• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 15
  • 7
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 69
  • 33
  • 28
  • 18
  • 17
  • 12
  • 11
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Künstliche und selbstorganisierte Nanokomposite basierend auf oxidischen Verbindungen / Artificial and self-organized nano composites based on oxidic compounds

Schnittger, Sven 18 August 2011 (has links)
No description available.
62

Composition Analysis Of NiTi Thin Films Sputtered From A Mosaic Target : Synthesis And Simulation

Vincent, Abhilash 11 1900 (has links) (PDF)
No description available.
63

Synthesis of silicon nanocrystal memories by sputter deposition

Schmidt, Jan Uwe 15 October 2004 (has links)
In Silizium-Nanokristall-Speichern werden im Gate-Oxid eines Feldeffekttransistors eingebettete Silizium Nanokristalle genutzt, um Elektronen lokal zu speichern. Die gespeicherte Ladung bestimmt dann den Zustand der Speicherzelle. Ein wichtiger Aspekt in der Technologie dieser Speicher ist die Erzeugung der Nanokristalle mit einerwohldefinierten Größenverteilung und einem bestimmten Konzentrationsprofil im Gate-Oxid. In der vorliegenden Arbeit wurde dazu ein sehr flexibler Ansatz untersucht: die thermische Ausheilung von SiO2/SiOx (x < 2) Stapelschichten. Es wurde ein Sputterverfahren entwickelt, das die Abscheidung von SiO2 und SiOx Schichten beliebiger Zusammensetzung erlaubt. Die Bildung der Nanokristalle wurde in Abhängigkeit vom Ausheilregime und der SiOx Zusammensetzung charakterisiert, wobei unter anderem Methoden wie Photolumineszenz, Infrarot-Absorption, spektroskopische Ellipsometrie und Elektronenmikroskopie eingesetzt wurden. Anhand von MOS-Kondensatoren wurden die elektrischen Eigenschaften derart hergestellter Speicherzellen untersucht. Die Funktionalität der durch Sputterverfahren hergestellten Nanokristall-Speicher wurde erfolgreich nachgewiesen. / In silicon nanocrystal memories, electronic charge is discretely stored in isolated silicon nanocrystals embedded in the gate oxide of a field effect transistor. The stored charge determines the state of the memory cell. One important aspect in the technology of silicon nanocrystal memories is the formation of nanocrystals near the SiO2-Si interface, since both, the size distribution and the depth profile of the area density of nanocrystals must be controlled. This work has focussed on the formation of gate oxide stacks with embedded nanocrystals using a very flexible approach: the thermal annealing of SiO2/SiOx (x < 2) stacks. A sputter deposition method allowing to deposit SiO2 and SiOx films of arbitrary composition has been developed and optimized. The formation of Si NC during thermal annealing of SiOX has been investigated experimentally as a function of SiOx composition and annealing regime using techniques such as photoluminescence, infrared absorption, spectral ellipsometry, and electron microscopy. To proof the concept, silicon nanocrystal memory capacitors have been prepared and characterized. The functionality of silicon nanocrystal memory devices based on sputtered gate oxide stacks has been successfully demonstrated.
64

Erarbeitung eines Raumtemperatur-Waferbondverfahrens basierend auf integrierten und reaktiven nanoskaligen Multilagensystemen

Bräuer, Jörg 24 January 2014 (has links)
Die vorliegende Arbeit beschreibt einen neuartigen Fügeprozess, das sogenannte reaktive Fügen bzw. Bonden. Hierbei werden sich selbsterhaltene exotherme Reaktionen in nanoskaligen Schichtsystemen als lokale Wärmequelle für das Fügen unterschiedlichster Substrate der Mikrosystemtechnik verwendet. Das Bonden mit den reaktiven Systemen unterscheidet sich von herkömmlichen Verfahren der Aufbau- und Verbindungstechnik primär dadurch, dass durch die rasche Reaktionsausbreitung bei gleichzeitig kleinem Reaktionsvolumen die Fügetemperaturen unmittelbar auf die Fügefläche beschränkt bleiben. Entgegen den herkömmlichen Fügeverfahren mit Wärmeeintrag im Volumen, schont das neue Verfahren empfindliche Bauteile und Materialien mit unterschiedlichsten thermischen Ausdehnungskoeffizienten lassen sich besser verbinden. In der vorliegenden Arbeit werden die Grundlagen zur Dimensionierung, Prozessierung und Integration der gesputterten reaktiven Materialsysteme beschrieben. Diese Systeme werden verwendet, um heterogene Materialien mit unterschiedlichen Durchmessern innerhalb kürzester Zeit auf Wafer-Ebene und bei Raumtemperatur zu bonden. Die so erzeugten Verbindungen werden hinsichtlich der Mikrostruktur, der Zuverlässigkeit sowie der Dichtheit untersucht und bewertet. Zusätzlich wird die Temperaturverteilung in der Fügezone während des Fügeprozesses mit numerischen Methoden vorhergesagt.
65

Stress and Microstructural Evolution During the Growth of Transition Metal Oxide Thin Films by PVD

Narayanachari, K V L V January 2015 (has links) (PDF)
System on Chip (SoC) and System in Package (SiP) are two electronic technologies that involve integrating multiple functionalities onto a single platform. When the platform is a single wafer, as in SOC, it requires the ability to deposit various materials that enable the different functions on to an underlying substrate that can host the electronic circuitry. Transition metal oxides which have a wide range of properties are ideal candidates for the functional material. Si wafer on which micro-electronics technology is widely commercialized is the ideal host platform. Integrating oxides with Si, generally in the form of thin films as required by microelectronics technology, is however a challenge. It starts with the fact that the properties of crystalline oxides to be exploited in performing various functions are direction dependent. Thus, thin films of these oxides need to be deposited on Si in certain crystallographic orientations. Even if a suitably oriented Si wafer surface were available, it does not always provide for epitaxial growth a critical requirement for controlling the crystalline orientation of thin films. This is because Si surface is covered by an amorphous oxide of Si (SiOx). Thus, during growth of the functional oxide, an ambience in which the Si itself will not oxidize needs to be provided. In addition, during thin film growth on either Si or SiOx surface stresses are generated from various sources. Stress and its relaxation are also associated with the formation and evolution of defects. Both, stress and defects need to be managed in order to harness their beneficial effects and prevent detrimental ones. Given the requirement of SoC technology and the problem associated, the research work reported in this thesis was hence concerned with the precise controlling the stress and microstructure in oxide thin films deposited on Si substrates. In order to do so a versatile, ultra high vacuum (UHV) thin film with a base pressure of 10-9 Torr was designed and built as part of this study. The chamber is capable of depositing films by both sputtering (RF & DC) and pulsed laser ablation (PLD). The system has been designed to include an optical curvature measurement tool that enabled real-time stress measurement during growth. Doped zirconia, ZrO2, was chosen as the first oxide to be deposited, as it is among the few oxides that is more stable than SiOx. It is hence used as a buffer layer. It is shown in this thesis that a change in the growth rate at nucleation can lead to (100) or (111) textured films. These two are among the most commonly preferred orientation. Following nucleation a change in growth rate does not affect orientation but affects stress. Thus, independent selection of texture and stress is demonstrated in YSZ thin films on Si. A quantitative model based on the adatom motion on the growth surface and the anisotropic growth rates of the two orientations is used to explain these observations. This study was then subsequent extended to the growth on platinized Si another commonly used Si platform.. A knowledge of the stress and microstructure tailoring in cubic zirconia on Si was then extended to look at the effect of stress on electrical properties of zirconia on germanium for high-k dielectric applications. Ge channels are expected to play a key role in next generation n-MOS technology. Development of high-k dielectrics for channel control is hence essential. Interesting stress and property relations were analyzed in ZrO2/Ge. Stress and texture in pulsed laser deposited (PLD) oxides on silicon and SrTiO3 were studied. It is shown in this thesis that stress tuning is critical to achieve the highest possible dielectric constant. The effect of stress on dielectric constant is due to two reasons. The first one is an indirect effect involving the effect of stress on phase stability. The second one is the direct effect involving interatomic distance. By stress control an equivalent oxide thickness (EOT) of 0.8 nm was achieved in sputter deposited ZrO2/Ge films at 5 nm thickness. This is among the best reported till date. Finally, the effect of growth parameters and deposition geometry on the microstructural and stress evolution during deposition of SrTiO3 on Si and BaTiO3 on SrTiO3 by pulsed laser deposition is the same chamber is described.
66

Self organized formation of Ge nanocrystals in multilayers

Zschintzsch-Dias, Manuel 05 June 2012 (has links) (PDF)
The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation. In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated. Mostly the focus of this work is on the determination of the proper deposition conditions for tuning the composition of the systems investigated. For the GeOx/SiO2 multilayers this involves changing the GeOx composition between elemental Ge (x = 0) and GeO2 (x = 2), whereas for the Ge:SiOx~ 2/SiO2 multilayers this involves changing the stoichiometry of the Ge:SiOx~ 2 sublayers in the vicinity of stochiometric silica (x = 2). The deposition conditions are controlled by the variation of the deposition rate, the deposition temperature and the oxygen partial pressure. A convenient process window has been found which allows the sequential deposition of GeOx/SiO2 or Ge:SiOx ~2/SiO2 without changing the oxygen partial pressure during deposition. For stoichiometry determination Rutherford back-scattering spectrometry has been applied extensively. The phase separation in the spatially confined GeOx and Ge:SiOx ~2 sublayers was investigated by X-ray absorption spectroscopy at the Ge K-edge. The Ge sub-oxides content of the as-deposited multilayers diminishes with increasing annealing temperature, showing complete phase separation at approximately 450° C for both systems (using inert N2 at ambient pressure). With the use of chemical reducing H2 in the annealing atmosphere, the temperature regime where the GeOx phase separation occurs is lowered by approximately 100 °C. At temperatures above 400° C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO2 by H2. The Ge nanocrystal formation after subsequent annealing was investigated with X-ray scattering, Raman spectroscopy and electron microscopy. By these methods the existence of 2 - 5 nm Ge nanocrystals at annealing temperatures of 550 (GeOx) - 700° C (Ge:SiOx ~2) has been confirmed which is within the multilayer stability range. The technique used allows the production of extended multilayer stacks (50 periods ~ 300 nm) with very smooth interfaces (roughness ~ 0.5 nm). Thus it was possible to produce Ge nanocrystal layers with ultra-thin SiO2 separation layers (thickness ~ 1 nm) which offers interesting possibilities for charge transport via direct tunneling.
67

A Radio Frequency Quadrupole Instrument for use with Accelerator Mass Spectrometry: Application to Low Kinetic Energy Reactive Isobar Suppression and Gas–phase Anion Reaction Studies

Eliades, John Alexander 21 August 2012 (has links)
A radio frequency (rf) quadrupole instrument, currently known as an Isobar Separator for Anions (ISA), has been integrated into an Accelerator Mass Spectrometry (AMS) system to facilitate anion–gas reactions before the tandem accelerator. An AMS Cs+ sputter source provided > 15 keV ions that were decelerated in the prototype ISA to < 20 eV for reaction in a single collision cell and re-accelerated for AMS analysis. Reaction based isobar suppression capabilities were assessed for smaller AMS systems and a new technique for gas–phase reaction studies was developed. Isobar suppression of 36S– and 12C3– for 36Cl analysis, and YF3– and ZrF3– for 90Sr analysis were studied in NO2 with deceleration to < 12 eV. Observed attenuation cross sections, σ [x 10^–15 cm^2], were σ(S– + NO2) = 6.6, σ(C3– + NO2) = 4.2, σ(YF3– + NO2) = 7.6, σ(ZrF3– + NO2) = 19. With 8 mTorr NO2, relative attenuations of S–/Cl– ~ 10^–6, C3–/Cl– ~ 10^–7, YF3–/SrF3– ~ 5 x 10^–5 and ZrF3–/SrF3– ~ 4 x 10^–6 were observed with Cl– ~ 30% and SrF3– > 90% transmission. Current isobar attenuation limits with < 1.75 MV accelerator terminal voltage and ppm impurity levels were calculated to be 36S–/Cl– ~ 4 x 10^–16, 12C3–/Cl– ~ 1.2 x 10^–16, 90YF3–/SrF3– ~ 10^–15 and 90ZrF3–/SrF3– ~ 10^–16. Using 1.75 MV, four 36Cl reference standards in the range 4 x 10^–13 < 36Cl/Cl < 4 x 10^–11 were analyzed with 8 mTorr NO2. The measured 36Cl/Cl ratios plotted very well against the accepted values. A sample impurity content S/Cl < 6 x 10^–5 was measured and a background level of 36S–/Cl < 9 x 10^–15 was determined. Useful currents of a wide variety of anions are produced in AMS sputter sources and molecules can be identified relatively unambiguously by stripping fragments from tandem accelerators. Reactions involving YF3–, ZrF3–, S– and SO– + NO2 in the ISA analyzed by AMS are described, and some interesting reactants are identified.
68

A Radio Frequency Quadrupole Instrument for use with Accelerator Mass Spectrometry: Application to Low Kinetic Energy Reactive Isobar Suppression and Gas–phase Anion Reaction Studies

Eliades, John Alexander 21 August 2012 (has links)
A radio frequency (rf) quadrupole instrument, currently known as an Isobar Separator for Anions (ISA), has been integrated into an Accelerator Mass Spectrometry (AMS) system to facilitate anion–gas reactions before the tandem accelerator. An AMS Cs+ sputter source provided > 15 keV ions that were decelerated in the prototype ISA to < 20 eV for reaction in a single collision cell and re-accelerated for AMS analysis. Reaction based isobar suppression capabilities were assessed for smaller AMS systems and a new technique for gas–phase reaction studies was developed. Isobar suppression of 36S– and 12C3– for 36Cl analysis, and YF3– and ZrF3– for 90Sr analysis were studied in NO2 with deceleration to < 12 eV. Observed attenuation cross sections, σ [x 10^–15 cm^2], were σ(S– + NO2) = 6.6, σ(C3– + NO2) = 4.2, σ(YF3– + NO2) = 7.6, σ(ZrF3– + NO2) = 19. With 8 mTorr NO2, relative attenuations of S–/Cl– ~ 10^–6, C3–/Cl– ~ 10^–7, YF3–/SrF3– ~ 5 x 10^–5 and ZrF3–/SrF3– ~ 4 x 10^–6 were observed with Cl– ~ 30% and SrF3– > 90% transmission. Current isobar attenuation limits with < 1.75 MV accelerator terminal voltage and ppm impurity levels were calculated to be 36S–/Cl– ~ 4 x 10^–16, 12C3–/Cl– ~ 1.2 x 10^–16, 90YF3–/SrF3– ~ 10^–15 and 90ZrF3–/SrF3– ~ 10^–16. Using 1.75 MV, four 36Cl reference standards in the range 4 x 10^–13 < 36Cl/Cl < 4 x 10^–11 were analyzed with 8 mTorr NO2. The measured 36Cl/Cl ratios plotted very well against the accepted values. A sample impurity content S/Cl < 6 x 10^–5 was measured and a background level of 36S–/Cl < 9 x 10^–15 was determined. Useful currents of a wide variety of anions are produced in AMS sputter sources and molecules can be identified relatively unambiguously by stripping fragments from tandem accelerators. Reactions involving YF3–, ZrF3–, S– and SO– + NO2 in the ISA analyzed by AMS are described, and some interesting reactants are identified.
69

Self organized formation of Ge nanocrystals in multilayers

Zschintzsch-Dias, Manuel 27 April 2012 (has links)
The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation. In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated. Mostly the focus of this work is on the determination of the proper deposition conditions for tuning the composition of the systems investigated. For the GeOx/SiO2 multilayers this involves changing the GeOx composition between elemental Ge (x = 0) and GeO2 (x = 2), whereas for the Ge:SiOx~ 2/SiO2 multilayers this involves changing the stoichiometry of the Ge:SiOx~ 2 sublayers in the vicinity of stochiometric silica (x = 2). The deposition conditions are controlled by the variation of the deposition rate, the deposition temperature and the oxygen partial pressure. A convenient process window has been found which allows the sequential deposition of GeOx/SiO2 or Ge:SiOx ~2/SiO2 without changing the oxygen partial pressure during deposition. For stoichiometry determination Rutherford back-scattering spectrometry has been applied extensively. The phase separation in the spatially confined GeOx and Ge:SiOx ~2 sublayers was investigated by X-ray absorption spectroscopy at the Ge K-edge. The Ge sub-oxides content of the as-deposited multilayers diminishes with increasing annealing temperature, showing complete phase separation at approximately 450° C for both systems (using inert N2 at ambient pressure). With the use of chemical reducing H2 in the annealing atmosphere, the temperature regime where the GeOx phase separation occurs is lowered by approximately 100 °C. At temperatures above 400° C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO2 by H2. The Ge nanocrystal formation after subsequent annealing was investigated with X-ray scattering, Raman spectroscopy and electron microscopy. By these methods the existence of 2 - 5 nm Ge nanocrystals at annealing temperatures of 550 (GeOx) - 700° C (Ge:SiOx ~2) has been confirmed which is within the multilayer stability range. The technique used allows the production of extended multilayer stacks (50 periods ~ 300 nm) with very smooth interfaces (roughness ~ 0.5 nm). Thus it was possible to produce Ge nanocrystal layers with ultra-thin SiO2 separation layers (thickness ~ 1 nm) which offers interesting possibilities for charge transport via direct tunneling.:Contents 1 Introduction and motivation 1 2 Basic aspects 6 2.1 Microstructure of sub-stoichiometric oxides (SiOx, GeOx) 6 2.2 Phase transformations 9 2.3 Quantum confinement effect in nanocrystals 12 2.4 Applications of nanostructures in 3rd generation photovoltaics 17 3 Experimental setup 21 3.1 The magnetron deposition chamber 21 3.2 (Reactive) dc sputtering 22 3.3 Annealing processing 26 3.4 X-ray facilities 26 4 Analytical methods 30 4.1 Rutherford backscattering spectrometry (RBS) 30 4.2 Raman scattering 33 4.3 (Grazing incidence) X-ray diffraction (GIXRD) 35 4.4 X-ray reflectivity (XRR) 39 4.5 X-ray absorption near edge structure (XANES) 41 4.6 Transmission electron microscopy (TEM) 42 5 Properties of reactive dc magnetron sputtered Si-Ge-O (multi)layers 44 5.1 Deposition rate and film stoichiometry investigations 44 5.2 Stoichiometry dependent properties of GeOx/SiO2 multilayers 47 5.3 Lateral intercluster distance of the Ge nanocrystals in multilayers 51 6 Confined Ge nanocrystal growth in GeOx/SiO2 multilayers 54 6.1 Phase separation in GeOx single layers and GeOx/SiO2 multilayers 54 6.2 Crystallization in GeOx single layers and GeOx/SiO2 multilayers 58 6.3 Multilayer stability and smallest possible Ge nanocrystal size 60 6.4 Stacked Ge NC films with ultra thin SiO2 separation layers 66 7 Confined Ge nanocrystal growth in Ge:SiOx/SiO2 multilayers 71 7.1 Phase separation in Ge:SiOx/SiO2 multilayers 72 7.2 Crystallisation in Ge:SiOx/SiO2 multilayers 76 8 Summary and conclusions 79 List of Figures 83 List of Tables 85 Bibliography 86

Page generated in 0.0571 seconds