Spelling suggestions: "subject:"skein"" "subject:"klein""
1 |
Αποδοτικός σχεδιασμός και υλοποίηση της συνάρτησης κατακερματισμού Skein σε πλατφόρμα υλικούΤσίνγκας, Ηλίας 09 January 2012 (has links)
Σκοπός της διπλωματικής εργασίας αυτής είναι μεσω του σχεδιασμού και της υλοποίησης της συνάρτησης κατακερματισμού Skein να κατανοηθούν σε βάθος οι αρχές της σχεδίασης κυκλωμάτων μεγάλης κλίμακας σε διαφορετικές πλατφόρμες υλικού. Στην ερχασία αυτή σχεδιάζονται και εξομοιώνονται η λειτουργία τεσσάρων κυκλωμάτων - υλοποιήσεων της συνάρτησης με διαφορετική σκόπευση η καθεμία και συγκρίνονται μεταξύ τους με βάση καλά ορισμένα κριτήρια και εξάγονται χρήσιμα συμπεράσματα. / -
|
2 |
Localized Skein Algebras as Frobenius extensionsColón, Nelson Abdiel 01 May 2016 (has links)
There is an algebra defined on a two dimensional manifold, known as the Skein algebra, which has as elements the simple closed curves of the manifold. Just like with numbers, there's a way to add, subtract and multiply elements. Unfortunately division is not allowed in the Skein algebra, which is why we introduced the notion of the Localized Skein Algebra, where we define a way to invert elements so that dividing is possible. These algebras have infinitely many elements, may not be commutative and in fact may have torsion, which makes them a hard object to study.
This work is mainly centered in reducing these algebras to something more manageable. We have shown that for any space, its Localized Skein Algebra is a Frobenius extension of its Localized Character Ring, which means that any element of the algebra can be rewritten as a finite linear combination of a finite subset of basis elements, multiplied by elements that do commute. The importance of this result is that it solves this problem of noncommutativity, by rewriting anything that doesn't commute, as elements of a small set which can be controlled, along with elements that commute and behave nicely, making the Skein algebra far more manageable.
|
3 |
TQFT diffeomorphism invariants and skein modulesDrube, Paul Harlan 01 May 2011 (has links)
There is a well-known correspondence between two-dimensional topological quantum field theories (2-D TQFTs) and commutative Frobenius algebras. Every 2-D TQFT also gives rise to a diffeomorphism invariant of closed, orientable two-manifolds, which may be investigated via the associated commutative Frobenius algebras. We investigate which such diffeomorphism invariants may arise from TQFTs, and in the process uncover a distinction between two fundamentally different types of commutative Frobenius algebras ("weak" Frobenius algebras and "strong" Frobenius algebras). These diffeomorphism invariants form the starting point for our investigation into marked cobordism categories, which generalize the local cobordism relations developed by Dror Bar-Natan during his investigation of Khovanov's link homology.
We subsequently examine the particular class of 2-D TQFTs known as "universal sl(n) TQFTs". These TQFTs are at the algebraic core of the link invariants known as sl(n) link homology theories, as they provide the algebraic structure underlying the boundary maps in those homology theories. We also examine the 3-manifold diffeomorphism invariants known as skein modules, which were first introduced by Marta Asaeda and Charles Frohman. These 3-manifold invariants adapt Bar-Natan's marked cobordism category (as induced by a specific 2-D TQFT) to embedded surfaces, and measure which such surfaces may be embedded within in 3-manifold (modulo Bar-Natan's local cobordism relations). Our final results help to characterize the structure of such skein modules induced by universal sl(n) TQFTs.
|
4 |
A biological application for the oriented skein relationPrice, Candice Renee 01 July 2012 (has links)
The traditional skein relation for the Alexander polynomial involves an oriented knot, K+, with a distinguished positive crossing; a knot K−, obtained by changing the distinguished positive crossing of K+ to a negative crossing; and a link K0, the orientation preserving resolution of the distinguished crossing. We refer to (K+,K−,K0) as the oriented skein triple.
A tangle is defined as a pair (B, t) of a 3-dimensional ball B and a collection of disjoint, simple, properly embedded arcs, denoted t. DeWitt Sumners and Claus Ernst developed the tangle model which uses the mathematics of tangles to model DNA-protein binding. The protein is seen as the 3-ball and the DNA bound by the protein as properly embedded curves in the 3-ball. Topoisomerases are proteins that break one segment of DNA allowing a DNA segment to pass through before resealing the break. Effectively, the action of these proteins can be modeled as K− ↔ K+. Recombinases are proteins that cut two segments of DNA and recombine them in some manner. While recombinase local action varies, most are mathematically equivalent to a resolution, i.e. K± ↔ K0. The oriented triple is now viewed as K− = circular DNA substrate, K+ = product of topoisomerase action, K0 = product of recombinase action.
The theorem stated in this dissertation gives a relationship between two 2-bridge knots, K+ and K−, that differ by a crossing change and a link, K0 created from the oriented resolution of that crossing. We apply this theorem to difference topology experiments using topoisomerase proteins to study SMC proteins.
In recent years, link homology theories have become a popular invariant to develop and study. One such invariant knot Floer homology, was constructed by Peter Ozsváth, Zoltán Szabó, and independently Jacob Rasmussen, denoted by HFK. It is also a refinement of a classical invariant, the Alexander polynomial.
The study of DNA knots and links are of great interest to molecular biologists as they are present in many cellular process. The variety of experimentally observed DNA knots and links makes separating and categorizing these molecules a critical issue. Thus, knowing the knot Floer homology will provide restrictions on knotted and linked products of protein action.
We give a summary of the combinatorial version of knot Floer homology from known work, providing a worked out example. The thesis ends with reviewing knot Floer homology properties of three particular sub-families of biologically relevant links known as (2, p)- torus links, clasp knots and 3-strand pretzel links.
|
5 |
Implementace moderních hašovacích funkcí / Implementation of modern hash functionsTrbušek, Pavel January 2010 (has links)
Master's thesis analyses modern hash functions. The requirements for these features and briefly outlined some of the types of attacks are given in the first part. The second part focuses on the specication Skein hash function, which is among the candidates for the new SHA-3 standard, and a description of the JCOP platform, which is a function implemented. In the last part of the work there are discussed implementation problematic parts and evaluation of the selected solution.
|
6 |
The volume conjecture, the aj conjectures and skein modulesTran, Anh Tuan 21 June 2012 (has links)
This dissertation studies quantum invariants of knots and links, particularly
the colored Jones polynomials, and their relationships with classical invariants like
the hyperbolic volume and the A-polynomial. We consider the volume conjecture that
relates the Kashaev invariant, a specialization of the colored Jones polynomial at a
specific root of unity, and the hyperbolic volume of a link; and the AJ conjecture that
relates the colored Jones polynomial and the A-polynomial of a knot. We establish
the AJ conjecture for some big classes of two-bridge knots and pretzel knots, and
confirm the volume conjecture for some cables of knots.
|
7 |
Idempotents de Jones-Wenzl évaluables aux racines de l'unité et représentation modulaire sur le centre de $overline{U}_q sl_2$. / Evaluable Jones-Wenzl idempotents at roots of unity and modular representation on the center of $overline{U}_q sl_2$Ibanez, Elsa 04 December 2015 (has links)
Soit $p in N^*$. On définit une famille d'idempotents (et de nilpotents) des algèbres de Temperley-Lieb aux racines $4p$-ième de l'unité qui généralise les idempotents de Jones-Wenzl usuels. Ces nouveaux idempotents sont associés aux représentations simples et indécomposables projectives de dimension finie du groupe quantique restreint $Uq$, où $q$ est une racine $2p$-ième de l'unité. A l'instar de la théorie des champs quantique topologique (TQFT) de [BHMV95], ils fournissent une base canonique de classes d'écheveaux coloriés pour définir des représentations des groupes de difféotopie des surfaces. Dans le cas du tore, cette base nous permet d'obtenir une correspondance partielle entre les actions de la vrille négative et du bouclage, et la représentation de $SL_2(Z)$ de [LM94] induite sur le centre de $Uq$, qui étend non trivialement de la représentation de $SL_2(Z)$ obtenue par la TQFT de [RT91]. / Let $p in N^*$. We define a family of idempotents (and nilpotents) in the Temperley-Lieb algebras at $4p$-th roots of unity which generalizes the usual Jones-Wenzl idempotents. These new idempotents correspond to finite dimentional simple and projective indecomposable representations of the restricted quantum group $Uq$, where $q$ is a $2p$-th root of unity. In the manner of the [BHMV95] topological quantum field theorie (TQFT), they provide a canonical basis in colored skein modules to define mapping class groups representations. In the torus case, this basis allows us to obtain a partial match between the negative twist and the buckling actions, and the [LM94] induced representation of $SL_2(Z)$ on the center of $Uq$, which extends non trivially the [RT91] representation of $SL_2(Z)$.
|
8 |
Mapping class groups, skein algebras and combinatorial quantization / Groupes de difféotopie, algèbres d'écheveaux et quantification combinatoireFaitg, Matthieu 16 September 2019 (has links)
Les algèbres L(g,n,H) ont été introduites par Alekseev-Grosse-Schomerus et Buffenoir-Roche au milieu des années 1990, dans le cadre de la quantification combinatoire de l'espace de modules des G-connexions plates sur la surface S(g,n) de genre g avec n disques ouverts enlevés. L'algèbre de Hopf H, appelée algèbre de jauge, était à l'origine le groupe quantique U_q(g), avec g=Lie(G). Dans cette thèse nous appliquons les algèbres L(g,n,H) à la topologie en basses dimensions (groupe de difféotopie et algèbres d'écheveaux des surfaces), sous l'hypothèse que H est une algèbre de Hopf de dimension finie, factorisable et enrubannée mais pas nécessairement semi-simple, l'exemple phare d'une telle algèbre de Hopf étant le groupe quantique restreint associé à sl(2) (à une racine 2p-ième de l'unité). D'abord, nous construisons en utilisant L(g,n,H) une représentation projective des groupes de difféotopie de S(g,0)D et de S(g,0) (où D est un disque ouvert). Nous donnons des formules pour les représentations d'un ensemble de twists de Dehn qui engendre le groupe de difféotopie; en particulier ces formules nous permettent de montrer que notre représentation est équivalente à celle construite par Lyubashenko-Majid et Lyubashenko via des méthodes catégoriques. Pour le tore S(1,0) avec le groupe quantique restreint associé à sl(2) comme algèbre de jauge, nous calculons explicitement la représentation de SL(2,Z) en utilisant une base convenable de l'espace de représentation et nous en déterminons la structure.Ensuite, nous introduisons une description diagrammatique de L(g,n,H) qui nous permet de définir de façon très naturelle l'application boucle de Wilson W. Cette application associe un élément de L(g,n,H) à chaque entrelac dans (S(g,n)D) x [0,1] qui est parallélisé, orienté et colorié par des H-modules. Quand l'algèbre de jauge est le groupe quantique restreint associé à sl(2), nous utilisons W et les représentations de L(g,n,H) pour construire des représentations des algèbres d'écheveaux S_q(S(g,n)). Pour le tore S(1,0) nous étudions explicitement cette représentation. / The algebras L(g,n,H) have been introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche in the middle of the 1990's, in the program of combinatorial quantization of the moduli space of flat G-connections over the surface S(g,n) of genus g with n open disks removed. The Hopf algebra H, called gauge algebra, was originally the quantum group U_q(g), with g = Lie(G). In this thesis we apply these algebras L(g,n,H) to low-dimensional topology (mapping class groups and skein algebras of surfaces), under the assumption that H is a finite dimensional factorizable ribbon Hopf algebra which is not necessarily semisimple, the guiding example of such a Hopf algebra being the restricted quantum group associated to sl(2) (at a 2p-th root of unity).First, we construct from L(g,n,H) a projective representation of the mapping class groups of S(g,0)D and of S(g,0) (D being an open disk). We provide formulas for the representations of Dehn twists generating the mapping class group; in particular these formulas allow us to show that our representation is equivalent to the one constructed by Lyubashenko-Majid and Lyubashenko via categorical methods. For the torus S(1,0) with the restricted quantum group associated to sl(2) for the gauge algebra, we compute explicitly the representation of SL(2,Z) using a suitable basis of the representation space and we determine the structure of this representation.Second, we introduce a diagrammatic description of L(g,n,H) which enables us to define in a very natural way the Wilson loop map W. This maps associates an element of L(g,n,H) to any link in (S(g,n)D) x [0,1] which is framed, oriented and colored by H-modules. When the gauge algebra is the restricted quantum group associated to sl(2), we use W and the representations of L(g,n,H) to construct representations of the skein algebras S_q(S(g,n)). For the torus S(1,0) we explicitly study this representation.
|
9 |
Nouvelles perspectives sur les algèbres de type Askey–WilsonGaboriaud, Julien 08 1900 (has links)
Cette thèse se divise en trois parties qui peuvent être toutes regroupées autour d'une même bannière : l'étude de structures algébriques reliées aux algèbres de type Askey–Wilson. Alors que dans la première partie on s'efforce d'obtenir des interprétations duales (au sens de Howe) de ces algèbres, dans les autres parties on étudie des généralisations de ces algèbres. Des dégénérations de l'algèbre de Sklyanin, générées par des blocs plus fondamentaux que ceux générant les algèbres de type Askey–Wilson, sont étudiées dans la deuxième partie et des généralisations de plus haut rang des algèbres de type Askey–Wilson sont étudiées dans la troisième partie. Dans la première partie, en invoquant la dualité de Howe, deux interprétations duales sont obtenues pour les algèbres de Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Hahn et dual \(-1\) Hahn. La façon dont la dualité de Howe opère est rendue explicite par l'examen de processus de réduction dimensionnelle. Un modèle superintégrable 2D de mécanique quantique superconforme dont l'algèbre de symétrie est celle de type dual \(-1\) Hahn est également introduit et solutionné. Dans la deuxième partie, des algèbres générées par des opérateurs de contiguïté et d'échelle encodant des propriétés de familles de polynômes sont étudiées. Ces opérateurs appartiennent à la classe des opérateurs de Sklyanin–Heun, qui peuvent être définis sur plusieurs grilles diverses. On découvre qu'ils génèrent des dégénérations de l'algèbre de Sklyanin. On démontre que les représentations irréductibles de dimension finie de ces algèbres ont pour base des familles de para-polynômes. Les grilles linéaires, quadratiques, exponentielles et d'Askey–Wilson sont étudiées et mènent respectivement aux polynômes orthogonaux des familles de para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk et \(q\)-para-Racah. Enfin, la façon dont les polynômes de para-Krawtchouk et d'autres familles de polynômes orthogonaux sont reliées aux représentations tridiagonales du plan de Jordan déformé est présentée. Dans la dernière partie, on explore des généralisations à plus haut rang pour les algèbres de Racah et Askey–Wilson. Pour ce faire, on étudie les réalisations de ces algèbres en termes de Casimirs intermédiaires. Le rôle de la matrice \(R\) tressée est élucidé : celle-ci permet de relier divers Casimirs intermédiaires entre eux par conjugaison. Un isomorphisme entre l'algèbre de skein du crochet de Kauffman de la sphère à 4 trous et l'algèbre engendrée par les Casimir intermédiaires dans \(U_q(\mathfrak{sl}_2)^{\otimes 3}\) est présenté et permet d'interpréter de façon diagrammatique la conjugaison par la matrice \(R\) tressée mentionnée ci-haut. Finalement, une présentation du centralisateur \(Z_n(\mathfrak{sl}_2)\) de \(U(\mathfrak{sl}_2)\) dans \(U(\mathfrak{sl}_2)^{\otimes n}\) par générateurs et relations est obtenue et on montre que ce centralisateur est isomorphe à un quotient (obtenu explicitement) de l'algèbre de Racah de plus haut rang \(R(n)\). / This thesis is divided in three parts which all orbit around the same theme: the study of algebraic structures related to the algebras of Askey–Wilson type. In the first part we obtain two interpretations that are dual in the sense of Howe for the algebras of Askey–Wilson type. Meanwhile, the other two parts are concerned with generalizations of these algebras. In the second part, we study degenerations of the Sklyanin algebra, which are built out of generators that are more fundamental than those of the Askey–Wilson algebra. In the last part, generalizations of the Askey–Wilson type algebras to higher rank are studied. In the first part, dual interpretations are obtained for the Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Higgs and dual \(-1\) Hahn algebras by invoking Howe duality. The way that this Howe duality operates is made explicit through the examination of a dimensional reduction procedure. A 2D superintegrable superconformal quantum mechanics model, whose symmetry algebra is the one of dual \(-1\) Hahn type, is also introduced and solved. In the second part, we study algebras that are generated by contiguity and ladder operators that encode properties of families of orthogonal polynomials. We show that these operators belong to the Sklyanin–Heun class of operators, which can be defined for various grids. We also show how their algebraic relations correspond to those of degenerations of the Sklyanin algebra. Then, we show how various families of para-polynomials support finite-dimensional irreducible representations of these degenerate algebras. From the linear, quadratic, exponential and Askey–Wilson grids, we are respectively led to the para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk and \(q\)-para-Racah polynomials. Later, we connect the para-Krawtchouk polynomials (and other families of orthogonal polynomials) to tridiagonal representations of the deformed Jordan plane. In the final part, we explore higher rank generalizations of the Racah and Askey–Wilson algebras. To that end, their realizations in terms of intermediate Casimir elements are studied. The role of the braided \(R\)-matrix is understood as follows: it connects various intermediate Casimir elements through conjugation. We obtain an isomorphism between the Kauffman bracket skein algebra of the four-punctured sphere and the algebra generated by the intermediate Casimir elements in \(U_q(\mathfrak{sl}_2)^{\otimes3}\). This leads to a diagrammatic interpretation of the conjugation by the braided \(R\)-matrix mentioned in the above. Lastly, a presentation of the centralizer \(Z_n(\mathfrak{sl}_2)\) of \(U(\mathfrak{sl}_2)\) in \(U(\mathfrak{sl}_2)^{\otimes n}\) by generators and relations is obtained and we show that this centralizer is isomorphic to a quotient (which we provide explicitly) of the higher rank Racah algebra \(R(n)\).
|
Page generated in 0.0593 seconds