Spelling suggestions: "subject:"smallarea estimation"" "subject:"all’area estimation""
21 |
Small Area Estimation for Survey Data: A Hierarchical Bayes ApproachKaraganis, Milana 14 September 2009 (has links)
Model-based estimation techniques have been widely used in small area estimation. This thesis focuses on the Hierarchical Bayes (HB) estimation techniques in application to small area estimation for survey data.
We will study the impact of applying spatial structure to area-specific effects and utilizing a specific generalized linear mixed model in comparison with a traditional Fay-Herriot estimation model. We will also analyze different loss functions with applications to a small area estimation problem and compare estimates obtained under these loss functions. Overall, for the case study under consideration, area-specific geographical effects will be shown to have a significant effect on estimates. As well, using a generalized linear mixed model will prove to be more advantageous than the usual Fay-Herriot model. We will also demonstrate the benefits of using a weighted balanced-type loss function for the purpose of balancing the precision of estimates with their closeness to the direct estimates.
|
22 |
Application of small area estimation techniques in modelling accessibility of water, sanitation and electricity in South Africa : the case of Capricorn DistrictMokobane, Reshoketswe January 2019 (has links)
Thesis (Ph.D. (Statistics)) -- University of Limpopo, 2019 / This study presents the application of Direct and Indirect methods of Small AreaEstimation(SAE)techniques. Thestudyisaimedatestimatingthetrends and the proportions of households accessing water, sanitation, and electricity for lighting at small areas of the Limpopo Province, South Africa. The study modified Statistics South Africa’s General Household Survey series 2009-2015 and Census 2011 data. The option categories of three variables: Water, Sanitation and Electricity for lighting, were re-coded. Empirical Bayes and Hierarchical Bayes models known as Markov Chain Monte Carlo (MCMC) methods were used to refine estimates in SAS. The Census 2011 data aggregated in ‘Supercross’ was used to validate the results obtained from the models. The SAE methods were applied to account for the census undercoverage counts and rates. It was found that the electricity services were more prioritised than water and sanitation in the Capricorn District of the Limpopo Province. The greatest challenge, however, lies with the poor provision of sanitation services in the country, particularly in the small rural areas. The key point is to suggestpolicyconsiderationstotheSouthAfricangovernmentforfutureequitable provisioning of water, sanitation and electricity services across the country.
|
23 |
Estimating County-Level Aggravated Assault Rates by Combining Data from the National Crime Victimization Survey (NCVS) and the National Incident-Based Reporting System (NIBRS)Petraglia, Elizabeth Ellen January 2015 (has links)
No description available.
|
24 |
Three studies on semi-mixed effects models / Drei Studien über semi-Mixed Effects ModelleSavaþcý, Duygu 28 September 2011 (has links)
No description available.
|
25 |
小區域死亡率模型與生命表編算 / A Study of Mortality Models and Life Table Construction of Small Areas鍾陳泰, Chung, Chen Tai Unknown Date (has links)
臺灣各縣市人口結構差異明顯,各縣市的人口出生、老化程度都不盡相同,而且在醫療分配及社會資源的使用也有很大的差異,因此各縣市應因應各地特性發展不同的小區域人口推估方法。由於樣本數與變異數成反比,人數較少者的死亡率(像是高齡人口)通常震盪較大,藉由適當的修勻(Graduation)調整,通常可降低年齡層間的死亡率震盪。然而,當縣市層級的人數太少時,只依賴修勻往往不足,多半會再參考人口較多的大母體之死亡率。例如:傳統的的貝氏修勻,使用Lee-Carter之類的參數死亡模型(Lee and Carter, 1992),或是透過小區域及大母體的死亡率比值(王信忠, 2012)。然而過去研究較少全面性的比較這些方法,尤其是用於人數較少(如:十萬人)的地區。
本文以探討小區域生命表及死亡率推估為目標,著眼於人數不多於五萬人,尋求較為適合臺灣及類似國家的死亡率編算方法。由於修勻或貝氏等方法可視為增加樣本數,本文將擴大樣本分為四種方式:「同地同時」、「同地異時」、「異地同時」、「異地異時」,亦即將死亡資料的整併分成是否限定於小區域,以及是否可擴及其他年度。本文藉由電腦模擬測試,提供在各種限制之下,最合適小區域生命表建構的準則。其中,本文假設大、小區域的死亡率間存有三種情境的關係:定值、遞增、V字型,藉由調整大小區域死亡率比值間的幅度,探討大母體及小區域間的差異對實務使用的影響。研究發現,Partial SMR方法是一個值得參考的方法,當大小區域死亡率類型接近時的效果不錯,甚至可用於人數小於一萬人,但若死亡率類型差異過大,修勻方法會有限制,使用時需格外謹慎。 / The population structure, life expectancy (and age-specific mortality rates), and the speed of population aging vary a lot in different county of Taiwan. Each county has its own policy planning according to the needs. However, the county level population is usually not enough to provide stable estimates, such as of the life expectancies and mortality rates at the county level. Thus, certain graduation methods are applied to stabilize these estimates. However, only a few studies focus on comparing different types of graduation methods, including traditional graduation methods, Bayesian methods, and parametric mortality models.
In this study, we separate the graduation methods into four types, according to if using only the small area data and if one year or multiple years of data are used, and explore which methods are appropriate to the areas with population fewer than 100,000. We use computer simulation to evaluate the graduation methods. We found that the Standard Mortality Ratio is promising when the mortality profiles of small and large populations are similar, and it is a feasible solution even for the areas with population fewer than 10,000. However, if the mortality profiles differ significantly, all graduation methods need to be applied with care.
|
26 |
Composite Estimation of Stand Tables / Zusammengesetzte Schätzung der Durchmesserverteilung von BeständenBierer, Daniel 06 March 2008 (has links)
No description available.
|
27 |
小區域死亡率模型的探討 / A Study of Small Area Mortality Models林志軒 Unknown Date (has links)
壽命延長及生育率下降使得人口老化日益明顯,成為全球多數國家在21世紀必須面對的議題,由於各區域人口老化的速度不同,必須根據各地特性而調整因應對策。其中研究死亡率變化為面對人口老化的必備課題,尤其是高齡族群的死亡率,這也是近年高齡死亡模型廣受重視的主因之一。因為樣本數與變異數成反比,人口較少的區域或是高齡人口,死亡率的觀察值通常會有較大震盪,為了降低震盪多半會經過修勻,以取得較為穩定的死亡率推估值(王信忠等人,2012)。此外,Li and Lee (2005)的Coherent Lee-Carter模型也是另一種可行方法,透過參考大區域的資訊降低小區域的估計誤差。
本文探討結合上述修勻、死亡率模型的可能,希冀能綜合兩者的優點,提高小區域死亡率推估的精確性。因為Coherent Lee-Carter模型的想法類似增加小區域的人數(加入大區域的人數),本文探討人口數與Lee-Carter模型參數估計值的關係,再以修勻調整大小區域的差異,透過電腦模擬及資料分析,驗證本文提出方法是否有效。其中,仿造王信忠等人的作法,假設小區域與大區域死亡率間的七種可能情境,以平均絕對百分誤差(Mean Absolute Percentage Error)為衡量標準,找出調整修勻、相關模型的方法。另外,本文也以臺灣縣市為研究區域,驗證本文方法的估計結果。研究發現適當地使用修勻方法,可降低小區域的死亡率估計值,其效果優於Coherent Lee-Carter模型。
|
28 |
Implementing SAE Techniques to Predict Global Spectacles NeedsZhang, Yuxue January 2023 (has links)
This study delves into the application of Small Area Estimation (SAE) techniques to enhance the accuracy of predicting global needs for assistive spectacles. By leveraging the power of SAE, the research undertakes a comprehensive exploration, employing arange of predictive models including Linear Regression (LR), Empirical Best Linear Unbiased Prediction (EBLUP), hglm (from R package) with Conditional Autoregressive (CAR), and Generalized Linear Mixed Models (GLMM). At last phase,the global spectacle needs’ prediction includes various essential steps such as random effects simulation, coefficient extraction from GLMM estimates, and log-linear modeling. The investigation develops a multi-faceted approach, incorporating area-level modeling, spatial correlation analysis, and relative standard error, to assess their impact on predictive accuracy. The GLMM consistently displays the lowest Relative Standard Error (RSE) values, almost close to zero, indicating precise but potentially overfit results. Conversely, the hglm with CAR model presents a narrower RSE range, typically below 25%, reflecting greater accuracy; however, it is worth noting that it contains a higher number of outliers. LR illustrates a performance similar to EBLUP, with RSE values reaching around 50% in certain scenarios and displaying slight variations across different contexts. These findings underscore the trade-offs between precision and robustness across these models, especially for finer geographical levels and countries not included in the initial sample.
|
29 |
Estimation robuste de courbes de consommmation électrique moyennes par sondage pour de petits domaines en présence de valeurs manquantes / Robust estimation of mean electricity consumption curves by sampling for small areas in presence of missing valuesDe Moliner, Anne 05 December 2017 (has links)
Dans cette thèse, nous nous intéressons à l'estimation robuste de courbes moyennes ou totales de consommation électrique par sondage en population finie, pour l'ensemble de la population ainsi que pour des petites sous-populations, en présence ou non de courbes partiellement inobservées.En effet, de nombreuses études réalisées dans le groupe EDF, que ce soit dans une optique commerciale ou de gestion du réseau de distribution par Enedis, se basent sur l'analyse de courbes de consommation électrique moyennes ou totales, pour différents groupes de clients partageant des caractéristiques communes. L'ensemble des consommations électriques de chacun des 35 millions de clients résidentiels et professionnels Français ne pouvant être mesurées pour des raisons de coût et de protection de la vie privée, ces courbes de consommation moyennes sont estimées par sondage à partir de panels. Nous prolongeons les travaux de Lardin (2012) sur l'estimation de courbes moyennes par sondage en nous intéressant à des aspects spécifiques de cette problématique, à savoir l'estimation robuste aux unités influentes, l'estimation sur des petits domaines, et l'estimation en présence de courbes partiellement ou totalement inobservées.Pour proposer des estimateurs robustes de courbes moyennes, nous adaptons au cadre fonctionnel l'approche unifiée d'estimation robuste en sondages basée sur le biais conditionnel proposée par Beaumont (2013). Pour cela, nous proposons et comparons sur des jeux de données réelles trois approches : l'application des méthodes usuelles sur les courbes discrétisées, la projection sur des bases de dimension finie (Ondelettes ou Composantes Principales de l'Analyse en Composantes Principales Sphériques Fonctionnelle en particulier) et la troncature fonctionnelle des biais conditionnels basée sur la notion de profondeur d'une courbe dans un jeu de données fonctionnelles. Des estimateurs d'erreur quadratique moyenne instantanée, explicites et par bootstrap, sont également proposés.Nous traitons ensuite la problématique de l'estimation sur de petites sous-populations. Dans ce cadre, nous proposons trois méthodes : les modèles linéaires mixtes au niveau unité appliqués sur les scores de l'Analyse en Composantes Principales ou les coefficients d'ondelettes, la régression fonctionnelle et enfin l'agrégation de prédictions de courbes individuelles réalisées à l'aide d'arbres de régression ou de forêts aléatoires pour une variable cible fonctionnelle. Des versions robustes de ces différents estimateurs sont ensuite proposées en déclinant la démarche d'estimation robuste basée sur les biais conditionnels proposée précédemment.Enfin, nous proposons quatre estimateurs de courbes moyennes en présence de courbes partiellement ou totalement inobservées. Le premier est un estimateur par repondération par lissage temporel non paramétrique adapté au contexte des sondages et de la non réponse et les suivants reposent sur des méthodes d'imputation. Les portions manquantes des courbes sont alors déterminées soit en utilisant l'estimateur par lissage précédemment cité, soit par imputation par les plus proches voisins adaptée au cadre fonctionnel ou enfin par une variante de l'interpolation linéaire permettant de prendre en compte le comportement moyen de l'ensemble des unités de l'échantillon. Des approximations de variance sont proposées dans chaque cas et l'ensemble des méthodes sont comparées sur des jeux de données réelles, pour des scénarios variés de valeurs manquantes. / In this thesis, we address the problem of robust estimation of mean or total electricity consumption curves by sampling in a finite population for the entire population and for small areas. We are also interested in estimating mean curves by sampling in presence of partially missing trajectories.Indeed, many studies carried out in the French electricity company EDF, for marketing or power grid management purposes, are based on the analysis of mean or total electricity consumption curves at a fine time scale, for different groups of clients sharing some common characteristics.Because of privacy issues and financial costs, it is not possible to measure the electricity consumption curve of each customer so these mean curves are estimated using samples. In this thesis, we extend the work of Lardin (2012) on mean curve estimation by sampling by focusing on specific aspects of this problem such as robustness to influential units, small area estimation and estimation in presence of partially or totally unobserved curves.In order to build robust estimators of mean curves we adapt the unified approach to robust estimation in finite population proposed by Beaumont et al (2013) to the context of functional data. To that purpose we propose three approaches : application of the usual method for real variables on discretised curves, projection on Functional Spherical Principal Components or on a Wavelets basis and thirdly functional truncation of conditional biases based on the notion of depth.These methods are tested and compared to each other on real datasets and Mean Squared Error estimators are also proposed.Secondly we address the problem of small area estimation for functional means or totals. We introduce three methods: unit level linear mixed model applied on the scores of functional principal components analysis or on wavelets coefficients, functional regression and aggregation of individual curves predictions by functional regression trees or functional random forests. Robust versions of these estimators are then proposed by following the approach to robust estimation based on conditional biais presented before.Finally, we suggest four estimators of mean curves by sampling in presence of partially or totally unobserved trajectories. The first estimator is a reweighting estimator where the weights are determined using a temporal non parametric kernel smoothing adapted to the context of finite population and missing data and the other ones rely on imputation of missing data. Missing parts of the curves are determined either by using the smoothing estimator presented before, or by nearest neighbours imputation adapted to functional data or by a variant of linear interpolation which takes into account the mean trajectory of the entire sample. Variance approximations are proposed for each method and all the estimators are compared to each other on real datasets for various missing data scenarios.
|
Page generated in 0.0962 seconds