• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 4
  • 4
  • 4
  • 1
  • Tagged with
  • 37
  • 37
  • 14
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Scaling Beyond Moore: Single Electron Transistor and Single Atom Transistor Integration on CMOS

Deshpande, Veeresh 27 September 2012 (has links) (PDF)
La r eduction (\scaling") continue des dimensions des transistors MOS- FET nous a conduits a l' ere de la nano electronique. Le transistor a ef- fet de champ multi-grilles (MultiGate FET, MuGFET) avec l'architecture \nano l canal" est consid er e comme un candidat possible pour le scaling des MOSFET jusqu' a la n de la roadmap. Parall element au scaling des CMOS classiques ou scaling suivant la loi de Moore, de nombreuses propo- sitions de nouveaux dispositifs, exploitant des ph enom enes nanom etriques, ont et e faites. Ainsi, le transistor mono electronique (SET), utilisant le ph enom ene de \blocage de Coulomb", et le transistor a atome unique (SAT), en tant que transistors de dimensions ultimes, sont les premiers disposi- tifs nano electroniques visant de nouvelles applications comme la logique a valeurs multiples ou l'informatique quantique. Bien que le SET a et e ini- tialement propos e comme un substitut au CMOS (\Au-del a du dispositif CMOS"), il est maintenant largement consid er e comme un compl ement a la technologie CMOS permettant de nouveaux circuits fonctionnels. Toutefois, la faible temp erature de fonctionnement et la fabrication incompatible avec le proc ed e CMOS ont et e des contraintes majeures pour l'int egration SET avec la technologie FET industrielle. Cette th ese r epond a ce probl eme en combinant les technologies CMOS de dimensions r eduites, SET et SAT par le biais d'un sch ema d'int egration unique a n de fabriquer des transistors \Trigate" nano l. Dans ce travail, pour la premi ere fois, un SET fonction- nant a temp erature ambiante et fabriqu es a partir de technologies CMOS SOI a l' etat de l'art (incluant high-k/grille m etallique) est d emontr e. Le fonctionnement a temp erature ambiante du SET n ecessite une le (ou canal) de dimensions inf erieures a 5 nm. Ce r esultat est obtenu grce a la r eduction du canal nano l "trigate" a environ 5 nm de largeur. Une etude plus ap- profondie des m ecanismes de transport mis en jeu dans le dispositif est r ealis ee au moyen de mesures cryog eniques de conductance. Des simula- tions NEGF tridimensionnelles sont egalement utilis ees pour optimiser la conception du SET. De plus, la coint egration sur la m^eme puce de MOS- FET FDSOI et SET est r ealis ee. Des circuits hybrides SET-FET fonction- nant a temp erature ambiante et permettant l'ampli cation du courant SET jusque dans la gamme des milliamp eres (appel e \dispositif SETMOS" dans la litt erature) sont d emontr es de m^eme que de la r esistance di erentielle n egative (NDR) et de la logique a valeurs multiples. Parall element, sur la m^eme technologie, un transistor a atome unique fonc- tionnant a temp erature cryog enique est egalement d emontr e. Ceci est obtenu par la r eduction de la longueur de canal MOSFET a environ 10 nm, si bien qu'il ne comporte plus qu'un seul atome de dopant dans le canal (dif- fus ee a partir de la source ou de drain). A basse temp erature, le trans- port d' electrons a travers l' etat d' energie de ce dopant unique est etudi e. Ces dispositifs fonctionnent egalement comme MOSFET a temp erature am- biante. Par cons equent, une nouvelle m ethode d'analyse est d evelopp ee en corr elation avec des caract eristiques a 300K et des mesures cryog eniques pour comprendre l'impact du dopant unique sur les caracteristiques du MOSFET a temp erature ambiante.
22

Silicon Nanowires for Biosensor Applications

Zörgiebel, Felix 23 November 2017 (has links) (PDF)
Nanostrukturen haben in den letzten Jahrzehnten durch konsequente Förderung wie der im Jahr 2000 gestarteten National Nanotechnology Initiative der USA oder des deutschen Pendants Aktionsplan Nanotechnologie erhebliches Aufsehen, nicht nur in der Wissenschaft, sondern auch in der technischen und wirtschaftlichen Umsetzung erfahren. In Kombination mit biologischen Systemen, deren Funktionalität sich auf der Größenordnung von Nanometern abspielt, finden nanotechnologische Entwicklungen auf dem Gebiet der Medizin ein großes technisches Anwendungsgebiet. Diese Arbeit widmet sich der Untersuchung und technischen Entwicklung von Siliziumnanodrähten als Sensoren für zukünftige medizinische Anwendungen. Im Gegensatz zu Sensoren die auf dotierten Nanodrähten basieren, wurden hier undotierte Nanodrähte untersucht, die mit geringerem Produktionsaufwand auskommen und mittels Schottky-Barrieren als Feldeffekttransistoren nutzbar sind. Deren Eigenschaften wurden im Hinblick auf pH und Biosensorik theoretisch und experimentell untersucht, sowie technisch in ein lab-on-chip sowie ein kompaktes Multiplexer-Messgerät integriert. In einem zweiten, separaten Teil wurden die Eigenschaften undotierter Nanodrähte für die optische Spektroskopie theoretisch modelliert. Die Inhalte beider Teile werden im folgenden kurz zusammengefasst. Um die elektrischen Sensoreigenschaften der Siliziumnanodrähte zu untersuchen, wurden zunächst Computermodelle der Drähte erstellt, mit deren Hilfe der Elektronentransport in flüssiger Umgebung quantenmechanisch modelliert wurde. Die dafür erstellten Modellvorstellungen waren für die sich daran anschließenden experimentellen Untersuchungen des Rauschverhaltens, der pH-Sensitivität sowie der Biosensoreigenschaften sehr vorteilhaft. Mit Hilfe einer neu entwickelten Messmethode konnte der optimale Arbeitspunkt der Sensoren ermittelt werden, sowie die hohe Sensorqualität mittels einer empirischen mathematischen Beschreibung des zu erwartenden Sensorsignals eingeordnet werden. Weiterhin wurden für die Medizintechnik relevante Messungen von Thrombin durchgeführt. Damit ist für den hier beschriebenen Sensortyp ein proof-of-concept für neuartige medizinische Messelemente gelungen. Um die kleinen Abmessungen der Sensoren darüber hinaus technisch nutzbar zu machen, wurden sie in ein lab-on-chip System integriert, in welchem sie als Sensoren für den pH-Wert sowie die ionische Konzentration in Nanoliter-Tropfen verwendet wurden. Desweiteren wurde in Kooperation mit dem Institut für Aufbau- und Verbindungstechnik ein portables Messgerät entwickelt, welches die parallele Messung mehrerer Nanodrahtsensoren ermöglicht. Im zweiten Teil der Arbeit wird eine theoretische Untersuchung zur Eignung von Silizium-Nanodrähten als Messsonden (Probes) für die optische Spektroskopie vorgestellt. Dazu wurde eine Methode entwickelt mittels derer es möglich ist, Raman und Infrarotspektren von Nanostrukturen mittels Molekulardynamik zu berechnen. Die Methode wurde auf undotierte Silizium-Nanodrähte augewendet und zeigt, dass die Oberflächenbeschaffenheit der Drähte die optischen Spektren entscheidend beeinflusst. Damit konnte die Relevanz von Halbeiter-Nanostrukturen auch für Anwendungen in der optischen Spektroskopie gezeigt werden. / Nanostructures have attracted great attention not only in scientific research, but also in engineering applications during the last decades. Especially in combination with biological systems, whose complex function is controlled from nanoscale building blocks, nanotechnological developments find a huge field of applications in the medical sector. This work is dedicated to the functional understanding and technical implementation of silicon nanowires for future medical sensor applications. In contrast to doped silicon nanowire based sensors, this work is focussed on pure, undoped silicon nanowires, which have lower demands on production techniques and use Schottky-barriers as electric field detectors. The pH and biosensing capabilities of such undoped silicon nanowire field effect transistors were investigated theoretically and experimentally and further integrated in a lab-on-a-chip device as well as a small-scale multiplexer measurement device. In a second separate part, the optical sensing properties of undoped silicon nanowires were theoretically modeled. The main contents of both parts are shortly described in the following paragraphs. A multiscale model of silicon nanowire FETs to describe the charge transport in liquid surrounding in a quantum mechanical framework was developed to investigate the sensing properties of the nanowire sensors in general. The model set the basis for the understanding of the subsequent experimental investigations of noise characterization, pH sensitivity and biosensing properties. With the help of a novel gate sweeping measurement method the optimal working point of the sensors was determined and the high sensor quality could be quantified in terms of an empirical mathematical model. The sensor was then used for measurements of medically relevant concentrations of the Thrombin protein, providing a proof-of-concept for medical applications for our newly developed sensor. In order to exploit the small size of our sensors for technical applications we integrated the devices in lab-on-a-chip system with a microfluidic droplet generation module. There they were used to measure the pH and ionic concentration of droplets. Finally a portable multiplex measurement device for silicon nanowire sensors as well as other ion sensitive FETs was developed in cooperation with the IAVT at TU Dresden (Institut für Aufbau- und Verbindungstechnik). The second part of this thesis investigates the usability of silicon nanowires for optical sensor applications from a theoretical point of view. Therefore a method for the extraction of Raman and Infrared spectra from molecular dynamics simulations was developed. The method was applied to undoped silicon nanowires and shows that the surface properties of the nanowires has a significant effect on optical spectra. These results demonstrate the relevance of semiconductor nanostructures for applications in optical spectroscopy.
23

Integrated nanoscaled detectors of biochemical species

Schütt, Julian 02 October 2020 (has links)
Rapid and reliable diagnostics of a disease represents one of the main focuses of today’s academic and industrial research in the development of new sensor prototypes and improvement of existing technologies. With respect to demographic changes and inhomogeneous distribution of the clinical facilities worldwide, especially in rural regions, a new generation of miniaturized biosensors is highly demanded offering an easy deliverability, low costs and sample preparation and simple usage. This work focuses on the integration of nanosized electronic structures for high-specific sensing applications into adequate microfluidic structures for sample delivery and liquid manipulation. Based on the conjunction of these two technologies, two novel sensor platforms were prototyped, both allowing label-free and optics-less electrochemical detection ranging from molecular species to eukaryotic micron-sized human cells.:Table of Figures List of Tables Abbreviations List of Symbols 1 Introduction 1.1 Motivation 1.2 State of the art 1.3 Scope of this thesis 2 Fundamentals 2.1 Sensors at the nanoscale 2.2 Transistors technology 2.2.1 p-n junction 2.2.3 The MOSFET 2.2.4 The ISFET and BioFET 2.3 Impedance measurements for biodetection 2.3.1 Electrical impedance spectroscopy 2.3.2 Electrical impedance cytometry 2.4 Microfluidics 2.4.1 Definition 2.4.2 Droplet-based microfluidics 2.5 Biomarkers for sensing applications 2.5.1 Peripheral blood mononuclear cells (PBMCs) 2.5.2 Physical parameters 3. Material and methods 3.1 General 3.1.1 Materials and chemicals 3.1.2 Surface cleaning 3.2 Lithography 3.2.1 Electron beam lithography 3.2.2 Laser lithography 3.2.3 UV lithography 3.2.4 Soft lithography 3.3 Thermal deposition of metals 3.4 APTES functionalization 3.4.1 Fluorescent labeling of APTES 3.5 Measurement devices 3.5.1 SiNW FET measurements 3.5.2 Electrical Impedance cytometry measurements 3.6 Bacteria and cell cultivation 3.6.1 PBMC purification and treatment 3.6.2 Bacteria cultivation 4. Compact nanosensors probe microdroplets 4.1 Overview 4.2 Fabrication 4.2.1 SiNW FET fabrication 4.2.2 SiNW FET modification for top-gate sensing 4.3 Electrical characterization 4.4 Flow-focusing droplet generation 4.4.1 Flow-focusing geometry 4.4.2 Flow-focusing droplet characterization 4.4.3 Microfluidic integration 4.5 Deionized water droplet sensing 4.6 Phosphate-buffered saline (PBS) droplet sensing 4.6.1 Influence of the droplet’s ionic concentration 4.6.2 Plateau formation in dependence of the droplet’s settling time 4.6.3 Droplet analysis by their ratio 4.6.4 Dependence on pH value 4.6.5 Long time pH sensing experiment 4.6.6 Dependence on ionic concentration 4.7 Tracking of reaction kinetics in droplets 4.7.1 Principle and setup of the glucose oxidase (GOx) enzymatic test 4.7.2 GOx enzymatic assay 4.8 Stable baseline by conductive carrier phase 5. Impedance-based flow cytometer on a chip 5.1 Overview 5.2 Overview of the fabrication of the sensor device 5.3 COMSOL simulation of sensing area 5.3.1 Prototyping of the sensing geometry 5.3.2 Optimization of the sensing geometry 5.3.3 Evaluation of the working potential 5.3.4. Scaling of the sensing area 5.4 Fabrication of the nanoelectronic sensing structure 5.4.1 Nanofabrication and analysis 5.4.2 Evaluation of the proximity effect 5.5 Microcontacting of nanostructured sensing structures 5.6 Electrical characterization of the sensing structure 5.6.1 Characterization in alternating current 5.6.2 Characterization in direct current (DC) 5.7 Scaling effect of nanostructures in static sensing conditions 5.8 Multi-analyte detection on the sensor 5.9 Microfluidic focusing system 5.9.1 1D focusing using FITC-probed deionized water 5.9.2 2D Focusing using fluorescent microparticles 5.10 Microfluidic integration of the two technologies 5.11 Dynamic SiO2 particle detection 5.11.1 Single particle detection 5.11.2 Scatter plot representation 5.11.3 Effect of the sensing area in dynamic particle detection 5.11.4 Dynamic detection of SiO2 particles with different diameters 5.12 Detection of peripheral blood mononuclear cells (PBMCs) 5.12.1 Overview 5.12.2 PBMC classification detected by impedance cytometry 5.12.3 PBMC Long-time detection 5.13 Detection of acute myeloid leukemia by impedance cytometry 5.13.1 Manual analysis of the output response 5.13.2 Learning algorithm for automatic cell classification 5.14 Exploring the detection limit of the device 6. Summary and outlook Scientific output References Acknowledgements / Rasche und zuverlässige biologische Krankheitsdiagnostik repräsentiert eines der Hauptfokusse heutiger akademischer und industrieller Forschung in der Entwicklung neuer Sensor-Prototypen und Verbesserung existierender Technologien. In bezug auf weltweite demographische Änderungen und hohe Distanzen zu Kliniken, besonders in ländlichen Gegenden, werden zusätzliche Anfordungen an neue miniaturisierte Biosensor-Generationen gestellt, wie zum Beispiel ihre Transportfähigkeit, geringe Kosten und Probenpräparation, sowie einfache Handhabung. Diese Dissertation beschäftigt sich mit der Integration nanoskalierter Strukturen zur Detektion chemischer und biologischer Spezies und mikrofluidischen Kanälen zu deren Transport und zur Manipulation der Ströme. Basierend auf der Verbindung dieser beiden Technologien wurden zwei Sensor-Plattformen entwickelt, die eine markierungsfreie und nicht-optische elektrische Detektion von Molekülen bis zu eukaryotischen menschlichen Zellen erlauben.:Table of Figures List of Tables Abbreviations List of Symbols 1 Introduction 1.1 Motivation 1.2 State of the art 1.3 Scope of this thesis 2 Fundamentals 2.1 Sensors at the nanoscale 2.2 Transistors technology 2.2.1 p-n junction 2.2.3 The MOSFET 2.2.4 The ISFET and BioFET 2.3 Impedance measurements for biodetection 2.3.1 Electrical impedance spectroscopy 2.3.2 Electrical impedance cytometry 2.4 Microfluidics 2.4.1 Definition 2.4.2 Droplet-based microfluidics 2.5 Biomarkers for sensing applications 2.5.1 Peripheral blood mononuclear cells (PBMCs) 2.5.2 Physical parameters 3. Material and methods 3.1 General 3.1.1 Materials and chemicals 3.1.2 Surface cleaning 3.2 Lithography 3.2.1 Electron beam lithography 3.2.2 Laser lithography 3.2.3 UV lithography 3.2.4 Soft lithography 3.3 Thermal deposition of metals 3.4 APTES functionalization 3.4.1 Fluorescent labeling of APTES 3.5 Measurement devices 3.5.1 SiNW FET measurements 3.5.2 Electrical Impedance cytometry measurements 3.6 Bacteria and cell cultivation 3.6.1 PBMC purification and treatment 3.6.2 Bacteria cultivation 4. Compact nanosensors probe microdroplets 4.1 Overview 4.2 Fabrication 4.2.1 SiNW FET fabrication 4.2.2 SiNW FET modification for top-gate sensing 4.3 Electrical characterization 4.4 Flow-focusing droplet generation 4.4.1 Flow-focusing geometry 4.4.2 Flow-focusing droplet characterization 4.4.3 Microfluidic integration 4.5 Deionized water droplet sensing 4.6 Phosphate-buffered saline (PBS) droplet sensing 4.6.1 Influence of the droplet’s ionic concentration 4.6.2 Plateau formation in dependence of the droplet’s settling time 4.6.3 Droplet analysis by their ratio 4.6.4 Dependence on pH value 4.6.5 Long time pH sensing experiment 4.6.6 Dependence on ionic concentration 4.7 Tracking of reaction kinetics in droplets 4.7.1 Principle and setup of the glucose oxidase (GOx) enzymatic test 4.7.2 GOx enzymatic assay 4.8 Stable baseline by conductive carrier phase 5. Impedance-based flow cytometer on a chip 5.1 Overview 5.2 Overview of the fabrication of the sensor device 5.3 COMSOL simulation of sensing area 5.3.1 Prototyping of the sensing geometry 5.3.2 Optimization of the sensing geometry 5.3.3 Evaluation of the working potential 5.3.4. Scaling of the sensing area 5.4 Fabrication of the nanoelectronic sensing structure 5.4.1 Nanofabrication and analysis 5.4.2 Evaluation of the proximity effect 5.5 Microcontacting of nanostructured sensing structures 5.6 Electrical characterization of the sensing structure 5.6.1 Characterization in alternating current 5.6.2 Characterization in direct current (DC) 5.7 Scaling effect of nanostructures in static sensing conditions 5.8 Multi-analyte detection on the sensor 5.9 Microfluidic focusing system 5.9.1 1D focusing using FITC-probed deionized water 5.9.2 2D Focusing using fluorescent microparticles 5.10 Microfluidic integration of the two technologies 5.11 Dynamic SiO2 particle detection 5.11.1 Single particle detection 5.11.2 Scatter plot representation 5.11.3 Effect of the sensing area in dynamic particle detection 5.11.4 Dynamic detection of SiO2 particles with different diameters 5.12 Detection of peripheral blood mononuclear cells (PBMCs) 5.12.1 Overview 5.12.2 PBMC classification detected by impedance cytometry 5.12.3 PBMC Long-time detection 5.13 Detection of acute myeloid leukemia by impedance cytometry 5.13.1 Manual analysis of the output response 5.13.2 Learning algorithm for automatic cell classification 5.14 Exploring the detection limit of the device 6. Summary and outlook Scientific output References Acknowledgements
24

Silicon Nanowires for Biosensor Applications

Zörgiebel, Felix 10 November 2017 (has links)
Nanostrukturen haben in den letzten Jahrzehnten durch konsequente Förderung wie der im Jahr 2000 gestarteten National Nanotechnology Initiative der USA oder des deutschen Pendants Aktionsplan Nanotechnologie erhebliches Aufsehen, nicht nur in der Wissenschaft, sondern auch in der technischen und wirtschaftlichen Umsetzung erfahren. In Kombination mit biologischen Systemen, deren Funktionalität sich auf der Größenordnung von Nanometern abspielt, finden nanotechnologische Entwicklungen auf dem Gebiet der Medizin ein großes technisches Anwendungsgebiet. Diese Arbeit widmet sich der Untersuchung und technischen Entwicklung von Siliziumnanodrähten als Sensoren für zukünftige medizinische Anwendungen. Im Gegensatz zu Sensoren die auf dotierten Nanodrähten basieren, wurden hier undotierte Nanodrähte untersucht, die mit geringerem Produktionsaufwand auskommen und mittels Schottky-Barrieren als Feldeffekttransistoren nutzbar sind. Deren Eigenschaften wurden im Hinblick auf pH und Biosensorik theoretisch und experimentell untersucht, sowie technisch in ein lab-on-chip sowie ein kompaktes Multiplexer-Messgerät integriert. In einem zweiten, separaten Teil wurden die Eigenschaften undotierter Nanodrähte für die optische Spektroskopie theoretisch modelliert. Die Inhalte beider Teile werden im folgenden kurz zusammengefasst. Um die elektrischen Sensoreigenschaften der Siliziumnanodrähte zu untersuchen, wurden zunächst Computermodelle der Drähte erstellt, mit deren Hilfe der Elektronentransport in flüssiger Umgebung quantenmechanisch modelliert wurde. Die dafür erstellten Modellvorstellungen waren für die sich daran anschließenden experimentellen Untersuchungen des Rauschverhaltens, der pH-Sensitivität sowie der Biosensoreigenschaften sehr vorteilhaft. Mit Hilfe einer neu entwickelten Messmethode konnte der optimale Arbeitspunkt der Sensoren ermittelt werden, sowie die hohe Sensorqualität mittels einer empirischen mathematischen Beschreibung des zu erwartenden Sensorsignals eingeordnet werden. Weiterhin wurden für die Medizintechnik relevante Messungen von Thrombin durchgeführt. Damit ist für den hier beschriebenen Sensortyp ein proof-of-concept für neuartige medizinische Messelemente gelungen. Um die kleinen Abmessungen der Sensoren darüber hinaus technisch nutzbar zu machen, wurden sie in ein lab-on-chip System integriert, in welchem sie als Sensoren für den pH-Wert sowie die ionische Konzentration in Nanoliter-Tropfen verwendet wurden. Desweiteren wurde in Kooperation mit dem Institut für Aufbau- und Verbindungstechnik ein portables Messgerät entwickelt, welches die parallele Messung mehrerer Nanodrahtsensoren ermöglicht. Im zweiten Teil der Arbeit wird eine theoretische Untersuchung zur Eignung von Silizium-Nanodrähten als Messsonden (Probes) für die optische Spektroskopie vorgestellt. Dazu wurde eine Methode entwickelt mittels derer es möglich ist, Raman und Infrarotspektren von Nanostrukturen mittels Molekulardynamik zu berechnen. Die Methode wurde auf undotierte Silizium-Nanodrähte augewendet und zeigt, dass die Oberflächenbeschaffenheit der Drähte die optischen Spektren entscheidend beeinflusst. Damit konnte die Relevanz von Halbeiter-Nanostrukturen auch für Anwendungen in der optischen Spektroskopie gezeigt werden.:I Introduction: Sensing with Nanostructures 1 Introduction 2 Field effect transistors as electronic sensor elements 3 Packaging: Connecting Nano and Macro 4 Nanostructures as transducers in optical spectroscopy II Electronic sensing with Schottky Barrier silicon nanowires 5 Schottky-Barrier silicon nanowire field effect transistors 6 ISFET measurement principles 7 pH and Biosensing with silicon nanowires 8 Thrombin sensing 9 Silicon nanowire FETs in a Lab-on-a-Chip device 10 Multiplexer sensing platform 11 Experimental methods III Simulating optical spectra of silicon nanowires 12 Theoretical fundamentals 13 Computational Methods 14 Results 15 Bibliography 16 Anhang / Nanostructures have attracted great attention not only in scientific research, but also in engineering applications during the last decades. Especially in combination with biological systems, whose complex function is controlled from nanoscale building blocks, nanotechnological developments find a huge field of applications in the medical sector. This work is dedicated to the functional understanding and technical implementation of silicon nanowires for future medical sensor applications. In contrast to doped silicon nanowire based sensors, this work is focussed on pure, undoped silicon nanowires, which have lower demands on production techniques and use Schottky-barriers as electric field detectors. The pH and biosensing capabilities of such undoped silicon nanowire field effect transistors were investigated theoretically and experimentally and further integrated in a lab-on-a-chip device as well as a small-scale multiplexer measurement device. In a second separate part, the optical sensing properties of undoped silicon nanowires were theoretically modeled. The main contents of both parts are shortly described in the following paragraphs. A multiscale model of silicon nanowire FETs to describe the charge transport in liquid surrounding in a quantum mechanical framework was developed to investigate the sensing properties of the nanowire sensors in general. The model set the basis for the understanding of the subsequent experimental investigations of noise characterization, pH sensitivity and biosensing properties. With the help of a novel gate sweeping measurement method the optimal working point of the sensors was determined and the high sensor quality could be quantified in terms of an empirical mathematical model. The sensor was then used for measurements of medically relevant concentrations of the Thrombin protein, providing a proof-of-concept for medical applications for our newly developed sensor. In order to exploit the small size of our sensors for technical applications we integrated the devices in lab-on-a-chip system with a microfluidic droplet generation module. There they were used to measure the pH and ionic concentration of droplets. Finally a portable multiplex measurement device for silicon nanowire sensors as well as other ion sensitive FETs was developed in cooperation with the IAVT at TU Dresden (Institut für Aufbau- und Verbindungstechnik). The second part of this thesis investigates the usability of silicon nanowires for optical sensor applications from a theoretical point of view. Therefore a method for the extraction of Raman and Infrared spectra from molecular dynamics simulations was developed. The method was applied to undoped silicon nanowires and shows that the surface properties of the nanowires has a significant effect on optical spectra. These results demonstrate the relevance of semiconductor nanostructures for applications in optical spectroscopy.:I Introduction: Sensing with Nanostructures 1 Introduction 2 Field effect transistors as electronic sensor elements 3 Packaging: Connecting Nano and Macro 4 Nanostructures as transducers in optical spectroscopy II Electronic sensing with Schottky Barrier silicon nanowires 5 Schottky-Barrier silicon nanowire field effect transistors 6 ISFET measurement principles 7 pH and Biosensing with silicon nanowires 8 Thrombin sensing 9 Silicon nanowire FETs in a Lab-on-a-Chip device 10 Multiplexer sensing platform 11 Experimental methods III Simulating optical spectra of silicon nanowires 12 Theoretical fundamentals 13 Computational Methods 14 Results 15 Bibliography 16 Anhang
25

Untersuchung des elektronischen Transports an 28nm MOSFETs und an Schottky-Barrieren FETs aus Silizium-Nanodrähten

Beister, Jürgen 19 January 2019 (has links)
As modern microelectronics advances, enormous challenges have to be overcome in order to further increase device performance, enabling highspeed and ultra-low-power applications. With progressive scaling of Silicon MOSFETs, charge carrier mobility has dropped significantly and became a critical device parameter over the last decade. Present technology nodes make use of strain engineering to partially recover this mobility loss. Even though carrier mobility is a crucial parameter for present technology nodes, it cannot be determined accurately by methods typically available in industrial environments. A major objective of this work is to study the magnetoresistance mobility μMR of strained VLSI devices based on a 28 nm ground rule. This technique allows for a more direct access to charge carrier mobility, compared to conventional current/ voltage and capacitance/ voltage mobility derivation methods like the effective mobility μeff, in which series resistance, inversion charge density and effective channel length are necessary to extract the mobility values of the short channel devices. Aside from providing an anchor for accurate μeff measurements in linear operation conditions, μMR opens the possibility to investigate the saturation region of the device, which cannot be accessed by μeff. Electron and hole mobility of nFET and pFET devices with various gate lengths are studied from linear to saturation region. In addition, the interplay between mobility enhancement due to strain improvement, and mobility degradation due to short channel effects with decreasing channel length is analyzed. As a concept device for future nanoelectronic building blocks, silicon nanowire Schottky field-effect transistors are investigated in the second part of this work. These devices exhibit an ambipolar behaviour, which gives the opportunity to measure both electron and hole transport on a single device. The temperature dependence of the source/drain current for specific gate and drain voltages is analyzed within the framework of voltage dependent effective barrier heights.:1. Einleitung 2. Theoretische Grundlagen 3. Charakterisierungsmethoden 4. Messaufbau 5. Ergebnisse der Untersuchungen an MOSFETs 6. Ergebnisse der Untersuchungen an SiNW Transistoren 7. Zusammenfassung Anhang Danksagungen
26

Top-down fabrication of reconfigurable nanowire-electronics

Simon, Maik 28 February 2024 (has links)
Our society demands for increasingly powerful and efficient microprocessors. However, the conventional method to achieve this, i.e. by reducing the device dimensions and operation voltage of field-effect transistors (FETs), is approaching physical limits. This state of things is driving science and industry to consider new approaches for the generation of efficient logic devices. An emerging solution is the use of reconfigurable FETs (RFETs) that – unlike conventional CMOS transistors – do not need doping but can be toggled between p- and n-type behavior in runtime. For this to be possible, it is necessary to employ an intrinsic channel with Schottky junctions at source and drain. A program gate then toggles the polarity of the device at the Schottky junction on the drain side while one or more additional control gates switch the transistor on or off. This allows to create compact and delay-efficient logic gates that can switch their functionality dynamically, e.g. to save area or to prevent the disclosure of the circuit functionality. Additionally, the ability to include multiple gates in a single transistor to implement a wired-AND functionality allows to create power- and delay-efficient circuits. This thesis demonstrates that such devices can be created by means of a lithographic top-down technology based on commercial silicon-on-insulator (SOI) wafers. In order to ensure a compatibility with future CMOS process lines, the channels are created from silicon nanosheets and nanowires, which will most likely substitute the current FinFET and FD-SOI technology in the future. Nano-dimensional channels allow for ideal electrostatic control by the gates especially if the gates surround them. For this purpose, a process employing multiple oxide etching and oxidation steps, nickel silicide formation and the structuring of conformal metal gates is developed to create shrank and omega-gated nanosheets and nanowires with atomically sharp source and drain Schottky junctions. The resulting RFETs feature high on-current densities, high on/off current ratios and up to four individual gates that realize a wired-AND functionality. More importantly, in contrast to top-down fabricated RFETs in earlier works, these RFETs provide symmetrical electrical characteristics for p- and n-configuration but only need a single supply voltage. These properties will allow to create circuits of cascaded, static logic gates with polarity-independent signal delay times and no need for interposed buffers to refresh the signals. Additionally, the use of ferroelectric materials to create RFETs with nonvolatile programming has been tested at a Schottky-barrier MOSFET. Unfortunately, contact fabrication by self-aligned silicidation can lead to some difficulties: The silicide intrusion length varies widely even between similar nanowires on the same chip, which makes the fabrication of short channels and the application of narrow gates particularly challenging. Detailed analyses in this work show that the variation is mainly caused by the variable amount of nickel supplied. Several material-, temperature- and geometry-based methods to gain a more homogeneous silicidation length are tested. One of these methods employs the layout freedom of the top-down technology to create novel structures of nanowires with local volume extensions. When using a single nickel source, these structures allow to study the impact of wire geometry on silicidation dynamics independently from the nickel contact quality. The gained findings have implications well beyond the application in RFETs, as nickel silicidation is widely used in state-of-the-art semiconductor technology.:Abstract Kurzzusammenfassung 1 Introduction 2 Fundamentals and state-of-the-art of reconfigurable field-effect transistors 2.1 Schottky junction 2.2 Schottky-barrier field-effect transistor 2.3 Current control by the gate voltage 2.4 Reconfigurable FETs 2.4.1 Working principle 2.4.2 Architectures and channel materials of RFETs in prior works 2.4.3 Applications 2.4.4 Requirements for the use in circuits 3 Transistor fabrication 3.1 Electron-beam lithography 3.2 Top-down nanowire fabrication 3.3 Nanowire oxidation and underetch 3.3.1 Oxidation of nanowires 3.3.2 Oxidation processes 3.4 Top-gate fabrication 3.4.1 Basic process for tri-gate 3.4.2 Advanced process for omega-gate 3.4.3 Integration of ferroelectric hafnium-zirconium oxide 3.5 Contact formation by nickel silicidation 3.5.1 Contact metal selection 3.5.2 Nickel deposition and silicide formation 3.5.3 Influences on nickel silicidation in nanowires 3.5.3.1 General 3.5.3.2 Silicide and void formation in different nanowire orientations 3.5.3.3 Influence of nanowire width on silicidation length 3.5.3.4 Importance of an oxide shell 3.5.3.5 Titanium interlayer and exhaustible nickel source 3.5.3.6 Influence of the contact to the nickel supply 3.5.3.7 Effect of temperature on silicidation length homogeneity 3.6 Gate-first and gate-last approach 3.7 RFET circuit realization 3.7.1 Logic gate layout 3.7.2 Mix-and-match technology 4 Nickel silicidation in extended wire geometries 4.1 Silicidation into areas 4.2 Control of silicide growth regime by extensions to nanowires 4.3 Polder extensions for controlled silicidation lengths 4.3.1 Concept and model 4.3.2 Experimental verification 5 Transistor characteristics 5.1 Measurement setup 5.2 Single gate Schottky-barrier MOSFET 5.2.1 Back-gate control 5.2.2 Single top-gate control 5.3 Double top-gate RFET 5.3.1 Tri-gate architecture by gate-last fabrication 5.3.2 Omega-gate architecture by gate-first fabrication 5.4 Multiple independent top-gate RFET 5.4.1 Value of multiple independent gates 5.4.2 Single channel MIG-RFET 5.4.3 Multiple channel MIG-RFET 5.5 Towards nonvolatile RFETs using ferroelectric gate dielectric 5.5.1 Fundamentals and applications of ferroelectric materials in FETs 5.5.2 Schottky-barrier MOSFET with ferroelectric gate 5.6 Performance comparison to state-of-the-art RFETs 6 Conclusion 7 Outlook 7.1 Enhanced understanding, performance and yield of RFETs 7.2 RFETs with split channels 7.3 Silicidation control 8 Appendix 8.1 Analysis of unsuccessful silicidation on circuit chips Bibliography Own publications List of constants and symbols List of abbreviations Acknowledgments Curriculum Vitae / Unsere Gesellschaft verlangt nach immer leistungsfähigeren und effizienteren Mikroprozessoren. Die herkömmlichen Methoden, d.h. das Reduzieren der Bauelementabmessungen und der Betriebsspannung von Feldeffekttransistoren (FETs), nähern sich jedoch physikalischen Grenzen. Diese Tatsache veranlasst Forschung und Industrie dazu, neue Ansätze bei der Erzeugung von effizienten logischen Schaltkreisen zu verfolgen. Auf großes Interesse stößt dabei die Verwendung von rekonfigurierbaren Feldeffekttransistoren (RFETs), die im Gegensatz zu herkömmlichen FETs keine Dotierung benötigen, sondern jederzeit zwischen p- und n-Typ Verhalten umgeschaltet werden können. Dazu wird ein intrinsischer Kanal mit Schottky-Kontakten an den Drain- und Source-Anschlüssen benötigt. Außerdem wird ein Programmier-Gate verwendet um die Polarität des Bauelements festzulegen, und ein oder mehrere weitere Kontroll-Gates schalten den Transistor ein oder aus. Dies ermöglicht es kompakte und laufzeiteffiziente Logikgatter zu konstruieren, die ihrer Funktionalität dynamisch verändern können, zum Beispiel um den Flächenverbrauch zu reduzieren oder um eine Enthüllung der Schaltkreisfunktionalität zu verhindern. Außerdem können in einem einzelnen Transistor mehrere Gates angelegt werden. Die sich ergebende nicht-komplementäre UND-Verkettung kann dazu genutzt werden, um energie- und laufzeit-sparende Schaltkreise zu generieren. Diese Arbeit weist nach, dass solche Bauelemente mit einem lithographischen Top-Down-Ansatz auf Basis von kommerziellen Silizium-auf-Isolator Substraten (sog. SOI-Wafern) realisierbar sind. Um eine Kompatibilität mit zukünftigen CMOS-Prozesslinien sicherzustellen, wurden die Kanäle aus nanometer-dünnen Silizium-Drähten oder -Bändern gebildet. Es wird erwartet, dass solche Kanalgeometrien bald die heutigen FinFET und FD-SOI Technologien ablösen werden, weil sie insbesondere mit umschließendem Gate eine optimale elektrostatische Gate-Kontrolle über den Kanal aufweisen. Der in dieser Arbeit entwickelte Prozess umfasst daher mehrfache Oxid-Ätzungen und Oxidationen zur Schrumpfung und teilweisen Unterätzung der Kanäle, die Bildung von abrupten Schottky-Kontakten aus Nickel-Silizid und die Strukturierung umschließender Metall-Gates. Die erzeugten RFETs weisen besonders hohe Stromdichten im An-Zustand und sehr hohe Verhältnisse von An- zu Aus-Strom auf. Außerdem besitzen sie bis zu vier unabhängige Gates, deren Eingänge somit quasi UND-verknüpft sind. Vor allem aber weisen diese RFETs im Gegensatz zu vorangegangenen Arbeiten symmetrische elektrische Charakteristiken für p- und n-Konfiguration auf, wozu sie sogar nicht mehr als eine Betriebsspannung benötigen. Diese Eigenschaften ermöglichen die Erzeugung von Schaltkreisen aus verkoppelten Logikgattern, bei denen die Signal-Laufzeit nicht von der Polarität der Transistoren abhängt und bei denen die Signale nicht durch zwischengeschaltete Pufferschaltungen aufgefrischt werden müssen. Darüber hinaus wurde in einem Schottky-Barrieren FET die Verwendung ferroelektrischer Materialien erprobt, mit denen zukünftig RFETs mit nichtflüchtiger Programmierung erzeugt werden könnten. Leider bereitet die Kontaktbildung durch die selbst-ausgerichtete Silizidierung häufig Probleme: Die Silizid-Eindringlänge schwankt stark, selbst zwischen ähnlichen Nanodrähten auf demselben Chip, was die Herstellung kurzer Kanäle und die Verwendung schmaler Gates besonders erschwert. Detaillierte Analysen in dieser Arbeit zeigen, dass insbesondere der ungleiche Nachschub von Nickel diese Varianz verursacht. Verschiedene material-, temperatur- und geometrie-basierte Ansätze wurden getestet um homogenere Silizid-Eindringlängen zu erreichen. Einer dieser Ansätze macht sich zunutze, dass mit der Top-Down-Technologie beliebige Strukturen definiert werden können, sodass Nanodrähte lokal erweitert werden können. Wenn solche Strukturen mit nur einer einzelnen Nickelquelle verbunden sind, kann der Einfluss der Drahtgeometrie auf den Silizidierungsprozess unabhängig von der Güte des Nickel-Kontakts beobachtet werden. Die auf diese Weise gewonnenen Erkenntnisse sind über die Arbeit an RFETs hinaus von Relevanz, da die Nickel-Silizidierung in vielen modernen Halbleiterprozessen zum Einsatz kommt.:Abstract Kurzzusammenfassung 1 Introduction 2 Fundamentals and state-of-the-art of reconfigurable field-effect transistors 2.1 Schottky junction 2.2 Schottky-barrier field-effect transistor 2.3 Current control by the gate voltage 2.4 Reconfigurable FETs 2.4.1 Working principle 2.4.2 Architectures and channel materials of RFETs in prior works 2.4.3 Applications 2.4.4 Requirements for the use in circuits 3 Transistor fabrication 3.1 Electron-beam lithography 3.2 Top-down nanowire fabrication 3.3 Nanowire oxidation and underetch 3.3.1 Oxidation of nanowires 3.3.2 Oxidation processes 3.4 Top-gate fabrication 3.4.1 Basic process for tri-gate 3.4.2 Advanced process for omega-gate 3.4.3 Integration of ferroelectric hafnium-zirconium oxide 3.5 Contact formation by nickel silicidation 3.5.1 Contact metal selection 3.5.2 Nickel deposition and silicide formation 3.5.3 Influences on nickel silicidation in nanowires 3.5.3.1 General 3.5.3.2 Silicide and void formation in different nanowire orientations 3.5.3.3 Influence of nanowire width on silicidation length 3.5.3.4 Importance of an oxide shell 3.5.3.5 Titanium interlayer and exhaustible nickel source 3.5.3.6 Influence of the contact to the nickel supply 3.5.3.7 Effect of temperature on silicidation length homogeneity 3.6 Gate-first and gate-last approach 3.7 RFET circuit realization 3.7.1 Logic gate layout 3.7.2 Mix-and-match technology 4 Nickel silicidation in extended wire geometries 4.1 Silicidation into areas 4.2 Control of silicide growth regime by extensions to nanowires 4.3 Polder extensions for controlled silicidation lengths 4.3.1 Concept and model 4.3.2 Experimental verification 5 Transistor characteristics 5.1 Measurement setup 5.2 Single gate Schottky-barrier MOSFET 5.2.1 Back-gate control 5.2.2 Single top-gate control 5.3 Double top-gate RFET 5.3.1 Tri-gate architecture by gate-last fabrication 5.3.2 Omega-gate architecture by gate-first fabrication 5.4 Multiple independent top-gate RFET 5.4.1 Value of multiple independent gates 5.4.2 Single channel MIG-RFET 5.4.3 Multiple channel MIG-RFET 5.5 Towards nonvolatile RFETs using ferroelectric gate dielectric 5.5.1 Fundamentals and applications of ferroelectric materials in FETs 5.5.2 Schottky-barrier MOSFET with ferroelectric gate 5.6 Performance comparison to state-of-the-art RFETs 6 Conclusion 7 Outlook 7.1 Enhanced understanding, performance and yield of RFETs 7.2 RFETs with split channels 7.3 Silicidation control 8 Appendix 8.1 Analysis of unsuccessful silicidation on circuit chips Bibliography Own publications List of constants and symbols List of abbreviations Acknowledgments Curriculum Vitae
27

Fabrication and characterization of a silicon nanowire based Schottky-barrier field effect transistor platform for functional electronics and biosensor applications / Herstellung und Charakterisierung einer Silizium-Nanodraht basierten Schottky-Barrieren-Feld-Effekt-Transistor-Plattform für funktionelle Elektronik und Biosensoranwendungen

Pregl, Sebastian 18 June 2015 (has links) (PDF)
This work focuses on the evaluation of the feasibility to employ silicon (Si) nanowire based parallel arrays of Schottky-barrier field effect transistors (SB-FETs) as transducers for potentiometric biosensors and their overall performance as building blocks for novel functional electronics. Nanowire parallel arrays of SB-FETs were produced and electrically characterized during this work. Nominally undoped Si nanowires with mean diameter of 20nm were synthesized by chemical vapor deposition (CVD) driven bottom-up growth and subsequently transferred via a printing process to Si/SiO2 chip substrates. Thereby, dense parallel aligned nanowire arrays are created. After dry oxidation of the nanowires, standard photolithography and deposition methods are employed to contact several hundred nanowires with interdigitated Ni electrodes in parallel. A silicidation step is used to produce axially intruded Ni-silicide (metallic) phases with a very abrupt interface to the Si (semiconducting) segment. Acting as front gate dielectric, the chip surface is entirely covered by an Al2O3 layer. For sensor applications, this layer further serves as electrical isolation of the electrodes and protects them from corrosion in electrolytes. Fabricated devices are part of the SOI (Si on insulator) transistor family with top (front) and back gate and exhibit ambipolar rectifying behavior. The top gate exhibits omega geometry with a 20nm thin Al2O3 dielectric, the back gate planar geometry with a 400nm thick SiO2 dielectric. The influence of both gates on the charge transport is summarized in the statistical analysis of transfer and output characteristic for 7 different lengths (for each 20 devices) of the Si conduction channel. A nonlinear scaling of on-currents and transconductance with channel length is revealed. Off-currents are influenced from both p- and n-type conduction at the same time. Increasing lateral electric fields (LEF) lead to a decline of suppression capability of both p- and n-currents by a single gate. This is reflected in a deteriorated swing and higher off-current towards decreasing channel lengths (increasing LEF). However, by individual gating of Schottky junction and channel, p- and n-type currents can be controlled individually. Both charge carrier types, p and n, can be suppressed efficiently at the same time leading to low off-currents and high on/off current ratio for all investigated channel lengths. This is achieved by a combined top and back double gate architecture, for which the back gate controls the Schottky junction resistance. It is demonstrated that a fixed high Schottky junction serial resistance, severely impairs the transconductance. However, the transconductance can be significantly increased by lowering this resistance via the back gate, enhancing the transducer performance significantly. Al2O3 covered SB-FETs were employed as pH sensors to evaluate their performance and signal to noise ratio (SNR). Current modulation per pH was observed to be directly proportional to the transconductance. The transistor related signal to noise ratio (SNR) is thus proportional to the transconductance to current noise ratio. Device noise was characterized and found to limit the SNR already below the peak transconductance regime. Statistical analysis showed that the nanowire SB-FET transconductance and noise both scale proportional with the current. Therefore, the SNR was found to be independent on the nanowire channel lengths under investigation. The high process yield of nanowire SB-FET parallel array fabrication close to hundred percent enables this platform to be used for simple logic and biosensor elements. Because of the low fabrication temperatures needed, the foundation is laid to produce complementary logic with undoped Si on flexible substrates. For previously reported results, the presence of Schottky junctions severely impaired the transconductance, restricting the applicability of SB-FETs as transducers. This work shows, that an electric decoupling of the Schottky junction can reduce these restrictions, making SB-FETs feasible for sensor applications. / Diese Dissertation ist der Bewertung von Silizium (Si) Nanodraht basierten Parallelschaltungen von Schottky-Barrieren-Feld-Effekt-Transistoren (SB-FETs) als Wandler für potentiometrische Biosensoren und deren generelle Leistungsfähigkeit als Bauelement neuartiger funktioneller Elektronik gewidmet. In dieser Arbeit wurden Parallelschaltungen von Nanodraht SB-FETs hergestellt und elektrisch charakterisiert. Nominell undotierte Si Nanodrähte mit durchschnittlichem Durchmesser von 20nm wurden mittels chemischer Dampfphasenabscheidung (CVD) synthetisiert und anschließend durch einen Druckprozess auf ein Si/SiO2 Chip-Substrat transferiert. Damit wurden dicht gepackte, parallel ausgerichtete Nanodraht Schichten erzeugt. Nach Trockenoxidation der Nanodrähte wurden diese mit Standard Lithographie und Abscheidungsmethoden mit interdigitalen Nickel (Ni) Elektroden als Parallelschaltung kontaktiert. Durch einen Temperprozess bilden sich axial eindiffundierte metallische Ni-Silizid-Phasen, mit einer sehr abrupten Grenzfläche zum halbleitenden Si Segments des Nanodrahts. Die Chipoberfläche wird vollständig mit einer Al2O3-Schicht bedeckt, welche als Frontgate-Dielektrikum oder als elektrische Isolation und Korrosionsschutzschicht für Elektroden in Elektrolytlösungen im Falle der Sensoranwendungen dient. Die hier gezeigten Bauelemente sind Teil der SOI (Si on insulator) Transistoren-Familie mit Top- (Front) und Backgate und zeigen ein ambipolares Schaltverhalten. Die Topgates besitzen eine Omega-Geometrie mit 20nm dickem Al2O3 Dielektrikum, das Backgate eine planare Geometrie mit 400nm dickem SiO2 Dielektrikum. Der Einfluss beider Gates auf den Ladungstransport ist in einer statistischen Analyse der Transfer- und Output-Charaktersitiken für 7 unterschiedliche Si-Leitungskanallängen zusammengefasst. Eine nichtlineare Skalierung von Strom und Transkonduktanz mit Leitungskanallänge wurde aufgedeckt. Die Ströme im Aus-Zustand des Transistors sind durch das Vorhandensein gleichzeitiger p- als auch n-Typ Leitung bestimmt. Die Zunahme lateraler elektrischer Felder (LEF) führt zu einem Verlust des gleichzeitigen Ausschaltvermögens von p- und n-Strömen bei Ansteuerung mit einem einzelnen Gate. Dies äußert sich durch einen graduell verschlechterten Swing und höheren Strom im Aus-Zustand bei verringerter Leitungskanallänge (gleichbedeutend mit erhöhten LEF). Durch eine getrennte Ansteuerung von Schottky-Kontakt und Leitungskanal lassen sich p- and n-Leitung jedoch unabhängig voneinander kontrollieren. Beide Ladungsträgertypen können so simultan effizient unterdrückt werden, was zu einem geringen Strom im Aus-Zustand und einem hohen An/Aus- Stromverhältnis für alle untersuchten Kanallängen führt. Dies wird durch eine Gatearchitektur mit kombiniertem Top- und Backgate erreicht, bei der das Backgate den Ladungstransport durch den Schottky-Kontakt und dessen Serienwiderstand kontrolliert. Es wird gezeigt, dass ein konstant hoher Schottky-Kontakt bedingter Serienwiderstand die Transkonduktanz erheblich vermindert. Jedoch kann die Transkonduktanz im höchsten Maße durch eine Herabsetzung des Serienwiderstandes durch das Backgate gesteigert werden. Dies erhöht die Leistungsfähigkeit des SB-FET als Wandler deutlich. Al2O3 oberflächenbeschichtete SB-FETs wurden als pH-Sensoren erprobt, um deren Tauglichkeit und Signal-zu-Rausch-Verhältnis (SNR) zu evaluieren. Die Strommodulation pro pH-Wert konnte als direkt proportional zur Transkonduktanz bestätigt werden. Das Transistor bedingte SNR ist daher proportional zum Verhältnis von Transkonduktanz und Stromrauschen. Bei der Analyse des Transistorrauschens wurde festgestellt, dass dieses das SNR bereits bei einer niedrigeren Transkonduktanz als der maximal Möglichen limitiert. Eine statistische Auswertung zeigte, dass sowohl SB-FET Transkonduktanz als auch Stromrauschen proportional zu dem Transistorstrom skalieren. Somit ist deren Verhältnis unabhängig von der Nanodraht-Leitungskanallänge, im hier untersuchten Rahmen. Die geringe Ausschuss bei der Fabrikation der Nanodraht SB-FET-Parallelschaltungen ermöglicht eine Nutzung dieser Plattform für simple Logik und Biosensorelemente. Durch die geringen Prozesstemperaturen wurde die Grundlage geschaffen, komplementäre Logik mit undotiertem Si auf flexiblen Substraten zu fertigen. Vorangegangene Resultate zeigte eine verminderte Transkonduktanz durch die Präsenz von Schottky-Barrieren, was die Anwendbarkeit von SB-FETs als Wandler einschränkt. Diese Arbeit zeigt, dass eine elekrtische Entkopplung der Schottky-Kontakte zu einer Aufhebung dieser Beschränkung führen kann und somit den Einsatz von SB-FETs als praktikable Wandler für Sensoranwendungen zulässt.
28

Spatially resolved studies of the leakage current behavior of oxide thin-films

Martin, Christian Dominik 27 May 2013 (has links)
Im Laufe der Verkleinerungen integrierter Schaltungen ergab sich die Notwendigkeit der alternativen dielektrischen Materialen. Hohe Polarisierbarkeiten in diesen dielektrischen Dünnfilmen treten erst in hoch direktionalen kristallinen Phasen auf. Aufgrund der erschwerten Integrierbarkeit von epitaktischen, einkristallinen Oxidfilmen können nur poly-, beziehungsweise nanokristalle Filme eingesetzt werden. Diese sind jedoch mit hohen Leckströmen behaftet. Weil die Information in einer DRAM-Zelle als Ladung in einem Kondensator gespeichert wird ist der Verlust dieser Ladung durch Leckströme die Ursache für Informationsverluste. Die Frequenz der notwendigen Auffrischungszyklen einer DRAM-Zelle wird direkt durch die Leckströme bestimmt. Voraussetzungen für die Entwicklung neuer dielektrischer Materialien ist das Verständnis der zugrunde liegenden Ladungsträgertransportmechanismen und ein Verständnis der strukturellen Schichteigenschaften, welche zu diesen Leckströmen führen. Conductive atomic force Microscopy ist ein Rastersondenmethode mit der strukturelle Eigenschaften mit lokaler elektrischer Leitfähigkeit korreliert wird. Mit dieser Methode wurde in einer vergleichenden Studie die räumlichen Leckstromverteilungen untersucht. Und es wurde gezeigt, dass es genügt eine nicht geschlossene Zwischenschicht Aluminiumoxid in eine Zirkoniumdioxidschicht zu integrieren um die Leckströme signifikant zu reduzieren während eine ausreichend hohe Kapazität erhalten bleibt. Darüberhinaus wurde ein CAFM modifiziert und benutzt um das Schaltverhalten eines Siliziumnanodrahtschottkybarrierenfeleffektransistor in Abhängigkeit der Spitzenposition zu untersuchen. Es konnte experimentell bestätigt werden das die Schottkybarrieren den Ladungstransport in diesen Bauteilen kontrollieren. Darüber hinaus wurde ein proof-of-concept für eine umprogrammierbaren nichtflüchtigen Speicher, der auf Ladungsakkumulation und der resultierenden Bandverbiegung an den Schottkybarrieren basiert, gezeigt. / In the course of the ongoing downscaling of integrated circuits the need for alternative dielectric materials has arisen. The polarizability of these dielectric thin-films is highest in highly directional crystalline phases. Since epitaxial single crystalline oxide films are very difficult to integrate into the complex DRAM fabrication process, poly- or nanocrystalline thin-films must be used. However these films are prone to very high leakage currents. Since the information is stored as charge on a capacitor in the DRAM cell, the loss of this charge through leakage currents is the origin of information loss. The rate of the necessary refresh cycles is directly determined by these leakage currents. A fundamental understanding of the underlying charge carrier transport mechanisms and an understanding of the structural film properties leading to such leakage currents are essential to the development of new, dielectric thin-film materials. Conductive Atomic Force Microscopy (CAFM) is a scanning probe based technique which correlates structural film properties with local electrical conductivity. This method was used to examine the spatial distribution of leakage currents in a comparative study. I was shown that it is sufficient to include an unclosed interlayer of Aluminium oxide into a Zirconium dioxide film to significantly reduce leakage currents while maintaining a sufficiently high capacitance. Moreover, a CAFM was modified and used to examine the switching behavior of a silicon nanowire Schottky barrier field effect transistors in dependence of the probe position. It was proven experimentally that Schottky barriers control the charge carrier transport in these devices. In addition, a proof of concept for a reprogrammable nonvolatile memory device based on charge accumulation and band bending at the Schottky barriers was shown.
29

Untersuchung von Oxidationsprozessen an Siliziumnanodrähten mittels Molekulardynamik

Heinze, Georg 04 January 2018 (has links) (PDF)
Siliziumnanodrähte (SiNWs) bieten eine aussichtsreiche Grundlage zur Entwicklung neuartiger nanoelektronischer Bauelemente, wie Feldeffekttransistoren oder Sensoren. Dabei ist insbesondere die Oxidation der Drähte interessant, weil diese weitreichenden Einfluss auf die elektronischen Eigenschaften der Bauelemente hat, die aus den SiNWs gefertigt werden. Die Größe der untersuchten Strukturen erfordert eine atomistische Analyse des Oxidationsprozesses. In der vorliegenden Arbeit wird der bisher wenig verstandene Beginn der Oxidation dünner Drähte molekulardynamisch simuliert, wobei als Potential ein reaktives Kraftfeld dient. Dabei wird sich intensiv mit dem Transfer elektrischer Ladungen zwischen Atomen unterschiedlicher Elektronegativitäten während der Simulationen auseinandergesetzt. Desweiteren werden Strukturen, die während der Oxidation von SiNWs der Orientierungen <100> und <110> bei Temperaturen von 300 K und 1200 K entstehen, untersucht. Ein Fokuspunkt dieser Untersuchungen ist die Analyse der Anzahl am Draht adsorbierter Sauerstoffatome während der frühen Oxidationsphase. Darüber hinaus wird die Dichte der entstehenden Strukturen beleuchtet. Dies geschieht mit einer hohen radialen Auflösung und erstmalig während der gesamten Simulation. Hierbei zeigt sich, dass während des Übergangs von kristallinem Silizium zu amorphem Siliziumdioxid zwischen den Siliziumatomen Sauerstoff eingelagert wird, die Kristallstruktur des Siliziums sich zunächst jedoch noch nicht auflöst. Dadurch entsteht ein charakteristisches Muster hoher und niedriger Dichten, das von der ursprünglichen Kristallstruktur des SiNW abhängt.
30

Modélisation tridimensionnelle multibandes du transport quantique dans les transistors à nanofil

Pons, Nicolas 08 June 2011 (has links)
L’amélioration des performances du transistor MOS passe par la réduction de ses dimensions. Dans quelques années, la longueur de grille des dispositifs va descendre en dessous de 10 nm. A cette échelle, les effets quantiques deviennent prépondérants et dégradent considérablement les performances électriques des transistors à simple grille. Le transistor à nanofil avec grille enrobante est une architecture alternative intéressante pour augmenter le contrôle électrostatique du canal de conduction. Malgré les améliorations apportées par cette architecture, le courant à l’état bloqué reste perturbé par l’effet tunnel dans la direction source-drain. Afin de réduire ce courant sans réduire celui à l’état passant, nous avons étudié l’impact d’un rétrécissement local de la section transverse du canal coté drain (architecture notch-MOSFET). Pour cela, nous avons développé un simulateur 3D basé sur le formalisme des fonctions de Green hors équilibre couplé de façon auto-cohérente avec l’équation de Poisson. Ces calculs sont effectués dans l’approximation de la masse effective. Nous avons ensuite étudié le transport des trous dans les transistors à nanofil de type p, ainsi que l’influence d’une impureté ionisée dans le canal de ces dispositifs. La complexité de la bande de valence a nécessité la mise en œuvre d’un modèle k&#8729;p à 6 bandes inclus dans le simulateur 3D évoqué précédemment. / Performances improvement of MOS transistors involves reduction of its dimensions. In a few years, the gate length of devices will reach sub-10 nm regime. At this scale, quantum effects become preponderant and considerably degrade electric performances of simple-gate transistors. The Gate-all-around nanowire transistor is an interesting alternative architecture to improve electrostatic control of the conduction channel. Despite the improvements made thanks to this architecture, the OFF-current remains disturbed by tunneling effect in source-drain direction. In order to decrease this current without decreasing the ON-current, we have studied the impact of local narrowing of transverse cross-section in drain side of the channel (notch-MOSFET architecture). To this purpose, we have developed a 3D simulator based on Non-equilibrium Green function formalism coupled self-consistently with Poisson equation. These simulations are performed in the effective mass approximation. Then we have studied holes transport in p-type nanowire transistors and the influence of an ionized impurity in the channel of these devices. The valence band complexity required six-band k&#8729;p model development include into previously mentioned 3D simulator.

Page generated in 0.0579 seconds