ??lectro-m??caniques). Elle permet de r??duire la consommation d?????nergie, am??liorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les syst??mes sur puce. Il existe quelques mat??riaux et techniques d???isolation pour les MEMS, mais ils sont limit??s. En effet, soit ils ne proposent pas un niveau d???isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles ?? int??grer.
Une approche int??ressante pour l???isolation, d??montr??e dans la litt??rature, est de fabriquer des pores de taille nanom??trique dans le silicium par gravure ??lectrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivit?? thermique par un facteur de 100 ?? 1000, le transformant en isolant thermique. Cette solution est id??ale pour l???int??gration dans les proc??d??s de fabrication existants des MEMS, car on garde le silicium qui est d??j?? utilis?? pour leur fabrication, mais en le nanostructurant localement, on le rend isolant l?? o?? on en a besoin. Par contre sa porosit?? cause des probl??mes : mauvaise r??sistance chimique, structure instable au-del?? de 400??C, et tenue m??canique r??duite. La facilit?? d???int??gration des semiconducteurs poreux est un atout majeur, nous visons donc de r??duire les d??savantages de ces mat??riaux afin de favoriser leur int??gration dans des dispositifs en silicium. Nous avons identifi?? deux approches
pour atteindre cet objectif : i) am??liorer le Si poreux ou ii) d??velopper un nouveau mat??riau.
La premi??re approche consiste ?? amorphiser le Si poreux en l???irradiant avec des ions ?? haute ??nergie (uranium, 110 MeV). Nous avons montr?? que l???amorphisation, m??me partielle, du Si poreux entra??ne une diminution de sa conductivit?? thermique, sans endommager sa structure poreuse. Cette technique r??duit sa conductivit?? thermique jusqu????? un facteur de trois, et peut ??tre combin??e avec une pr??-oxydation afin d???atteindre une r??duction d???un facteur cinq. Donc cette m??thode permet de r??duire la porosit?? du Si poreux, et d???att??nuer ainsi les probl??mes de fragilit?? m??canique caus??s par la porosit?? ??lev??e, tout en gardant un niveau d???isolation ??gal.
La seconde approche est de d??velopper un nouveau mat??riau. Nous avons choisi le SiC poreux : le SiC massif a des propri??t??s physiques sup??rieures ?? celles du Si, et donc ?? priori le SiC poreux devrait conserver cette sup??riorit??. La fabrication du SiC poreux a d??j?? ??t?? d??montr??e dans la litt??rature, mais avec peu d?????tudes d??taill??es du proc??d??. Sa conductivit?? thermique et tenue m??canique n???ont pas ??t?? caract??ris??es, et sa tenue en temp??rature que de fa??on incompl??te.
Nous avons men?? une ??tude syst??matique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons impl??ment?? un banc de mesure de la conductivit?? thermique par la m??thode ?? 3 om??ga ?? et l???avons utilis?? pour mesurer la conductivit?? thermique du SiC poreux. Nous avons montr?? qu???elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montr?? que le SiC poreux est r??sistant ?? tous les produits chimiques typiquement utilis??s en microfabrication sur silicium. D???apr??s nos r??sultats il est stable jusqu????? au moins 1000??C et nous avons obtenu des r??sultats qualitatifs encourageants quant ?? sa tenue m??canique. Nos r??sultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut ??tre int??gr?? dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don???t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate.
A potentially interesting technique for thermal insulation, which has been demonstrated in
the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By
nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to
1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400???C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material.
The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise
porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation.
The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised.
We have carried out a systematic study of the effects of HF concentration and current on
the porosification process. We have implemented a thermal conductivity measurement setup using the ???3 omega??? method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000???C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.
|
14 |
Fabrication de semiconducteurs poreux pour am??liorer l'isolation thermique des MEMSNewby, Pascal January 2014 (has links)
R??sum?? : L???isolation thermique est essentielle dans de nombreux types de MEMS (micro-syst??mes ??lectro-m??caniques). Elle permet de r??duire la consommation d?????nergie, am??liorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les syst??mes sur puce. Il existe quelques mat??riaux et techniques d???isolation pour les MEMS, mais ils sont limit??s. En effet, soit ils ne proposent pas un niveau d???isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles ?? int??grer.
Une approche int??ressante pour l???isolation, d??montr??e dans la litt??rature, est de fabriquer des pores de taille nanom??trique dans le silicium par gravure ??lectrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivit?? thermique par un facteur de 100 ?? 1000, le transformant en isolant thermique. Cette solution est id??ale pour l???int??gration dans les proc??d??s de fabrication existants des MEMS, car on garde le silicium qui est d??j?? utilis?? pour leur fabrication, mais en le nanostructurant localement, on le rend isolant l?? o?? on en a besoin. Par contre sa porosit?? cause des probl??mes : mauvaise r??sistance chimique, structure instable au-del?? de 400??C, et tenue m??canique r??duite. La facilit?? d???int??gration des semiconducteurs poreux est un atout majeur, nous visons donc de r??duire les d??savantages de ces mat??riaux afin de favoriser leur int??gration dans des dispositifs en silicium. Nous avons identifi?? deux approches
pour atteindre cet objectif : i) am??liorer le Si poreux ou ii) d??velopper un nouveau mat??riau.
La premi??re approche consiste ?? amorphiser le Si poreux en l???irradiant avec des ions ?? haute ??nergie (uranium, 110 MeV). Nous avons montr?? que l???amorphisation, m??me partielle, du Si poreux entra??ne une diminution de sa conductivit?? thermique, sans endommager sa structure poreuse. Cette technique r??duit sa conductivit?? thermique jusqu????? un facteur de trois, et peut ??tre combin??e avec une pr??-oxydation afin d???atteindre une r??duction d???un facteur cinq. Donc cette m??thode permet de r??duire la porosit?? du Si poreux, et d???att??nuer ainsi les probl??mes de fragilit?? m??canique caus??s par la porosit?? ??lev??e, tout en gardant un niveau d???isolation ??gal.
La seconde approche est de d??velopper un nouveau mat??riau. Nous avons choisi le SiC poreux : le SiC massif a des propri??t??s physiques sup??rieures ?? celles du Si, et donc ?? priori le SiC poreux devrait conserver cette sup??riorit??. La fabrication du SiC poreux a d??j?? ??t?? d??montr??e dans la litt??rature, mais avec peu d?????tudes d??taill??es du proc??d??. Sa conductivit?? thermique et tenue m??canique n???ont pas ??t?? caract??ris??es, et sa tenue en temp??rature que de fa??on incompl??te.
Nous avons men?? une ??tude syst??matique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons impl??ment?? un banc de mesure de la conductivit?? thermique par la m??thode ?? 3 om??ga ?? et l???avons utilis?? pour mesurer la conductivit?? thermique du SiC poreux. Nous avons montr?? qu???elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montr?? que le SiC poreux est r??sistant ?? tous les produits chimiques typiquement utilis??s en microfabrication sur silicium. D???apr??s nos r??sultats il est stable jusqu????? au moins 1000??C et nous avons obtenu des r??sultats qualitatifs encourageants quant ?? sa tenue m??canique. Nos r??sultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut ??tre int??gr?? dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don???t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate.
A potentially interesting technique for thermal insulation, which has been demonstrated in
the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By
nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to
1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400???C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material.
The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise
porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation.
The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised.
We have carried out a systematic study of the effects of HF concentration and current on
the porosification process. We have implemented a thermal conductivity measurement setup using the ???3 omega??? method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000???C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.
|
15 |
Couches minces et membranes auto supportées de silicium poreux : nanocomposites hybrides et apport de la diffusion Raman infrarougeAbidi, Dorra 14 May 2009 (has links) (PDF)
La grande surface développée du silicium poreux fait de lui un hôte potentiel pour l'incorporation de molécules organiques. Les nanocomposites hybrides à base de molécules conjuguées luminescentes pourraient se prêter à des applications en optoélectronique.<br />L'étude comprend deux parties : la première est consacrée à l'étude morphologique et optique des couches minces et des membranes auto-supportées de silicium poreux fabriquées au laboratoire en utilisant la microscopie électronique, l'ellipsométrie spectroscopique et l'absorption. L'analyse microstructurale des couches poreuses par diffusion Raman nous a permis d'estimer la distribution de tailles des nanocristallites via le modèle de confinement des phonons et de confirmer l'absence de porteurs de charges libres. Une étude de Raman polarisé sur des membranes poreuses libres permet de sonder les inhomogénéités de propagation de la lumière dans ce milieu.<br />La seconde partie présente les études concernant l'imprégnation de molécules fluorescentes dans les pores. La photoluminescence donne un moyen de vérifier l'efficacité de l'incorporation de molécule de Rodhamine R6G et son homogénéité. L'excitation sélective permet une approche des transferts d'énergie entre les deux matériaux. La photoluminescence résolue en temps montre que la présence de la R6G crée de nouveaux canaux de désexcitation non radiative.<br />Le THD est incorporé dans des membranes libres rendues organophiles, puis polymérise spontanément in situ en son poly-Diacétylène. La variation angulaire de la photoluminescence et du Raman témoignent de la présence de chaînes de polymères dont le degré d'orientation est compatible avec une croissance le long des pores.
|
16 |
Capteur d’humidité en Si poreux pour la fiabilité des systems in packageLudurczak, Willy 03 November 2008 (has links)
La problématique de cette thèse est l’amélioration de la fiabilité des systèmes électroniques encapsulés, concernant l’herméticité et les perturbations causées par les infiltrations d’humidité. Le travail consiste en l’étude d’un capteur pour mesurer in situ le taux d’humidité dans les cavités des systèmes encapsulés. Comparativement aux actuelles techniques d’évaluation de l’herméticité, l’intérêt du dispositif réside dans la généralisation du test à chaque cavité, le contrôle de l’atmosphère de la cavité sur une longue période d’utilisation, et la correction automatique de la dérive occasionnée (packaging intelligent). Deux structures en Si poreux (SP) ont été étudiées pour réaliser des capteurs, et ont d’abord été caractérisées d’un point de vue morphologique. Les deux couches ont la même porosité de 45 %. Les mesures de sorption d’azote appliquées aux théories BET et BJH ont montré que SP1 et SP2 présentaient respectivement des surfaces spécifiques de 330 et 223 m²/g, et des diamètres poreux moyens de 4,3 et 5.5 nm. Une nouvelle méthode de caractérisation basée sur le traitement d’image de surface de Si poreux est présentée. La méthode permet d’estimer les distributions de taille de pore (DTP), porosité, surface spécifique et fraction volumique d’oxyde. Elle est validée par la cohérence des résultats obtenus, comparés à ceux donnés par les théories de sorption. Outre le caractère complet de l’analyse, les avantages de cette méthode sont sa simplicité de mise en œuvre, sa non restriction à une gamme de taille de pores, et l’absence d’hypothèse mathématique sur l’estimation de la DTP. Les tests électriques ont montré que SP1 présentait une résistance supérieure à SP2 et que le capteur basé sur SP1 présentait une plus grande sensibilité vis-à-vis de la prise d’humidité : -90 % entre 0 et 80 % d’humidité relative. La spécificité du transport électrique dans les structures étudiées a été mise en évidence expérimentalement, conduisant à l’hypothèse d’une barrière de potentiels à l’interface Si - Si poreux. La plus grande résistance présentée par SP1 a été explicitée par sa plus grande fraction volumique d’oxyde, ainsi que les effets plus prononcés de confinement quantique et de déplétion de surface. L’utilité d’un capteur d’humidité in situ en Si poreux pour l’herméticité des systems in package a été démontrée par les résultats expérimentaux d’un prototype. / This work deals with the improvement of reliability of packaged electronic devices, concerning the hermeticity and the disturbances caused by moisture infiltration. As an analysis method of sealing quality of Systems in Package (SiP), a study of humidity sensors for in situ moisture level evaluation of SiP microcavities is presented. Compared to others analysis methods, the interest of the present one is its global utility for all manufactured chips, the capability to monitor the cavities atmosphere over a long period, and the possibility of automatic drifts correction. Two porous silicon (PS) based structures have been studied to make sensors. First we performed morphological analyses of PS layers. Both have a porosity of 45 %. Nitrogen sorption measurements applied to BET and BJH theories showed that PS1 and PS2 respectively present specific areas of 330 and 223 m²/g and mean pore diameters of 4.3 and 5.5 nm. A new analysis method based on processing of PS surface images is presented. It allows the estimation of pore size distribution (PSD), porosity, specific area, and volumic oxide ratio. The method has been validated by the closeness between its results and sorption theories results. In addition to the method’s completeness, it presents several advantages such as easy-to-use application, no restriction on PSD range, and no computing hypothesis on PSD evaluation. Electrical measurements showed that PS1 resistance is higher than PS2 resistance, and that sensitivity of PS1 based sensors exposed to moisture variation is superior: -90 % from 0 to 80 % relative humidity. Specificity of carriers transport in PS structures has been experimentally underlined; leading to the hypothesis of a potential barrier between PS and non porous Si. Higher resistance has been explained by the higher volumic oxide ratio of PS1, and the more developed quantum confinement and depletion surface effects. Utility of such in situ PS moisture sensor for SiP hermeticity has been demonstrated by preliminary experimental results.
|
17 |
Biofonctionnalisation du silicium poreux pour la détection de MMP-8 (Collagénase-2) / Functionalization of porous silicon for MMP-8 (Collagénase-2) biosensingMassif, Laurent 12 January 2012 (has links)
La métalloprotéinase matricielle (MMP)-8 ou collagénase-2 est capable de rompre les molécules natives, triples hélices, du collagène interstitiel, initiant ainsi le remodelage cellulaire lors du déplacement dentaire induit par une force orthodontique. C'est un bio-marqueur incontournable du remaniement tissulaire parodontal. L'augmentation de l'expression et de l'activation de MMP-8 dans le fluide gingival reflète l'activité du remodelage parodontal induit par les forces orthodontiques. En moyenne, la concentration de MMP-8 prélevée dans le fluide gingival des patients orthodontiques est 12 fois plus élevée (56 ± 50 µg/l contre 4,6 ± 4 µg/l) que chez les patients non orthodontiques. Le suivi des fluctuations de MMP-8 durant le déplacement orthodontique nécessite la mise au point d'un biocapteur. L'objectif de ce travail est d'utiliser une structure photonique à base de silicium poreux pour la conception d'un biocapteur optique de la MMP-8. Nous avons déterminé le choix du substrat de silicium poreux (PSi) le plus adapté à notre application avec une surface spécifique élevée et pores suffisamment ouverts pour l'infiltration des biomolécules qui sont des anticorps anti-MMP-8. Ensuite nous avons mis en place un procédé de fonctionnalisation chimique et biologique de la surface interne de ces échantillons. / The matrix métalloprotéinase (MMP) 8 or collagenase 2 is able to cleave native molecules, triple helixes, of the interstitial collagen, so introducing the cellular reshaping during orthodontic tooth movement. It is a major biomarker of the periodontal tissular remodeling. The increase of the expression and the activation of MMP-8 in the gingival fluid reflects the activity of the periodontal remodeling. On average, the concentration of MMP-8 taken in the gingival fluid of the orthodontic patients is 12 times as raised(brought up) (56 ± 50 µg / l against 4,6 ± 4 µg / l) that at the not orthodontic patients. Followed it by fluctuations in MMP-8 during the orthodontic movement require the development of a biosensor. The objective of this work is to use a photonique structure with porous silicon for the conception of an optical biosensor of the MMP-8. We determined the choice of the substratum of porous silicon (PSi) the most adapted to our application with a high specific surface and pores opened enough for the infiltration of the biomolecules which are antibodies anti-MMP-8. Then we set up a process of chemical and biological fonctionnalisation of the internal surface of these samples.
|
18 |
Micro-résonateurs intégrés pour des applications capteurs / Integrated microresonator for sensing applicationGirault, Pauline 14 December 2016 (has links)
Les micro-résonateurs (MRs) sont devenus des éléments clés de la conception de capteurs optiques intégrés, car étant plus miniaturisés que l’existant, ils s’intègrent mieux dans des systèmes ''lab-on-chip'', ce qui permet aussi de réduire le volume des molécules à détecter. Les MRs sont de plus très sensibles à la variation d’indice effectif provoquée par la présence de molécules dans le milieu de détection. Dans cette thèse, nous avons utilisé deux types de matériaux différents: les polymères et le silicium poreux. Les polymères, facilement réalisables avec des méthodes de fabrication peu onéreuses, sont dans un premier temps utilisés pour valider les outils de simulation développés pour l’étude des caractéristiques des MRs pour l’application capteur basée sur la détection par évanescence. Le silicium poreux permet d'exploiter un autre mode de détection, la détection en volume. Les molécules présentes dans le milieu de détection s'infiltrent dans le matériau et réagissent de manière directe avec la lumière. En utilisant les outils de simulation développés et en adaptant le procédé de photolithographie classique utilisé pour la fabrication de MRs en polymères, des premiers MRs constitués de guides ridges à base de silicium poreux sont mis en œuvre et caractérisés. Ces travaux de thèse démontrent expérimentalement la possibilité de détecter des concentrations de glucose avec une meilleure sensibilité que l'état de l'art pouvant atteindre les 600 nm/RIU, pour les domaines utilisant la détection et l'analyse de molécules (santé-agro, défense-sécurité, environnement). / Micro-resonators have become key element for integrated optical sensor because they offer the advantage of significantly minimizing the device size, which allows an easily integration on lab-on-chip and greatly reduces the amount of molecules to be detected. Moreover, micro-resonators are extremely sensitive to the effective index variation induced by the presence of molecules in the detection medium. The thesis focuses on two different materials: polymers and porous silicon. Firstly, polymers, easily implementable with a low cost fabrication, are used to validate the simulation tools developed for the study of micro-resonators characteristics in order to perform sensing application based on the detection by evanescence. Then, porous silicon is investigated in order to operate another type of detection, the detection by volume. The molecules to be detected and present in the medium detection infiltrate into the material and interact directly with the light. Using simulation tools and by adapting the photolithographic process used for polymers micro-resonators fabrication, the first micro-resonators based on porous silicon ridge waveguides are obtained and characterized. The work contained in this thesis demonstrate experimentally the possibility of sensing concentrations of glucose with a sensitivity of 600 nm/RIU, using volume detection, which is higher than the state of the art, for domains using the sensing and analysis of molecules (health, food industries, security and environment).
|
19 |
Etude des propriétés d'un cristal liquide (8CB) confiné dans des nanopores unidirectionnelsGuégan, Régis 15 September 2006 (has links) (PDF)
Ce travail est une étude des effets de confinement sur les propriétés d'un cristal liquide thermotrope (8CB). L'emploi de la forme colonnaire du silicium poreux ainsi que les membranes d'alumine poreuse a permis d'introduire un confinement suivant une direction préférentielle. Nous avons montré par microscopie électronique à balayage que ces deux matériaux poreux présentent une organisation fortement unidirectionnelle de l'ensemble des nanopores (diamètre moyen : 30 nm, longueur 30 μm). Le silicium poreux montre d'autre part une morphologie particulièrement désordonnée de la paroi interne des pores qui a permis d'induire des effets de champ aléatoire sur le système confiné. <br />Le polymorphisme et le diagramme de phases du 8CB confiné ont été étudiés par calorimétrie à balayage (DSC), diffusion Raman et par diffraction de neutrons. La séquence de phase du 8CB confiné dans les alumines poreuses reste identique à celle du 8CB massif avec toutefois l'existence d'une phase cristalline métastable à basses températures. Le 8CB confiné dans le silicium poreux montre un comportement très différent. La présence de désordre aléatoire gelé dans les nanopores empêche la transition N-SmA et laisse place à une mise en ordre progressive d'une phase smectique dont l'ordre n'est plus qu'à courte portée. A plus basses températures, le système cristallise dans diverses phases métastables dont l'existence n'a pu être mis en évidence qu'en condition de confinement. <br />L'ordre orientationnel des phases confinées a pu être décrit par diffusion Raman et par ellipsométrie spectroscopique. Ces deux techniques nous ont permis de mettre en évidence le fort couplage entre l'anisotropie des phases du cristal liquide et la géométrie 1D des nanocanaux.<br />En dernier lieu, nous discutons de la dynamique du 8CB pur et confiné dans le silicium poreux déterminé par la diffusion quasiélastique de neutrons. En situation de confinement, la mobilité des molécules est particulièrement ralentie dès le domaine en température où le 8CB en volume est en phase isotrope, soulignant la profonde perturbation de la dynamique des couches interfaciales.
|
20 |
Développement de biocapteurs en optique intégrée / Development of integrated optics biosensorsAzuelos, Paul 17 October 2018 (has links)
Le développement de capteurs pour la détection de molécules présentes en très faible concentration est un enjeu sociétal et économique. Il permet de répondre à des besoins de mesure d’analytes dans les secteurs de la santé, de la défense ou encore de l’environnement. Les capteurs optiques intégrés possèdent plusieurs avantages permettant de répondre à ces problématiques. Dans cette thèse, des capteurs optiques intégrés à base de deux micro-résonateurs sont développés. Ils fonctionnent dans le domaine du proche infrarouge et permettent de détecter des molécules d’intérêt présentes en très faible quantité dans un échantillon biologique. Dans un premier temps, les critères de performances comme la sensibilité ou la limite de détection de micro-résonateurs seuls sont définis et optimisés. Puis, l’intérêt de transducteurs à base de deux micro-résonateurs cascadés ou insérés dans une structure interférométrique de type Mach-Zehnder permettant d’utiliser l’effet Vernier est mis en avant. Un algorigramme permettant d’optimiser la conception des transducteurs à effet Vernier est mis en place. Son efficacité est démontrée par la fabrication d’un transducteur à effet Vernier en matériaux polymères qui possède des performances dans l’état de l’art. Ensuite, des transducteurs en matériau silicium poreux sont étudiés. Ce matériau poreux permet d’augmenter la sensibilité du capteur en facilitant le greffage des analytes dans la structure. Les guides en silicium poreux pour la réalisation de micro-résonateurs simples sont optimisés théoriquement. L’avantage de l’utilisation conjointe de guides en polymères et en silicium poreux couplés sur la même puce intégrée, qui permet à la fois de réduire les pertes de propagation optique et d’augmenter la sensibilité du transducteur, ainsi qualifié d’hybride, est détaillé dans ce manuscrit. Les performances en sensibilité et limite de détection de transducteurs à effet Vernier hybride fabriqués à l’aide de guides en silicium poreux et en polymères sont étudiées théoriquement afin de prédire les performances de ces dispositifs. Enfin la mise en œuvre et les premiers essais de fabrication de transducteurs hybrides avec des guides en polymères et en silicium poreux sont détaillés. / The development of biosensors for the detection of extremely low concentration analytes is an economic and societal challenge. It ensures the needs to detect analytes in the economic fields of healthcare, defense and environment. Integrated optical sensors have several advantages to address these challenges. In this thesis, near infrared integrated biosensors for detection of low concentration molecules in biological samples are developed. They are based on two integrated micro-resonators transducers. Firstly, performances criterions such as sensitivity and limit of detection are defined and optimized for single micro-resonator biosensors. The advantage of micro-resonator transducers based on the Vernier effect are presented. To do so, a flowchart is developed in order to optimize the design of Vernier effect integrated transducers based on cascaded micro-resonators or micro-resonators positioned in a Mach-Zehnder interferometric structure. The efficiency of the design procedure is tested by the fabrication of a polymer transducer based on the Vernier effect with state of the art performances. Then, transducers based on porous silicon material are studied. This porous material eases the penetration and the grafting of the analytes in the sensor. Porous silicon waveguides are theoretically optimized for the fabrication of single micro-resonators. The interest of the implementation of polymer and porous silicon waveguides coupled on the same integrated chip, in order to reduce optical propagation losses and to increase sensor sensitivity, is demonstrated. The performances in sensitivity and limit of detection of hybrid porous silicon and polymer waveguides Vernier effect transducers are theoretically studied in order to estimate the performances of these integrated biosensors. Eventually, the design and the first fabrication trials of hybrid porous silicon and polymer waveguides transducers are presented.
|
Page generated in 0.0509 seconds