• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 649
  • 31
  • 30
  • 30
  • 29
  • 28
  • 26
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 685
  • 685
  • 330
  • 234
  • 218
  • 135
  • 97
  • 97
  • 92
  • 85
  • 80
  • 77
  • 77
  • 61
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

A redução de Liapunov-Schmidt e a bifurcação de Hopf

Benito, Ricardo Nicasso [UNESP] January 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2005Bitstream added on 2014-06-13T18:55:33Z : No. of bitstreams: 1 benito_rn_me_sjrp.pdf: 385086 bytes, checksum: 17b116bfd36532f6c04131b8754908b3 (MD5) / O objetivo desse trabalho é aplicar a técnica da Redução de Liapunov-Schmidt no estudo da Bifurcação de Hopf. Primeiramente discutimos a Redução de Liapunov-Schmidt em espaços de dimensão finita e posteriormente em espaços de Banach de dimensão infinita. A conclusão do trabalho é a de monstração do Teorema de Hopf usando a Redução de Liapunov-Schmidt. / The main goal of this work is to apply the Liapunov-Schmidt Reduction technique in the study of the Hopf Bifurcation. First of all we discuss the Liapunov-Schmidt Reduction in finite dimensional spaces and after that in Banach spaces of infinite many dimensions. The conclusion of this work is the proof of the Hopf Theorem using the Liapunov-Schmidt Reduction.
122

Propriedades ergódicas do algoritmo da raiz quadrada

Sobottka, Marcelo January 2002 (has links)
Neste trabalho, mostraremos que o algoritmo que determina digito a digito a raiz quadrada de um número real positivo, corresponde a um sistema dinâmico no plano com um comportamento dinâmico complexo. Uma relação de equivalência pode ser obtida e através dela determinamos um novo sistema dinâmico definido no espaço quociente. Tal sistema dinâmico será estudado a partir de dois pontos de vista: Dinâmica Topológica e Teoria Ergódiga. Mostraremos que tal sistema dinâmico é topologicamente conjugado ao shift map no espaço de Bernoulli sobre 10 símbolos. Além disso, mostraremos que existe uma medida invariante natural a qual ergódiga para este sistema dinâmico. / In this work, we will show that the algorithm, which determines digit by digit the square root of a positive real number, corresponds to a dynamical system in the plane with complex dynamical behaviour. A relation of equivalence can be obtained and through it we determine a new dynamical system in the quotient space. Such dynamical system will be study from two points of view: Topological Dynamics and Ergodic Theory. We will show that such dynamical system is topologically conjugated to a shift map in the Bernoulli’s space on 10 symbols. Furthermore we will show that there exists a natural invariant measure which is ergodic for this dynamical system.
123

Geometria e heterogeneidade na dinâmica no modelo de Potts

Rocha, André Rodrigues de la January 2013 (has links)
O conceito de heterogeneidade de tamanhos de domínios (Heq), definido como o número de tamanhos distintos de domínios existentes em determinada configuração de um sistema, foi recentemente introduzido no contexto do modelo de percolação explosiva. Além de introduzir um novo expoente de escala, o mesmo se mostrou útil em outros problemas da mecânica estatística de equilíbrio, como o de percolação aleatória, bem como nos modelos de Ising e Potts. Neste trabalho, aplicamos e medimos esta quantidade em situações fora do equilíbrio. Em particular, após submetermos os modelos de Ising e Potts a um súbito resfriamento, a partir de um estado de equilíbrio de alta temperatura, para uma temperatura crítica ou subcrítica, T > Tc, medimos a evolução temporal de H(t). Mostramos que o comportamento para tempos grandes é uma lei de potência com expoentes diferentes para os casos crítico e subcrítico. Adicionalmente, o comportamento para tempos pequenos apresenta ainda um máximo no valor de H(t), quando a temperatura inicial é T0 → Ѡ. Apresentamos um extenso conjunto de dados de simulação que apoiam essas conclusões e discutimos perspectivas futuras, com o objetivo de tentar compreender melhor o comportamento de H(t). / The concept of domain size heterogeneity (Heq), the number of distinct domain sizes occurring in a given con guration, was recently introduced in the context of explosive percolation. Besides introducing a new scaling exponent, it was shown to be useful in other classical equilibrium statistical mechanics problems, like random percolation, and the Ising and Potts models. Here we apply and measure this quantity for out of equilibrium situations. In particular, after quenching the Ising and Potts models from a high temperature equilibrium state, T > Tc, to a critical or subcritical temperature, T Tc, we measure the time evolution of H(t). We show that the long time behavior is power law with di erent exponents for critical and subcritical coarsening. Moreover, the short time behavior also presents a surprising maximum of H(t) when the initial temperature is T0 → Ѡ. We present extensive simulation data supporting these conclusions and discuss future perspectives, in order to help understand the overall behavior of H(t).
124

Hiperbolicidade seccional em dimensões arbitrárias /

Araújo, Valdiane Sales. January 2015 (has links)
Orientador: Vanderlei Minori Horita / Banca: Paulo Ricardo da Silva / Banca: Serafin Bautista Diaz / Banca: Fabiano Borges da Silva / Banca: Nivaldo Costa Muniz / Resumo: Este trabalho lida com o conceito de hiperbolicidade seccional em dimensões arbitrárias e a extensão, para este contexto, de uma versão do Anosov Connecting Lemma, previamente estabelecido por Bautista e Morales para fluxos singulares hiperbólicos em dimensão 3. Apresentamos ainda algumas condições suficientes para que um conjunto Lyapunov estável seja um atrator / Abstract: This work deals with the concept of sectional hyperbolicity in higher dimensions and the extension to this setting of a version of the Anosov Connecting Lemma, previously established by Bautista and Morales, for singular hyperbolic 3-flows. Furthermore, we present some sufficient conditions to a Lyapunov stable set to be an attractor / Doutor
125

Influência de dissipação em mapas bidimensionais /

Kato, Laryssa Kimi. January 2018 (has links)
Orientador: Ricardo Egydio de Carvalho / Banca: Ana Paula Mijolaro / Banca: Luiz Antônio Barreiro / Resumo: De maneira geral, o comportamento dinâmico de sistemas não lineares é caracterizado pela imprevisibilidade e extrema sensibilidade às condições iniciais e aos parâmetros do sistema. A sensibilidade dessas condições pode ser analisada a partir dos expoentes de Lyapunov, quando são consideradas órbitas infinitesimalmente próximas. O mapa escolhido para análise é o modelo denominado "Mapa padrão não - twist dissipativo labiríntico", que apresenta as chamadas curvas shearless. O estudo desenvolvido analisa esse sistema com a introdução de dissipação e com parâmetros de perturbação variáveis na presença de três curvas shearless. O objetivo é compreender a evolução da dinâmica destas curvas no espaço de fase e no diagrama de Lyapunov a fim de caracterizar qual shearless é mais robusta frente á variação dos parâmetros de dissipação e perturbação / Abstract: In general, the dynamical behavior of non-linear systems is characterized by unpredictability and extreme sensibility to the initial conditions and to the parameters of the system. The sensitivity of these conditions can be analyzed from the Lyapunov exponents, when infinitesimally close orbits are considered. The map we have chosen for analysis is the model denoted as "Labyrinthic non-twist standard map", which presents the so-called "shearless" curves. The present study analyzes this system with the introduction of dissipation and with changeable parameters of perturbation in the presence of three shearless curves. The objective is to understand the evolution of the dynamics of the curves in the phase space and in the diagram of Lyapunov in order to characterize which shearless is more robust under the variation of both parameters, dissipation and perturbation / Mestre
126

Sistemas extensos com dimensão instável invariante

Disconzi, Marcelo Mendes January 2005 (has links)
Neste trabalho nós investigamos as relações existentes entre a Variação de Dimensão Instável(Unstable Dimension Variability - UDV) e a dimensão do espaço de fases de uma rede de mapas acoplados com acoplamento difuso. damos suporte teórico e evidências numéricas para a afirmação de que a partir de certo valor fixo da dimensão não há presença de UDV.
127

A dinâmica de uma família de aplicações unidimensionais

Schütz, Lineia January 2002 (has links)
Resumo não disponível.
128

Estrutura de diagramas de fase de sistemas dinâmicos de tempo contínuo

Bonatto, Cristian January 2008 (has links)
Este trabalho trata da investigação do espaço de parâmetros de sistemas dinâmicos não-lineares de tempo contínuo. A análise é focada essencialmente em regiões de alta complexidade dinâmica; contendo as fases caóticas e regiões de peíodos altos. O objetivo não é uma análise completa da estrutura de bifurcações existentes, mas sim a investigação da estrutura e organização das regiões periódicas que existem encaixadas em meio às fases caóticas. Investigamos aqui alguns modelos físicos dissipativos, descritos por equações diferenciais ordinárias não-lineares de baixa ordem, como um laser de CO2 com perdas moduladas, um laser de semicondutor com injeção óptica, um circuíto eletrônico e o oscilador de Duffing. Investigamos a estrutura fina das regiões caóticas e reportamos algumas regularidades previamente não conhecidas no espaço de parâmetros de sistemas dinâmicos de tempo contínu. Em particular, mostramos a existência de vários tipos de estrutuaas e auto-similares, acumulações de estruturas auto-similares com adição de período; hierarquia de espirais em um sistema com simetria e recorrências nas fases caóticas no espaço de dois parâmetros de equações diferênciais não-lineares. Algumas destas regularidades poderiam ser verificadas experimentalmente para os sistemas investigados. A análise é baseada na computação de diagmmas de fase obtidos pela integração direta dos sisternas de equações diferenciais ordinárias não-lineares e estimativa numérica dos expoentes de Lyapunov. Os expoentes de Lyapunov selo codificados em urna conveniente metodologia que desenvolvemos. A metodologia que utilizamos aqui poderia ser uma alternativa aos métodos de continuação numérica largamente utilizados no estudo do espaço de parâmetros de equações diferenciais. / This work deals with the investigation of the paraneter space of continuous-time nonlinear dynamical systems. The analysis is focused mainly in regions of high dynamical complexity, containing the chaotic phases and regions of high periods. The goal is not a complete analysis of the bifurcation struture, but the investigation of the structure and organization of periodic regions that exist ernbedded in the chaotic phases. We investigate here some dissipative physical models, described by low-order nonlinear differential equations, such as a CO2 laser with modulated losses, a semiconductor laser with optical injection, an electmnic Circuit and the Duffing oscillator. We investigate the fine structure of the chaotic regions and we report some regularities previously unknown in the pamrneter space of continuous-time dynamical systems. In particular, we show the existence of several kinds of self-smilar structures, accumuations of self-similar stuctures with period adding, hierarchy af spirals in a system with symetry and recurrences in the chaotic phases in the two-parameter space of nonlinear differential equations. Some of these regularities could be verified experimentally for the investigated systems. The analysis is based on the computation of phase diagrams obtained by direct time integration of systems of nonlinear ordinary differential equations and numerical estimation of the Lyapunov exponents. The Lyapunov exponents are encoded in a convenient methodology that we developed. The methodology used here could be an altemative to the numerical continuation methods widely used in the study of the parameter space of nonlinear differential equations.
129

Princípios de grandes desvios: para o método da entropia penalizada na teoria de Aubry-Mather e para cadeias de Markov a estado contínuo

Mohr, Joana January 2008 (has links)
Este trabalho será dividido em dois capítulos. Em ambos exibiremos a função de desvio e um princípio de grandes desvios para uma sequência de medidas que convergem, para uma medida minimizante no primeiro problema e para uma medida maximizante no segundo. O primeiro capítulo trata de aspectos da teoria de Aubry-Mather. Para um Lagrangiano L(x; v) : TN £ RN → R, satisfazendo algumas hipóteses naturais, e sob hipótese de genericidade, estamos interessados em mostrar um princípio de grandes desvios para uma sequência de medidas que convergem para a medida de Mather. D. Gomes e E. Valdinoci mostraram, para ε; h fixados, a existência de uma medida absolutamente contínua με; h que minimiza o problema de A-M discreto com entropia. Também analisaremos o problema discreto de Aubry-Mather, onde introduziremos o conceito de sub-ação e mostraremos, sob hipótese do Lagrangiano ser genérico, a unicidade de um certo tipo de sub-ação que chamaremos de calibradas. E finalmente mostraremos a existência de um outro tipo de sub-ação ditas separantes. / This work will be divided in two chapters. In both cases we present the rate function and a large deviation principle for a sequence of measures converging, to a minimizing measure in the first problem and to a maximizing measure in the second one. In the first chapter the setting will be the Aubry-Mather theory. For a Lagrangian L(x; v) : TN £RN → R, satisfying some natural hypothesis, and for a generic Lagrangian (it is known that in this case the Mather measure μ is unique and the support of μ is the Aubry set), we will show a large deviation principle for a sequence of measures that converge to the Mather measure. It follows from a result by D. Gomes and E. Valdinoci that, for ε; h fixed, there exists an absolutely continuous measure με; h that minimize the entropy penalized A-M problem. Also we will analyze the discrete A-M problem, where we introduce the concept of subaction and we will show, under the hypothesis of generic Lagrangian, the uniqueness of a kind of subaction, that we will call calibrated. And finally we will show the existence of another kind of subactions, a separating subaction.
130

Dinâmica não linear de pulsos eletromagnéticos em um plasma relativístico frio

Bonatto, Alexandre January 2008 (has links)
Neste trabalho investigamos a propagação auto-consistente de pulsos eletromagnéticos em um plasma relativístico frio de dois fluidos (iônico-eletrônico). A aplicação do formalismo Hamiltoniano em um modelo cujas soluções foram previamente estudadas na literatura de forma numérica e analítica nos permite interpretar o problema sob a perspectiva da dinâmica não linear de uma quase-partícula em um potencial efetivo, fornecendo informações relevantes sobre questões de interesse. São analisadas a existência e a estabilidade de soluções com pequenas amplitudes propagando-se em alta e em baixa velocidade, com ênfase no mecanismo de destruição dessas soluções que resulta na perda do movimento adiabático. Pulsos com grandes amplitudes propagando-se em baixa velocidade também são estudados com a finalidade de se conhecer mais detalhes sobre o espectro dessas soluções. As simulações mostram que esses pulsos não são soluções isoladas como descrito na literatura, e sim periódicas. / In this work we investigate the self-consistent propagation of nonlinear electromagnetic pulses in a cold relativistic two-fluids plasma model. Application of Hamiltonian formalism in a model whose solutions had been studied in the literature both numerically and analytically allows us to interpret the system from the perspective of nonlinear dynamics as a quasi-particle in an effective potential, addressing issues of current interest. Existence and stability of small amplitude solutions propagating at both high and low speeds are analyzed focusing on how these solutions are destroyed and adiabatic motion is broken. Larger amplitude pulses propagating at low speeds are also investigated in order to have a better understanding of these solutions spectra. Simulations show that pulses with larger amplitudes are not isolated as described in the literature, but rather periodic solutions.

Page generated in 0.0859 seconds