• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 6
  • 3
  • 1
  • Tagged with
  • 44
  • 44
  • 17
  • 14
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Resonant Light-Matter Interaction for Enhanced Control of Exotic Propagation of Light

Safari, Akbar 12 April 2019 (has links)
We investigate the propagation of light in different conditions that lead to exotic propagation of photons and use near-resonant light-matter interactions to enhance these effects. First, we study the propagation of light in a moving highly dispersive medium, namely rubidium atoms. Based on the special relativity the speed of light changes with the speed of the medium. However, this drag effect in a non-dispersive medium is very small and thus difficult to measure. We show that the drag effect is enhanced significantly when the moving medium is highly dispersive. Thus, with this enhancement even a slow motion can be detected. Next, we employ the large nonlinear response of rubidium atoms to accentuate the formation of optical caustics. Caustics are important as nature uses caustics to concentrate the energy of waves. Moreover, caustics can be formed in many physical systems such as water waves in oceans to amplify tsunamis or generate rogue waves. The connection of our study to these giant water waves is discussed. Finally, we explore light-matter interactions in plasmonic systems. We show that photons experience a significant phase jump as they couple into and out of a plasmonic structure. This coupling phase, also known as the scattering phase shift, is generic to all scattering events. We measure this coupling phase with a triple-slit plasmonic structure. Moreover, we use the near-field enhancement of the plasmonic structure to enhance the coupling between the slits. Consequently, the photons can take non-trivial trajectories that pass through all three slits. We measure such exotic trajectories for the first time that are seemingly in violation of the superposition principle. The application of the superposition principle and the validity of Born’s rule is discussed.
32

Contribution à l’étude de la réflectance et du confinement des modes dans les systèmes optiques stratifiés

VANDENBEM, Cédric 15 December 2006 (has links)
Contribution à l’étude de la réflectance et du confinement des modes dans les systèmes optiques stratifiés Résumé : Ce travail prolonge les études du changement de réflectivité des systèmes optiques stratifiés sous des contraintes mécanique et électrique. D’abord, nous quantifions le déplacement de la bande interdite photonique suite à une modification de l’angle d’incidence. Il en dérive une technologie bio-inspirée. Ensuite, c’est un champ électrique externe qui contrôle les propriétés de réflexion et de polarisation d’une multicouche construite à partir de cristaux liquides. Enfin, nous distinguons deux manières de confiner l’énergie électromagnétique. Ce travail s’attache à comprendre la nature des modes qui se propagent à la surface des milieux stratifiés. Par ailleurs, il montre que l’association de matériau gauche et de matériau droit pour former un guide d’onde permet de réduire la vitesse de la lumière de plusieurs ordres de grandeur. Contribution to the study of the reflectance and the mode confinement in optical stratified systems Abstract : This work extends the studies of change in reflectance in optical stratified systems under mechanical and electrical constraints. In the first part, we quantify the shift of the photonic bandgap following, a modification in the angle of incidence. We define the tools for the design of bio-inspired Bragg mirrors. In the second part, we adjust the reflection properties of a multilayer stack made of liquid crystals with an external electric field. Furthermore, we examine two distinct ways of producing light confinement. First, we contribute to the understanding of the nature of electromagnetic modes propagating at the surface of stratified media. Second, we show that a waveguide made of left- and right-handed materials can reduce the speed of light by several orders of magnitudes.
33

Lumière lente dans les guides à cristaux photoniques pour l'interaction renforcée avec la matière / Slow light in photonic crystal waveguides for reinforced interaction with matter

Zang, Xiaorun 29 September 2015 (has links)
Dans cette thèse, nous avons étudié l'impact considérable de désordre aléatoire sur le transport de la lumière lente dans les guides à cristaux photoniques 1D, c'est-à-dire la localisation de la lumière. Les mesures en champ proche, les simulations statistiques et le modèle théorique révèlent l'existence d'une limite inférieure de l’extension spatiale des modes localisés. Nous avons également présenté que le niveau de désordre et l’extension spatiale de mode localisé individuelle sont liés par la masse effective de photons plutôt que la vitesse de groupe considérant en général.Deuxièmement, les systèmes hybrides d'atomes froids et des guides à cristaux photoniques ont été reconnus comme un approche prometteuse pour l'ingénierie grande interaction lumière-matière au niveau des atomes et des photons individuels. Dans cette thèse, nous avons étudié la physique, à savoir le transport de la lumière dans des guides de nanophotonique périodiques couplées à des atomes à deux niveaux. Notre expression semi-analytique développée est générale et peut rapidement caractériser le couplage entre les atomes froids et les photons guidées. Pour surmonter les difficultés techniques considérables existent dans les systèmes hybrides atomique et photonique, nous avons conçu un guide nanophotonique qui supporte un mode de Bloch lente guidée avec grande queue évanescente dans l'espace libre pour les atomes froids de piégeage. Pour adapter précisément la région de fréquence de la lumière lente du mode guidé à la ligne de transition atomique, nous avons conçu la bande photonique et de la courbe de dispersion du mode guidé afin que la force de l'interaction est robuste contre imprévisible fabrication imperfection. / In this thesis, we firstly investigated the striking influence of random disorder on light transport near band edges in one dimensional photonic crystal wave guides, i.e. light localization. Near-field measurements, statistical simulations and theoretical model revealed the existence of a lower bound for the spatial extent of localized modes. We also showed that the disorder level and the spatial extent of individual localized mode is linked by the photon effective mass rather than the generally considered group velocity. Secondly, hybrid cold atoms and photonic crystal wave guides system have been recognized as a promising paradigm for engineering large light-matter interaction at single atoms and photons level. In this thesis, we studied the basic physics, i.e. light transport in periodic nanophotonic wave guides coupled to two-level atoms. Our developed general semi-analytical expression can quickly characterize the coupling between cold atoms and guided photons. Aim to overcome the significant technical challenges existed for developing hybrid atom-photonic systems, we designed a nanophotonic waveguide, which supports a slow guided Bloch mode with large evanescent tail in free space for cold atoms trapping (release the limitation imposed by Casmir Polder force and technical challenge of nanoscale manipulation of cold atoms). To match precisely the slow light region of the guided mode to the atomic transition line, we carefully engineered the photonic band and the dispersion curve (i.e.flatness) of the guided mode so that the interaction strength is robust against unpredictable fabrication imperfection.
34

Traitement tout optique du signal à base de composants à cristaux photoniques en matériaux semiconducteurs III-V / Optical signal processing with III-V semiconductors photonic crystals

Lenglé, Kévin 19 June 2013 (has links)
Ces travaux de thèse sont consacrés à l'étude expérimentale de fonctions de traitement optique de signaux, multiplexés en longueur (WDM) ou en temps (OTDM), à base de composants à cristaux photoniques (CPh) en matériaux semi-conducteurs III-V réalisés dans le cadre du projet européen Copernicus. Les propriétés dispersives singulières qu'il est possible d'obtenir dans ces structures ont été étudiées au travers d'effets non linéaires améliorés dans le régime de lumière lente. Ainsi, une étude sur le mélange à quatre ondes a été réalisée avec des applications de conversion de longueur d'onde à haut débit et de démultiplexage temporel. Par ailleurs, de la génération de seconde harmonique a été démontrée avec une efficacité record pour ce type de structure, et appliquée au monitoring de signaux télécoms à 42,5 Gbit/s. Des nanocavités CPh ont été utilisées en tant que filtres extracteurs de longueurs d'onde pour démontrer le démultiplexage d'un signal WDM à 100 Gbit/s. Par la suite, nous avons travaillé sur une plate-forme photonique hybride. L'intégration hétérogène de nanocavités CPh en semi-conducteurs III-V sur des guides silicium nous a permis de réaliser de la commutation optique très rapide appliquée à des fonctions de conversion de longueur d'onde jusqu'à 20 Gbit/s et de limiteur de puissance à 10 Gbit/s. Tous ces résultats sont très prometteurs pour l'intégration photonique avec la micro-électronique et la technologie CMOS. Par le biais de ces travaux, nous montrons que les cristaux photoniques, de par leurs propriétés de confinement et de ralentissement de la lumière, sont des structures particulièrement intéressantes pour la réalisation de fonctions de traitement du signal sur porteuse optique. / This thesis is devoted to the experimental study of optical processing functions, of wavelength multiplexed (WDM) or time multiplexed (OTDM) signals, based on III-V semiconductors photonic crystals (PhC) devices produced in the European project Copernicus. The unique dispersive properties that is possible to obtain in such a structure were studied through nonlinear effects enhanced in slow light regime. Thus, a study of four-wave mixing was performed with high bit rate wavelength conversion and time demultiplexing applications. Moreover, second harmonic generation has been demonstrated with record efficiency for such a structure, and applied to 42.5 Gbit/s telecom signals monitoring. PhC nanocavities were used as wavelength drop filter to demonstrate 100 Gbit/s WDM signal demultiplexing. Thereafter, we worked on hybrid photonic platform. The heterogeneous integration of III-V PhC nanocavity on silicon waveguide allowed us to perform very fast optical switching, applied to wavelength conversion up to 20 Gbit/s and power limiting function at 10 Gbit/s. All of these results are very promising for future photonic integration with micro-electronics and CMOS technology. Through this work, we show that PhC, owing to their confinement and slow light properties, are structures particularly interesting to perform optical processing functions.
35

Perforated Hollow Core Waveguides for Alkali Vapor-cells and Slow Light Devices

Giraud Carrier, Matthieu C 01 February 2016 (has links) (PDF)
The focus of this work is the integration of alkali vapor atomic vapor cells into common silicon wafer microfabrication processes. Such integrated platforms enable the study of quantum coherence effects such as electromagnetically induced transparency, which can in turn be used to demonstrate slow light. Slow and stopped light devices have applications in the optical communications and quantum computing fields. This project uses hollow core anti-resonant reflecting optical waveguides (ARROWs) to build such slow light devices. An explanation of light-matter interactions and the physics of slow light is first provided, as well as a detailed overview of the fabrication process. Following the discovery of a vapor transport issue, a custom capillary-based testing platform is developed to quantify the effect of confinement, temperature, and wall coatings on rubidium transport. A mathematical model is derived from the experimental results and predicts long transport times. A new design methodology is presented that addresses the transport problem by increasing the number of rubidium entry points. This design also improves chip durability and decreases environmental susceptibility through the use of a single copper reservoir and buried channel waveguides (BCWs). New chips are successfully fabricated, loaded, and monitored for rubidium spectra. Absorption is observed in several chips and absorption peaks depths in excess of 10% are reported. The chip lifetime remains comparable to previous designs. This new design can be expanded to a multi-core platform suitable for slow and stopped light experimentation.
36

ARROW-Based On-Chip Alkali Vapor-Cell Development

Hulbert, John Frederick 22 May 2013 (has links) (PDF)
The author presents the successful development of an on-chip, monolithic, integrated rubidium vapor-cell. These vapor-cells integrate ridge waveguide techniques with hollow-core waveguiding technology known as Anti-Resonant Reflecting Optical Waveguides (ARROWs). These devices are manufactured on-site in BYU's Integrated Microelectronic Laboratory (IML) using common silicon wafer microfabrication techniques. The ARROW platform fabrication is outlined, but the bulk of the dissertation focuses on novel packaging techniques that allow for the successful introduction and sealing of rubidium vapor into these micro-sized vapor-cells. The unique geometries and materials utilized in the ARROW platform render common vapor-cell sealing techniques unusable. The development of three generations of successful vapor-cells is chronicled. The sealing techniques represented in these three generations of vapor-cells include high-temperature epoxy seals, cold-weld copper crimping, variable pressure vacuum capabilities, indium solder seals, and electroplated passivation coatings. The performance of these seals are quantified using accelerated lifetime tests combined with optical spectroscopy. Finally, the successful probing of the rubidium absorption spectrum, electromagnetically induced transparency, and slow light on the ARROW-based vapor-cell platform is reported.
37

Simulating ultracold matter : horizons and slow light

Farrell, Conor January 2008 (has links)
This thesis explores the links between different ways of modelling the physical world. Finite difference numerical simulations may be used to encode the behaviour of physical systems, allowing us to gain insight into their workings and even to predict their behaviour. Similarly, one can investigate the properties of gravitational black holes through the use of analogue black holes, physical systems which share at least some part of the physics of the astronomical objects. Concentrating on black hole analogues using Bose-Einstein condensates, I show how simulations of these systems may be greatly assisted through the use of a proper absorbing boundary condition, the Perfectly Matched Layer. Such a boundary condition allows the effcient truncation of the computational domain, both saving computational time and increasing accuracy. I then apply this technique to the simulation of the supersonic flow of a Bose-Einstein condensate through a Laval nozzle, a black hole analogue, showing that such a flow should be stable and observable in the laboratory. Moving to a related system, I investigate the optical analogue of the Iordanskii force - the friction resulting from interaction between excitations in a superfluid's normal component and a superfluid vortex - through the simulation of such a vortex in a Bose-Einstein condensate illuminated by slow light, which is light whose group velocity is on the order of metres per second. The interaction of the slow light with the vortex should produce a momentum transfer due to the optical Aharonov-Bohm effect, exerting a force on the vortex. The coupled system of equations describing the condensate-slow light system is simulated, giving some surprising results.
38

Processus cohérents et applications des phénomènes de lumière lente et rapide dans l'hélium métastable à température ambiante / Coherent processes and applications of the slow and fast light phenomena in metastable helium at room temperature

Lauprêtre, Thomas 23 December 2012 (has links)
L'interaction entre des champs électromagnétiques et des systèmes à plusieurs niveaux peut donner lieu à différents processus cohérents. La transparence électromagnétiquement induite (EIT) ou les oscillations cohérentes de populations (CPO) sont des phénomènes résonnants ayant pour conséquence d'annuler l'absorption du système pour un champ sonde. L'EIT se produit dans les systèmes à trois niveaux et met en jeu une cohérence entre niveaux non couplés optiquement, alors que les systèmes à deux niveaux suffisent pour faire apparaître le CPO qui ne met pas en jeu la dynamique des cohérences.Il est possible dans un milieu constitué d'atomes d'hélium métastable à température ambiante d'extraire un système à trois niveaux en Λ qui, lorsqu'il est excité par des polarisations circulaires, fait apparaître des fenêtres EIT de l'ordre de quelques dizaines de kHz de large. Lorsque ce système est excité par des polarisations linéaires et soumis à un champ magnétique de faible amplitude, c'est l'association des deux phénomènes de CPO et d'EIT qui détermine la réponse du système. Une fenêtre de transparence CPO de quelques dizaines de kHz de large a en particulier été observée.Ce type de phénomènes résonnants est associé à de grandes variations de l'indice de réfraction avec la fréquence du champ sonde, ayant pour conséquence de profondes modifications de la vitesse de groupe d'une impulsion se propageant dans le milieu. Notre système expérimental permet ainsi d'observer de la lumière lente, de la lumière rapide ainsi que des vitesses de groupe négatives. L'insertion de tels milieux dispersifs en cavité optique a été suggérée pour augmenter la précision de senseurs comme les gyroscopes lasers, mais leur bruit fondamental dépend de la durée de vie des photons dans la cavité. C’est pourquoi l’influence des milieux hautement dispersifs sur la durée de vie des photons dans une cavité est étudiée expérimentalement et théoriquement. / Many coherent processes can be observed when electromagnetic fields are applied to multi-level systems. Electromagnetically induced transparency (EIT) or coherent population oscillations (CPO) are resonant phenomena resulting in the cancellation of the absorption of the system for a probe field. EIT occurs in three-level systems and involves the coherence between two optically uncoupled levels, whereas two-level systems are sufficient to produce CPO which does not involve the dynamics of the coherences.A three-level Λ system can be isolated in a gas of metastable helium atoms at room temperature. When excited with circular polarizations, this system exhibits EIT resonances of a few tens of kHz. If this system is excited by linear polarizations and submitted to a weak magnetic field, the response of the system is given by the combination of these two phenomena, namely EIT and CPO. A narrow CPO transmission window of a few tens of kHz has then been observed.This kind of resonant phenomena is associated with very strong variations of the refractive index at the probe frequency, leading to major changes of the group velocity of a pulse propagating in the medium. Our experimental set-up allows us to observe slow light, fast light, and even negative group velocities. Insertion of such dispersive media inside an optical cavity has been suggested to increase the sensitivity of sensors such as laser gyroscopes, but their fundamental noise depends on the lifetime of photons inside the cavity. This is why the influence of highly dispersive media on the photon lifetime inside a cavity is studied experimentally and theoretically.
39

InP-based photonic crystals : Processing, Material properties and Dispersion effects

Berrier, Audrey January 2008 (has links)
Photonic crystals (PhCs) are periodic dielectric structures that exhibit a photonic bandgap, i.e., a range of wavelength for which light propagation is forbidden. The special band structure related dispersion properties offer a realm of novel functionalities and interesting physical phenomena. PhCs have been manufactured using semiconductors and other material technologies. However, InP-based materials are the main choice for active devices at optical communication wavelengths. This thesis focuses on two-dimensional PhCs in the InP/GaInAsP/InP material system and addresses their fabrication technology and their physical properties covering both material issues and light propagation aspects. Ar/Cl2 chemically assisted ion beam etching was used to etch the photonic crystals. The etching characteristics including feature size dependent etching phenomena were experimentally determined and the underlying etching mechanisms are explained. For the etched PhC holes, aspect ratios around 20 were achieved, with a maximum etch depth of 5 microns for a hole diameter of 300 nm. Optical losses in photonic crystal devices were addressed both in terms of vertical confinement and hole shape and depth. The work also demonstrated that dry etching has a major impact on the properties of the photonic crystal material. The surface Fermi level at the etched hole sidewalls was found to be pinned at 0.12 eV below the conduction band minimum. This is shown to have important consequences on carrier transport. It is also found that, for an InGaAsP quantum well, the surface recombination velocity increases (non-linearly) by more than one order of magnitude as the etch duration is increased, providing evidence for accumulation of sidewall damage. A model based on sputtering theory is developed to qualitatively explain the development of damage. The physics of dispersive phenomena in PhC structures is investigated experimentally and theoretically. Negative refraction was experimentally demonstrated at optical wavelengths, and applied for light focusing. Fourier optics was used to experimentally explore the issue of coupling to Bloch modes inside the PhC slab and to experimentally determine the curvature of the band structure. Finally, dispersive phenomena were used in coupled-cavity waveguides to achieve a slow light regime with a group index of more than 180 and a group velocity dispersion up to 10^7 times that of a conventional fiber. / QC 20100712
40

Slow and Stopped Light with Many Atoms, the Anisotropic Rabi Model and Photon Counting Experiment on a Dissipative Optical Lattice

Thurtell, Tyler 10 August 2018 (has links)
No description available.

Page generated in 0.0381 seconds