• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 18
  • 12
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 124
  • 124
  • 124
  • 33
  • 22
  • 18
  • 16
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

USING RECOMBINANT HUMAN CARBAMOYL PHOSPHATE SYNTHETASE 1 (CPS1) FOR STUDYING THIS ENZYME'S FUNCTION, REGULATION, PATHOLOGY AND STRUCTURE

Díez Fernández, Carmen 09 July 2015 (has links)
[EN] Carbamoyl phosphate synthetase 1 (CPS1), a 1462-residue mitochondrial enzyme, catalyzes the entry of ammonia into the urea cycle, which converts ammonia, the neurotoxic waste product of protein catabolism, into barely toxic urea. The urea cycle inborn error and rare disease CPS1 deficiency (CPS1D) is inherited with mendelian autosomal recessive inheritance, being due to CPS1 gene mutations (>200 mutations reported), and causing life-threatening hyperammonemia. We have produced recombinantly human CPS1 (hCPS1) in a baculovirus/insect cell expression system, isolating the enzyme in active and highly purified form, in massive amounts. This has allowed enzyme crystallization for structural studies by X-ray diffraction (an off-shoot of the present studies). This hCPS1 production system allows site-directed mutagenesis and enzyme characterization as catalyst (activity, kinetics) and as protein (stability, aggregation state, domain composition). We have revealed previously unexplored traits of hCPS1 such as its domain composition, the ability of glycerol to replace the natural and essential CPS1 activator N-acetyl-L-glutamate (NAG), and the hCPS1 protection (chemical chaperoning) by NAG and by its pharmacological analog N-carbamyl-L-glutamate (NCG). We have exploited this system to explore the effects on the activity, kinetic parameters and stability/folding of the enzyme, and to test the disease-causing nature, of mutations identified in patients with CPS1 deficiency (CPS1D). These results, supplemented with those obtained with other non-clinical mutations, have provided novel information on the functions of three non-catalytic domains of CPS1. We have introduced three CPS1D-associated mutations and one trivial polymorphism in the glutaminase-like domain of CPS1, supporting a stabilizing and an activity-enhancing function of this non-catalytic domain. Two mutations introduced into the bicarbonate phosphorylation domain have shed light on bicarbonate binding and have directly confirmed the importance of this domain for NAG binding to the distant (in the sequence) C-terminal CPS1 domain. The introduction of 18 CPS1D-associated missense mutations mapping in a clinically highly eloquent central non-catalytic domain have proven the disease-causing nature of most of these mutations while showing that in most of the cases they trigger enzyme misfolding and/or destabilization. These results, by proving an important role of this domain in the structural integration of the multidomain CPS1 protein, have led us to call this domain the Integrating Domain. Finally, we have examined the effects of eight CPS1D-associated mutations, of one trivial polymorphism and of five non-clinical mutations, all of them mapping in the C-terminal domain of the enzyme where NAG binds, whereas we have re-analyzed prior results with another four clinical and five non-clinical mutations affecting this domain. We have largely confirmed the pathogenic nature of the clinical mutations, predominantly because of decreased activity, in many cases due to hampered NAG binding. A few mutations had substantial negative effects on CPS1 stability/folding. Our analysis reveals that NAG activation begins with a movement of the final part of the ß4-¿4 loop of the NAG site. Transmission of the activating signal to the phosphorylation domains involves helix ¿4 from this domain and is possibly transmitted by the mutually homologous loops 1313-1332 and 778-787 (figures are residue numbers) belonging, respectively, to the carbamate and bicarbonate phosphorylation domains. These two homologous loops are called from here on Signal Transmission Loops. / [ES] La carbamil fosfato sintetasa 1 (CPS1), una enzima mitocondrial, cataliza la entrada del amonio en el ciclo de la urea, que convierte esta neurotoxina derivada del catabolismo de las proteínas en urea, mucho menos tóxica. El déficit de CPS1 (CPS1D) es un error innato del ciclo de la urea, una enfermedad rara autosómica recesiva, que se debe a mutaciones en el gen CPS1 (>200 mutaciones descritas) y que cursa con hiperamonemia. Hemos producido CPS1 humana recombinante (hCPS1) en un sistema de expresión de células de insecto y baculovirus, y la hemos aislado en forma activa, muy pura y en cantidad elevada. Este sistema de producción de hCPS1 permite la realización de mutagénesis dirigida y la caracterización de la enzima como catalizador (actividad, cinética) y como proteína (estabilidad, estado de agregación y composición de dominios). Hemos revelado características de la hCPS1 antes no exploradas como es la composición de dominios, la capacidad que tiene el glicerol para reemplazar al activador natural y esencial de la CPS1, N-acetil-L-glutamato (NAG), y la protección de la hCPS1 por NAG y por su análogo farmacológico N-carbamil-L-glutamato (NCG) (chaperonas químicas). Hemos utilizado este sistema para explorar los efectos en actividad, parámetros cinéticos y estabilidad/plegamiento de la enzima, y para comprobar la naturaleza patogénica de mutaciones identificadas en pacientes con CPS1D. Estos resultados, junto con los obtenidos con otras mutaciones no clínicas, han aportado información novedosa sobre tres de los dominios no catalíticos de CPS1. Las observaciones realizadas tras introducir en el dominio de tipo glutaminasa de la enzima tres mutaciones asociadas a CPS1D y un polimorfismo trivial, apoyan la contribución de este dominio no catalítico a la estabilidad y a aumentar la actividad de la enzima. Dos mutaciones introducidas en el dominio de fosforilación de bicarbonato han arrojado luz sobre el modo de unión del bicarbonato (un sustrato). Los resultados de estas mutaciones también han confirmado la contribución de este dominio para la unión de NAG, cuyo sitio de unión se encuentra en el dominio C-terminal de CPS1, bastante alejado (en la secuencia) del dominio de fosforilación de bicarbonato. Además, hemos introducido 18 mutaciones de cambio de sentido asociadas a CPS1D, las cuales están localizadas en un dominio no catalítico, central y de elevada elocuencia clínica. Estos resultados han demostrado la naturaleza patogénica de estas mutaciones, ya que en la mayoría de los casos estas mutaciones producen un mal plegamiento o/y desestabilización de la enzima. Debido a que estos resultados han puesto de manifiesto el importante papel de este dominio en la integración estructural de la proteína multidominio CPS1, lo hemos llamado Dominio Integrador. Finalmente, hemos examinado los efectos de 8 mutaciones asociadas a CPS1D, de un polimorfismo trivial y de 5 mutaciones no clínicas, todas localizadas en el dominio C-terminal de la enzima, donde se une NAG. Además, hemos reanalizado resultados anteriores con otras 4 mutaciones clínicas y 5 no clínicas afectando a este dominio. Hemos confirmado el carácter patogénico de las mutaciones clínicas, las cuales predominantemente causan una disminución en la actividad enzimática, en muchos casos debida a que la unión de NAG se encuentra obstaculizada. Unas pocas mutaciones mostraron efectos negativos en la estabilidad/plegamiento de CPS1. Nuestros análisis revelan que la activación por el NAG empieza con un movimiento de la parte final del bucle ß4-¿4 del sitio de NAG. La transmisión de la señal activadora a los dominios de fosforilación implica a la hélice ¿4 de este dominio y posiblemente se transmite a través de los bucles homólogos 1313-1332 y 778-787 (numeración de residuos) pertenecientes, respectivamente, a los dominios de fosforilación de carbamato y bicarbonato. Por ello, hemos llamado a ambos bucles Bucles de / [CAT] La carbamil fosfat sintetasa 1 (CPS1), un enzim mitocondrial, catalitza l'entrada d'amoni en el cicle de la urea, que convertix l'amoni, producte neurotòxic del catabolisme de les proteïnes, en urea, una molècula molt poc tòxica. El dèficit de CPS1 (CPS1D) és un error innat del cicle de la urea, una malaltia rara autosòmica recessiva, que es deu a mutacions en el gen CPS1 (>200 mutacions descrites) i que cursa amb hiperamonièmia. Hem produït CPS1 humana recombinant (hCPS1) en un sistema d'expressió de cèl·lules d'insecte i baculovirus, i l'hem aïllada en forma activa, molt pura i en gran quantitat. Això ha permés la cristal·lització de l'enzim per a estudis estructurals amb difracció de raios-X (treball no inclòs en esta tesi Aquest sistema de producció de hCPS1 permet la realització de mutagènesi dirigida i la caracterització de l'enzim com a catalitzador (activitat, cinètica) i com a proteïna (estabilitat, estat d'agregació i composició de dominis). Hem revelat característiques de la hCPS1 no explorades abans com és la composició de dominis, la capacitat que té el glicerol per a reemplaçar l'activador natural i essencial de CPS1, N-acetil-L-glutamat (NAG), i la protecció de la hCPS1 per NAG i pel seu anàleg farmacològic N-carbamil-L-glutamat (NCG) (xaperones químiques) . Hem utilitzat aquest sistema per a explorar els efectes en l'activitat, els paràmetres cinètics i l'estabilitat/plegament de l'enzim, i per a comprovar la naturalesa patogènica de mutacions identificades en pacients amb CPS1D. Aquestos resultats, junt amb els obtinguts amb altres mutacions no clíniques, han aportat informació nova sobre tres dels dominis no catalítics de la CPS1. Les observacions, després d'introduir tres mutacions associades a CPS1D i un polimorfisme trivial en el domini tipus glutaminasa de CPS1, recolzen la contribució d'aquest domini no catalític a l'estabilitat i a l'optimització de l'activitat enzimàtica. Dues mutacions introduïdes en el domini de fosforilació de bicarbonat han esclarit el mode d'unió de bicarbonat. Els resultats d'aquestes mutacions també han confirmat la contribució d'aquest domini per a la unió de NAG, el lloc d'unió de la qual es troba en el domini C-terminal de CPS1, prou allunyat (en la seqüència) del domini de fosforilació de bicarbonat. A més, hem introduït 18 mutacions de canvi de sentit associades a CPS1D, les quals estan localitzades en un domini no catalític, central i d'elevada eloqüència clínica. Aquestos resultats han demostrat la naturalesa patogènica d'aquestes mutacions, ja que, en la majoria dels casos produïxen un mal plegament o/i desestabilització de l'enzim. Pel fet que aquestos resultats han posat de manifest l'important paper d'aquest domini en la integració estructural de la proteïna multidomini CPS1, l'hem anomenat Domini Integrador. Finalment, hem examinat els efectes de huit mutacions associades a CPS1D, un polimorfisme trivial i cinc mutacions no clíniques, totes elles localitzades en el domini C-terminal de l'enzim, on s'unix NAG. A més, hem reanalitzat resultats anteriors amb altres quatre mutacions clíniques i cinc no clíniques que afecten aquest domini. Hem confirmat el caràcter patogènic de les mutacions clíniques, les quals predominantment causen una disminució en l'activitat enzimàtica, en molts casos pel fet que la unió de NAG es troba obstaculitzada. Unes poques mutacions van mostrar efectes negatius substancials en l'estabilitat/plegament de CPS1. Les nostres anàlisis revelen que l'activació de NAG comença amb un moviment de la part final del bucle ß4-¿4 del lloc de NAG. La transmissió del senyal activadora als dominis de fosforilació involucra l'hèlix ¿4 d'aquest domini i es transmet, possiblement, a través dels bucles homòlegs 1313-1332 i 778-787 (numeració dels residus), pertanyents, respectivament, als dominis de fosforilació de carbamato i bicarbonat. Per això, hem anomenat a ambd / Díez Fernández, C. (2015). USING RECOMBINANT HUMAN CARBAMOYL PHOSPHATE SYNTHETASE 1 (CPS1) FOR STUDYING THIS ENZYME'S FUNCTION, REGULATION, PATHOLOGY AND STRUCTURE [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52855 / TESIS
122

Études structure-fonction par modélisation moléculaire et mutagénèse dirigée de cibles thérapeutiques potentielles impliquées dans la régulation de l'équilibre hydrique et des fonctions cardiovasculaires / Structure-function studies by molecular modeling and site-directed mutagenesis of potential therapeutic targets involved in the regulation of body fluid homeostasis and cardiovascular functions.

Couvineau, Pierre 29 June 2017 (has links)
Ces travaux de thèse s'articulent autour de deux projets : les études structure-fonction de l'aminopeptidase A, d'une part, et celles du récepteur de l'apéline, d'autre part. I/ L'aminopeptidase A (APA, EC 3.4.11.7) est une aminopeptidase monozinc membranaire qui, dans le cerveau, produit l'angiotensine (Ang) III à partir de l'Ang II. L'Ang III est l'un des principaux peptides effecteurs du système rénine-angiotensine cérébral qui exerce un effet stimulateur tonique sur le contrôle central de la pression artérielle chez le rat hypertendu. Ainsi le blocage de l'APA par un inhibiteur spécifique et sélectif, l'EC33 ou sa prodrogue, le RB150, normalise la pression artérielle dans deux modèles expérimentaux d'hypertension artérielle (HTA). L'APA constitue une cible thérapeutique potentielle pour le traitement de l'HTA qui justifie le développement de nouveaux inhibiteurs de cette enzyme plus puissants et plus sélectifs que l'EC33 et avec un profil pharmacodynamique et pharmacocinétique amélioré par rapport au RB150. Pour cela, nous avons construit un modèle tridimensionnel (3D) de l'APA sur la base de la structure cristallographique de l'APA humaine récemment publiée. Nous avons ensuite validé ce modèle par des études structure-fonction par modélisation moléculaire et mutagénèse dirigée en démontrant l'implication, d'un résidu du sous-site S1 dans la spécificité de substrat acide de l'APA et de deux résidus formant le sous-site S2' interagissant avec le résidu P2' acide d'inhibiteurs tripeptidiques précédemment développés dans le laboratoire.II/ L'apéline est le ligand naturel du récepteur orphelin humain APJ (ApélineR), un récepteur à sept domaines transmembranaires couplé aux protéines G. L'apéline et son récepteur sont impliqués dans le maintien de l'équilibre hydrique et des fonctions cardiovasculaires. L'ApélineR constitue une cible thérapeutique potentielle dans le traitement de l'insuffisance cardiaque et des rétentions hydriques. Etant donné que la demi-vie de l'apéline dans la circulation sanguine est de l'ordre de la minute, l'objectif est de développer des analogues de l'apéline métaboliquement stables. Pour développer de tels composés, nous avons entrepris de comprendre comment l'apéline se lie à son récepteur et comment elle l'active. Dans ce but, nous avons construit un modèle 3D de l'ApélineR basé sur la structure cristallographique du récepteur aux chimiokines, CXCR4. Nous avons validé ce modèle par des études structure-fonction par modélisation moléculaire et mutagénèse dirigée. Nous avons identifié à la surface du récepteur, les résidus acides des boucles extracellulaires qui interagissent avec les résidus basiques de l'apéline. Nous avons ensuite développé des analogues de l'apéline-17 (K17F) métaboliquement stables par deux stratégies différentes. Premièrement, nous avons substitué chacun des résidus de l'apéline par son énantiomère de la série D ou par un acide aminé synthétique. Deuxièmement, nous avons ajouté une chaîne fluoroalkyle à l'extrémité N-terminale de l'apéline. Ces deux stratégies ont permis d'obtenir plusieurs composés dont les plus actifs sont le P92 et le LIT01-196 qui conservent des propriétés pharmacologiques identiques à celles de K17F et qui présentent une demi-vie plasmatique largement supérieure à celle du peptide endogène. Ces deux analogues se sont révélés particulièrement actifs in vivo avec une capacité à diminuer la pression artérielle et à réduire la sécrétion de vasopressine dans le sang conduisant à une augmentation de la diurèse aqueuse. Les modèles 3D validés de l'APA et de l'ApélineR seront utilisés pour des campagnes de criblage in silico de chimiothèques virtuelles afin de découvrir de nouveaux inhibiteurs de l'APA et des agonistes de l'ApélineR qui pourraient conduire à terme à de nouveaux candidats-médicaments. Ces composés pourraient être utiles pour le traitement de l'HTA et de l'insuffisance cardiaque. / The doctoral work was divided in two parts, one on the structure-function studies of aminopeptidase A, and the second one, on those of the apelin receptor. I/ Aminopeptidase A (APA) is a membrane bound monozinc aminopeptidase which generates, in the brain, angiotensin (Ang) III from Ang II. Ang III is one of the main effector peptides of the brain renin-angiotensin system, which exerts a tonic stimulatory action on the control of blood pressure in hypertensive rats. Thus, the blockade of brain APA by a specific and selective inhibitor, EC33 or its prodrug, RB150, normalizes blood pressure in two animal models of arterial hypertension (HTA). APA constitutes a potential therapeutic target for the treatment of HTA that justifies the development of more potent and selective APA inhibitors than EC33, with enhanced pharmacodynamic and pharmacokinetic profiles when compared to RB150. With this aim, we built a three dimensional (3D) model of APA based on the recently published crystal structure of human APA. We validated this model by structure-function studies combining molecular modeling and site-directed mutagenesis demonstrating the crucial role of one residue in the S1 subsite responsible for substrate specificity of APA for N-terminal acidic amino-acid residues and two other residues constituting the S2' subsite of APA involved in the binding of the P2' acidic residue of tripeptidic inhibitors, previously developed in the laboratory. II/ Apelin is the endogenous ligand of the human orphan receptor named APJ (ApelinR), a G protein-coupled receptor. Apelin and ApelinR are involved in the control of body fluid homeostasis and cardiovascular functions. ApelinR constitutes a potential therapeutic target for the treatment of heart failure and water retentions. Given that apelin half-life in the blood circulation is in the minute range, we aimed to develop potent metabolically stable apelin analogs.. In this context, it is necessary to understand how apelin binds to ApelinR and how it is activated. To do so, we build a 3D model of ApelinR based on the crystal structure of the chemokine receptor, CXCR4. We validated this model by structure-function studies by molecular modeling and site-directed mutagenesis. We showed that apelin interacts with the receptor through interactions between the basic residues of the peptide and the acidic residues of the ApelinR, located in the extracellular loops. ,We then developed metabolically stable apelin-17 (K17F) analogs following two different strategies. First, we substituted each residue of K17F by its D-isomer or a synthetic amino-acid. Secondly, we added a fluoroalkyl chain at the N-terminal part of K17F. These two strategies allowed to significantly improve plasma half-life of the modified peptides for several hours without modifying their pharmacological properties as compared to K17F. Two apelin metabolically stable analogs, P92 and LIT01-196, were found to have significantly higher in vivo activity than K17F with a strong capacity to decrease blood pressure and to inhibit vasopressin release in the blood stream inducing an increased aqueous diuresis. These new validated 3D models will be now used to perform in silico screening of virtual chemical libraries to discover new APA inhibitors and ApelinR agonists that could ultimately lead to new drug candidates. These compounds could be useful for the treatment of HTA and heart failure.
123

Structural and Functional Characterization of O-Antigen Translocation and Polymerization in Pseudomonas aeruginosa PAO1

Islam, Salim Timo 07 June 2013 (has links)
Heteropolymeric O antigen (O-Ag)-capped lipopolysaccharide is the principal constituent of the Gram-negative bacterial cell surface. It is assembled via the integral inner membrane (IM) Wzx/Wzy-dependent pathway. In Pseudomonas aeruginosa, Wzx translocates lipid-linked anionic O-Ag subunits from the cytoplasmic to the periplasmic leaflets of the IM, where Wzy polymerizes the subunits to lengths regulated by Wzz1/2. The Wzx and Wzy IM topologies were mapped using random C-terminal-truncation fusions to PhoALacZα, which displays PhoA/LacZ activity dependent upon its subcellular localization. Twelve transmembrane segments (TMS) containing charged residues were identified for Wzx. Fourteen TMS, two sizeable cytoplasmic loops (CL), and two large periplasmic loops (PL3 and PL5 of comparable size) were characterized for Wzy. Despite Wzy PL3–PL5 sequence homology, these loops were distinguished by respective cationic and anionic charge properties. Site-directed mutagenesis identified functionally-essential Arg residues in both loops. These results led to the proposition of a “catch-and-release” mechanism for Wzy function. The abovementioned Arg residues and intra-Wzy PL3–PL5 sequence homology were conserved among phylogenetically diverse Wzy homologues, indicating widespread potential for the proposed mechanism. Unexpectedly, Wzy CL6 mutations disrupted Wzz1-mediated regulation of shorter O-Ag chains, providing the first evidence for direct Wzy–Wzz interaction. Mutagenesis studies identified functionally-important charged and aromatic TMS residues localized to either the interior vestibule or TMS bundles in a 3D homology model constructed for Wzx. Substrate-binding or energy-coupling roles were proposed for these residues, respectively. The Wzx interior was found to be cationic, consistent with translocation of anionic O-Ag subunits. To test these hypotheses, Wzx was overexpressed, purified, and reconstituted in proteoliposomes loaded with I−. Common transport coupling ions were introduced to “open” the protein and allow detection of I− flux via reconstituted Wzx. Extraliposomal changes in H+ induced I− flux, while Na+ addition had no effect, suggesting H+-dependent Wzx gating. Putative energy-coupling residue mutants demonstrated defective H+-dependent halide flux. Wzx also mediated H+ uptake as detected through fluorescence shifts from proteoliposomes loaded with pH-sensitive dye. Consequently, Wzx was proposed to function via H+-coupled antiport. In summary, this research has contributed structural and functional knowledge leading to novel mechanistic understandings for O-Ag biosynthesis in bacteria. / Bookmarks within the document have been provided for ease of access to a particular section in the body of the thesis. Each entry in the Table of Contents, List of Tables, and List of Figures has been "linked" to its respective position and as such can be clicked for direct access to the entry. Similarly, each in-text Figure or Table reference has been "linked" to its respective figure/table for direct access to the entry. / 1.) Canadian Institutes of Health Research (CIHR) Frederick Banting and Charles Best Canada Graduate Scholarship doctoral award, 2.) CIHR Michael Smith Foreign Study Award, 3.) Cystic Fibrosis Canada (CFC) doctoral studentship, 4.) University of Guelph Dean's Tri-Council Scholarship, 5.) Ontario Graduate Scholarship in Science and Technology, 6.) Operating grants to Dr. Joseph S. Lam from CIHR (MOP-14687) and CFC
124

Designing Cell-Free Protein Synthesis Systems for Improved Biocatalysis and On-Demand, Cost-Effective Biosensors

Soltani Najafabadi, Mehran 06 August 2021 (has links)
The open nature of Cell-Free Protein Synthesis (CFPS) systems has enabled flexible design, easy manipulation, and novel applications of protein engineering in therapeutic production, biocatalysis, and biosensors. This dissertation reports on three advances in the application of CFPS systems for 1) improving biocatalysis performance in industrial applications by site-specific covalent enzyme immobilization, 2) expressing and optimizing a difficult to express a mammalian protein in bacterial-based CFPS systems and its application for cost-effective, on-demand biosensors compatible with human body fluids, and 3) streamlining the procedure of an E. coli extract with built-in compatibility with human body fluid biosensors. Site-specific covalent immobilization stabilizes enzymes and facilitates recovery and reuse of enzymes which improves the net profit margin of industrial enzymes. Yet, the suitability of a given site on the enzyme for immobilization remains a trial-and-error procedure. This dissertation reports the reliability of several design heuristics and a coarse-grain molecular simulation in predicting the optimum sites for covalent immobilization of a target enzyme, TEM-1 ?-lactamase. This work demonstrates that the design heuristics can successfully identify a subset of favorable locations for experimental validation. This approach highlights the advantages of combining coarse-grain simulation and high-throughput experimentation using CFPS to efficiently identify optimal enzyme immobilization sites. Additionally, this dissertation reports high-yield soluble expression of a difficult-to-express protein (murine RNase Inhibitor or m-RI) in E. coli-lysate-based CFPS. Several factors including reaction temperature, reaction time, redox potential, and presence of folding chaperones in CFPS reactions were altered to find suitable conditions for m-RI expression. m-RI with the highest activity and stability was used to develop a lyophilized CFPS biosensor in human body fluids which reduced the cost of biosensor test by ~90%. Moreover, an E. coli extract with RNase inhibition activity was developed and tested which further streamlines the production of CFPS biosensors compatible with human body fluids.

Page generated in 0.2226 seconds