Spelling suggestions: "subject:"codium channel"" "subject:"codium bhannel""
31 |
Epithelial Sodium Channels in the Brain: Effect of High Salt Diet on Their ExpressionAmin, Md. Shahrier 28 June 2011 (has links)
Statement of the problem: The epithelial sodium channels (ENaC) play an important role in regulation of blood pressure (BP). Although the genes are identical in Dahl salt sensitive (S) and Dahl salt resistant (R) rats, expression of ENaC subunits is increased in kidneys of S rats on high salt diet. Intracerebroventricular (icv) infusion of ENaC blocker benzamil prevents Na+ induced hypertension. It was not known whether ENaC subunits are expressed in the brain and whether or not brain ENaC plays a role in regulation of [Na+] in CNS.
Hypothesis: 1. Epithelial sodium channels are expressed in the brain. 2. Expression of ENaC is increased in the kidneys and brain of Dahl S rats on high salt diet. 3. ENaC in the brain contributes to regulation of [Na+] in the CSF and brain interstitium.
Methods of investigation: We studied expression and distribution of the ENaC subunits and assessed the effects of icv infusion of Na+-rich aCSF in Wistar rats or high salt diet in Dahl S rats in different areas of the brain. Function of ENaC in the choroid plexus was evaluated by studying the effects of benzamil and ouabain on Na+ transport.
Major findings: In Wistar rats, both mRNA and protein of all three ENaC subunits are expressed in brain epithelia and magnocellular neurons in the supraoptic (SON) and paraventricular (PVN) nucleus. ENaC abundance is higher on the apical versus basolateral membrane of choroid cells. Benzamil decreases Na+ influx into choroid cells by 20-30% and increases CSF [Na+] by ~8 mmol/L. Na+ rich aCSF increases apical membrane expression of βENaC in the choroid cells and of α and βENaC in basolateral membrane of ependymal cells, but has no effect on neuronal ENaC. Expression of ENaC is higher in choroid cells and SON of Dahl S versus R rats and the higher expression persists on a high salt diet. High salt attenuates the ouabain blockable efflux of Na+ from choroid cells and has no effect on CSF [Na+] in Dahl R rats. In contrast, high salt does not attenuate ouabain blockable efflux of 22Na+ and CSF [Na+] increases in Dahl S.
Main Conclusion: ENaC in the brain contributes to Na+ transport into the choroid cells and appear to be involved in reabsorption of Na+ from the CSF. Aberrant regulation of Na+ transport and of Na+K+ATPase activity, might contribute to increases in CSF [Na+] in Dahl S rats on high-salt diet. ENaC in magnocellular neurons may contribute to enhanced secretion of mediators such as ‘ouabain’ leading to sympathetic hyperactivity in Dahl S rats.
|
32 |
Epithelial Sodium Channels in the Brain: Effect of High Salt Diet on Their ExpressionAmin, Md. Shahrier 28 June 2011 (has links)
Statement of the problem: The epithelial sodium channels (ENaC) play an important role in regulation of blood pressure (BP). Although the genes are identical in Dahl salt sensitive (S) and Dahl salt resistant (R) rats, expression of ENaC subunits is increased in kidneys of S rats on high salt diet. Intracerebroventricular (icv) infusion of ENaC blocker benzamil prevents Na+ induced hypertension. It was not known whether ENaC subunits are expressed in the brain and whether or not brain ENaC plays a role in regulation of [Na+] in CNS.
Hypothesis: 1. Epithelial sodium channels are expressed in the brain. 2. Expression of ENaC is increased in the kidneys and brain of Dahl S rats on high salt diet. 3. ENaC in the brain contributes to regulation of [Na+] in the CSF and brain interstitium.
Methods of investigation: We studied expression and distribution of the ENaC subunits and assessed the effects of icv infusion of Na+-rich aCSF in Wistar rats or high salt diet in Dahl S rats in different areas of the brain. Function of ENaC in the choroid plexus was evaluated by studying the effects of benzamil and ouabain on Na+ transport.
Major findings: In Wistar rats, both mRNA and protein of all three ENaC subunits are expressed in brain epithelia and magnocellular neurons in the supraoptic (SON) and paraventricular (PVN) nucleus. ENaC abundance is higher on the apical versus basolateral membrane of choroid cells. Benzamil decreases Na+ influx into choroid cells by 20-30% and increases CSF [Na+] by ~8 mmol/L. Na+ rich aCSF increases apical membrane expression of βENaC in the choroid cells and of α and βENaC in basolateral membrane of ependymal cells, but has no effect on neuronal ENaC. Expression of ENaC is higher in choroid cells and SON of Dahl S versus R rats and the higher expression persists on a high salt diet. High salt attenuates the ouabain blockable efflux of Na+ from choroid cells and has no effect on CSF [Na+] in Dahl R rats. In contrast, high salt does not attenuate ouabain blockable efflux of 22Na+ and CSF [Na+] increases in Dahl S.
Main Conclusion: ENaC in the brain contributes to Na+ transport into the choroid cells and appear to be involved in reabsorption of Na+ from the CSF. Aberrant regulation of Na+ transport and of Na+K+ATPase activity, might contribute to increases in CSF [Na+] in Dahl S rats on high-salt diet. ENaC in magnocellular neurons may contribute to enhanced secretion of mediators such as ‘ouabain’ leading to sympathetic hyperactivity in Dahl S rats.
|
33 |
Modelling genetic heart diseases with patient-specific induced pluripotent stem cellsStauske, Michael 18 June 2014 (has links)
No description available.
|
34 |
Evolução de mutações no gene do canal de sódio associadas à resistência tipo Kdr em populações de Aedes (Stegomyia) aegypti do Estado de São Paulo / Evolution of mutations in the sodium channel gene associated with resistance type KDR in populations of Aedes (Stegomyia) aegypti of the State of São PauloEliane Batista 15 August 2012 (has links)
O mosquito Aedes (Stegomyia) aegypti Linnaeus, 1762 é o principal vetor do vírus do dengue sorotipo 1-4 (DEN 1-4) e da febre amarela. Por não haver vacina disponível, a redução da transmissão da dengue só pode ser alcançada mediante o controle do vetor. Entre as medidas de controle, os órgãos responsáveis utilizam-se de compostos químicos, principalmente organofosforados. Além disso, devido ao grande incomodo causado pelo Aedes, a população faz uso de inseticidas domésticos, a base de piretróides, na tentativa de eliminar e ou repelir o mosquito. As repetidas aplicações destes inseticidas e seu uso contínuo possibilitam o desenvolvimento de resistência em populações de mosquitos, processo resultante do efeito seletivo de exposição a dosagens que matam os indivíduos suscetíveis, sobrevivendo os resistentes, que transferem essa capacidade a seus descendentes. Dentre os mecanismos de resistência, a redução da sensibilidade do sítio alvo é dada por mutações pontuais no sitio de ação dos inseticidas. Tais mutações podem levar a uma substituição de aminoácidos na molécula alvo e a uma diminuição da afinidade do inseticida com essa molécula. No caso dos piretróides a mudança estrutural na molécula formadora do canal de sódio (Nav), sítio alvo deste inseticida, é a causa da resistência tipo knockdown resistence (kdr), um mecanismo de resistência bastante conhecido. Em Aedes aegypti, a associação entre a presença da mutação V1016I e o fenótipo de resistência a piretróide já foi verificada em algumas regiões Brasileiras, utilizando primers alelo-específicos. A mutação I1011M também está associada à resistência a piretróides e já foi descrita no Brasil. O objetivo deste estudo foi determinar a frequência destas mutações que levam às substituições V1016I e I1011M no AaNav de populações de Aedes aegypti no estado de São Paulo e avaliar a evolução desta frequência no período de dez anos. Para isso, indivíduos coletados em 2001 e 2011 tiveram o DNA extraído e primers alelo específicos foram utilizados para a realização de PCR a fim de verificar a presença da mutação. Houve um aumento significativo do alelo 1016 Ile nas populações estudadas, comparando-se os anos 2001 e 2011. Entretanto para o alelo 1011 Met, somente a população de Santos apresentou essa diferença significativa. Este aumento na frequência destas mutações pode ter sido ocasionado pela utilização de inseticidas domésticos à base de piretróides, uma vez que os órgãos de controle interromperam a utilização desses compostos / The mosquito Aedes (Stegomyia) aegypti Linnaeus, 1762 is the main vector of the virus dengue serotypes 1-4 (DEN 1-4) and the yellow fever virus. As there is not vaccine available, the reduction of the transmission of dengue can only be achieved by controlling the vector. Among the control measures, the responsible agencies use chemical compounds, organophosphate mainly. Furthermore, due to the big nuisance caused by Aedes, the population makes use of domestic insecticide, pyrethroids based, trying to eliminate or repel the mosquito. The repeated applications of these insecticides and the continuous use of them enable the resistance development in the mosquitoes population. This process is the result of selective effect of exposure to dosages that can kill the susceptible individuals, and then the surviving individuals transfer these characteristics to their descendents. Among the mechanism of resistance, the reduction of sensibility of the target site is given by punctual mutation (SNIP) in the action site of the insecticides. This mutation can lead to a substitution of amino acids in the target molecule and a reduction of affinity of the insecticide with this molecule. In the case of pyrethroids, the structural change in the forming molecule of the sodium channel (Nav), target site of this insecticide, is the cause of knockdown resistence (kdr) type. In Aedes aegypti, the association between the presence of the mutation V1016I and the pyrethroid resistance phenotype has been previously verified in many Brazilian regions, using Allele Specific primers The mutation I1011M is also associated with the pyrethroids resistance and it has been described in Brazil. The objective of the this study was to determine the frequency of the mutations that leads to the substitutions V1016I e I1011M in AaNav of the Aedes aegypti population in the state of Sao Paulo and to evaluate the evolution of this frequency in the period of ten years. Therefore, collected individuals in 2001 and 2011 had their DNA extracted and specific primers were used for PCR, in order to verify the presence of the mutation. There was a significant raise of allele 1016 Ile in the studied population, comparing the years 2001 and 2011. Nevertheless for allele 1011 Met, only the population of Santos showed this significant difference. This raise in the frequency of these mutations may have been caused by the utilization of domestic insecticides pyrethroid based, whereas the control agencies interrupted the utilization of this compost
|
35 |
Angiotensin II reguliert das Natriumkanal- Öffnungsverhalten über zwei Mechanismen: IP3-Rezeptoren aktivieren die CaMKII und ROS die PKA / Angiotensin II regulates sodium channel gating via two mechanisms: IP3-receptors activate CaMKII and ROS activate PKAFlebbe, Hannah 27 September 2017 (has links)
No description available.
|
36 |
Epithelial Sodium Channels in the Brain: Effect of High Salt Diet on Their ExpressionAmin, Md. Shahrier January 2011 (has links)
Statement of the problem: The epithelial sodium channels (ENaC) play an important role in regulation of blood pressure (BP). Although the genes are identical in Dahl salt sensitive (S) and Dahl salt resistant (R) rats, expression of ENaC subunits is increased in kidneys of S rats on high salt diet. Intracerebroventricular (icv) infusion of ENaC blocker benzamil prevents Na+ induced hypertension. It was not known whether ENaC subunits are expressed in the brain and whether or not brain ENaC plays a role in regulation of [Na+] in CNS.
Hypothesis: 1. Epithelial sodium channels are expressed in the brain. 2. Expression of ENaC is increased in the kidneys and brain of Dahl S rats on high salt diet. 3. ENaC in the brain contributes to regulation of [Na+] in the CSF and brain interstitium.
Methods of investigation: We studied expression and distribution of the ENaC subunits and assessed the effects of icv infusion of Na+-rich aCSF in Wistar rats or high salt diet in Dahl S rats in different areas of the brain. Function of ENaC in the choroid plexus was evaluated by studying the effects of benzamil and ouabain on Na+ transport.
Major findings: In Wistar rats, both mRNA and protein of all three ENaC subunits are expressed in brain epithelia and magnocellular neurons in the supraoptic (SON) and paraventricular (PVN) nucleus. ENaC abundance is higher on the apical versus basolateral membrane of choroid cells. Benzamil decreases Na+ influx into choroid cells by 20-30% and increases CSF [Na+] by ~8 mmol/L. Na+ rich aCSF increases apical membrane expression of βENaC in the choroid cells and of α and βENaC in basolateral membrane of ependymal cells, but has no effect on neuronal ENaC. Expression of ENaC is higher in choroid cells and SON of Dahl S versus R rats and the higher expression persists on a high salt diet. High salt attenuates the ouabain blockable efflux of Na+ from choroid cells and has no effect on CSF [Na+] in Dahl R rats. In contrast, high salt does not attenuate ouabain blockable efflux of 22Na+ and CSF [Na+] increases in Dahl S.
Main Conclusion: ENaC in the brain contributes to Na+ transport into the choroid cells and appear to be involved in reabsorption of Na+ from the CSF. Aberrant regulation of Na+ transport and of Na+K+ATPase activity, might contribute to increases in CSF [Na+] in Dahl S rats on high-salt diet. ENaC in magnocellular neurons may contribute to enhanced secretion of mediators such as ‘ouabain’ leading to sympathetic hyperactivity in Dahl S rats.
|
37 |
The Prostaglandin E2 Receptor 1 (EP1) Antagonizes AngII in the Collecting DuctEckert, David January 2017 (has links)
Prostaglandin E2 (PGE2), a metabolite of arachidonic acid, plays a role in water and sodium reabsorption in the collecting duct of the kidney. The collecting duct is responsible for the fine tuning of water and electrolytes. Only a small fraction of the filtered water and sodium is reabsorbed in the collecting duct, a fraction crucial to the regulation of water and electrolyte balance. This current study addresses the role of EP1, one of four PGE2 receptors, in the collecting duct. It is well documented that PGE2 inhibits sodium and water reabsorption in the collecting duct, however the exact mechanism is still debated. To determine whether the EP1 receptor mitigates AngII renal effects, an in vivo study was performed with EP1-/- mice. Global EP1-/- knockout mice were crossed with a renin overexpressing mouse line (herein denoted as “Ren”) and subjected to a high salt (HS) and low salt (LS) diet. Ren mice displayed an 11mmHg increase in systolic blood pressure (BP) on a HS diet and a decrease in BP of 14mmHg on a LS diet compared to the normal salt (NS) diet. Ren EP1-/- mice did not display a significant increase or decrease in BP on a HS or LS diet. On a LS diet, Ren EP1-/- displayed a drop in urine osmolarity (1641 mOsm/ kgH2O) vs. wild type (WT) mice (2107 mOsm/ kgH2O), consistent with increased sodium reabsorption. Narrowing in on the collecting duct, Ren EP1-/- mice had enhanced αENaC levels compared to Ren mice. In ex vivo microperfusion experiments, EP1-/- tubules show no response to PGE2 in the presence of AVP, whereas PGE2 inhibits AVP induced water reabsorption in WT mice. An increase in αENaC membrane accumulation due to EP1 gene ablation results in increased sodium reabsorption subsequently leading to a rise in BP. This contributes to the lack of salt sensitivity in EP1-/- mice. Overall, the EP1 receptor in the collecting duct represents a potential therapeutic target for the treatment of hypertension.
|
38 |
Propranolol Attenuates Late Sodium Current in a Long QT Syndrome Type 3-Human Induced Pluripotent Stem Cell Model / QT延長症候群3型ヒトiPS細胞モデルにおけるプロプラノロールの遅延ナトリウム電流抑制効果に関する検討Hirose, Sayako 26 July 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23423号 / 医博第4768号 / 新制||医||1053(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邊 直樹, 教授 湊谷 謙司, 教授 山下 潤 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
39 |
Cardiac sodium channel palmitoylation regulates channel function and cardiac excitability with implications for arrhythmia generationPei, Zifan 09 December 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The cardiac voltage-gated sodium channels (Nav1.5) play a specific and critical role in regulating cardiac electrical activity by initiating and propagating action potentials in the heart. The association between Nav1.5 dysfunctions and generation of various types of cardiac arrhythmia disease, including long-QT3 and Brugada syndrome, is well established. Many types of post-translational modifications have been shown to regulate Nav1.5 biophysical properties, including phosphorylation, glycosylation and ubiquitination. However, our understanding about how post-translational lipid modification affects sodium channel function and cellular excitability, is still lacking. The goal of this dissertation is to characterize Nav1.5 palmitoylation, one of the most common post-translational lipid modification and its role in regulating Nav1.5 function and cardiac excitability. In our studies, three lines of biochemistry evidence were shown to confirm Nav1.5 palmitoylation in both native expression background and heterologous expression system. Moreover, palmitoylation of Nav1.5 can be bidirectionally regulated using 2-Br-palmitate and palmitic acid. Our results also demonstrated that enhanced palmitoylation in both cardiomyocytes and HEK293 cells increases sodium channel availability and late sodium current activity, leading to enhanced cardiac excitability and prolonged action potential duration. In contrast, blocking palmitoylation by 2-Br-palmitiate increases closed-state channel inactivation and reduces myocyte excitability. Our computer simulation results confirmed that the observed modification in Nav1.5 gating properties by protein palmitoylation are adequate for the alterations in cardiac excitability. Mutations of potential palmitoylation sites predicted by CSS-Palm bioinformatics tool were introduced into wild-type Nav1.5 constructs using site-directed mutagenesis. Further studies revealed four cysteines (C981, C1176, C1178, C1179) as possible Nav1.5 palmitoylation sites. In particular, a mutation of one of these sites(C981) is associated with cardiac arrhythmia disease. Cysteine to phenylalanine mutation at this site largely enhances of channel closed-state inactivation and ablates sensitivity to depalmitoylation. Therefore, C981 might be the most important site that regulates Nav1.5 palmitoylation. In summary, this dissertation research identified novel post-translational modification on Nav1.5 and revealed important details behind this process. Our data provides new insights on how post-translational lipid modification alters cardiomyocyte excitability and its potential role in arrhythmogenesis.
|
40 |
Voltage-Gated Sodium Channel Nav1.6 S-Palmitoylation Regulates Channel Functions and Neuronal ExcitabilityPan, Yanling 04 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The voltage-gated sodium channels (VGSCs) are critical determinants of
neuronal excitability. They set the threshold for action potential generation. The
VGSC isoform Nav1.6 participates in various physiological processes and
contributes to distinct pathological conditions, but how Nav1.6 function is
differentially regulated in different cell types and subcellular locations is not
clearly understood. Some VGSC isoforms are subject to S-palmitoylation and
exhibit altered functional properties in different S-palmitoylation states. This
dissertation investigates the role of S-palmitoylation in Nav1.6 regulation and
explores the consequences of S-palmitoylation in modulating neuronal excitability
in physiological and pathological conditions.
The aims of this dissertation were to 1) provide biochemical and
electrophysiological evidence of Nav1.6 regulation by S-palmitoylation and
identify specific S-palmitoylation sites in Nav1.6 that are important for excitability
modulation, 2) determine the biophysical consequences of epilepsy-associated
mutations in Nav1.6 and employ computational models for excitability prediction
and 3) test the modulating effects of S-palmitoylation on aberrant Nav1.6 activity
incurred by epilepsy mutations.
To address these aims, an acyl-biotin exchange assay was used for Spalmitoylation
detection and whole-cell electrophysiology was used for channel
characterization and excitability examination. The results demonstrate that 1)
Nav1.6 is biochemically modified and functionally regulated by S-palmitoylation in
an isoform- and site-specific manner and altered S-palmitoylation status of the
channel results in substantial changes of neuronal excitability, 2) epilepsy associated Nav1.6 mutations affect different aspects of channel function, but may
all converge to gain-of-function alterations with enhanced resurgent currents and
increased neuronal excitability and 3) S-palmitoylation can target specific Nav1.6
properties and could possibly be used to rescue abnormal channel function in
diseased conditions. Overall, this dissertation reveals S-palmitoylation as a new
mechanism for Nav1.6 regulation. This knowledge is critical for understanding
the potential role of S-palmitoylation in isoform-specific regulation for VGSCs and
providing potential targets for the modulation of excitability disorders. / 2022-05-06
|
Page generated in 0.0406 seconds