• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 67
  • 15
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

我國上市公司資本支出增額資訊內涵之研究 / The Incremental Information Content of Capital Expenditures of Taiwan Listed Companies

曹壽民, Tsaur, Shaw-Min Unknown Date (has links)
本文旨在探討我國上市公司除了盈餘外,資本支出是否具有增額資訊內涵。研究內容分為兩個部份,第一部份在使用狀態空間樣型探討資本支出是否有助於預測未來盈餘;第二部份根據本文推導之模式探討資本支出資訊與股標報酬之關聯。〔分為年度研究與長期研究(兩年及三年)兩個部份〕。研究結果發現: 1.除了盈餘資訊外,資本支出無法幫助吾人預測未來盈餘。 2.無論係長期或年度研究,均呈現股價領先財務報表期間現象。在長期研究中,本文發現大公司之股價有post announcement drift現象。 3.盈餘、資本支出資訊(或財務報表資訊)對股價之解釋能力視股市係屬多空頭市場而定。多頭市場解釋能力較高。 4.長期研究財務報表對股價解釋能力高於年度研究。 5.盈餘水準、資本支出水準均具增額資訊內涵,不論長期或年度研究。 6.非預期土地投資與非預期廠房設備投資對股價均具解釋能力。 7.未預期資本支出反應係數之影響因素: (1)就成長機會而言: 股票市價╱權益比愈大之公司,營收成長率愈高之公司未預期資本支出反應係數愈大。 (2)就系統風險而言: β值愈大之公司,未預期資本支出反應係數愈大。 (3)就資本支出報酬率而言: 盈餘水準、盈餘持續度愈大之公司,未預期資本支出反應係數愈大;而自有資金比率愈低之公司,未預期資本支出反應係數愈大;小公司之資本支出反應係數較大;研發水準愈高之公司,未預期資本支出反應係數愈大。 (4)就資本支出受益年限而言: 本文以產業進入障礙為資本支出受益年限之替代變數。研究結果發現各行業之資本支出反應係數與產業進入障礙正相關。 (5)資本支出型態 規模成長型公司之資本支出反應係數大於汰舊換新型公司。 / This study aims to examine the incremental information content of capital expenditures of Taiwan listed companies. Taiwan listed companies generally have intensive capital expenditure rather then research and development costs in order to sustain the growth of their performance. Thus, this study suspects that the level of capital expenditures could help predict future earnings upon which capital expenditure could incrementally explain the earnings/return relationship. Empirically, this study first investigates the relationship between current capital expenditure and future earnings. Second, in order to select the optimal earnings/return windows, this study simulates the returns window for large and small firms over various long windows. Third, this study extends Collins and Kothari (1989) and Feltham and Ohlson (1995) to investigate whether the capital expenditure would contain an incremental information content in terms of earnings/return relationship. The findings of this study can be summarized as follows. 1.Besides earnings itself, the capital expenditure cannot well predict future earnings. 2.No matter what is temporal or cross sectional study, price leads the realization of earnings. In addition, the large firm sample group demonstrates the phenomenon of post-earnings drift. 3.The capital expenditure has more explanatory power to earnings/return relationship in the bull market than in the bear market. 4.Earnings and capital expenditure level have incremental information contents in terms of earnings/return relationship. 5.Both unexpected property and unexpected plant investments have explanatory power to the stock price. 6.The determinants of capital expenditure response coefficient, including growth opportunity, systematic risk, returns on capital expenditure, beneficial period of capital expenditure, and types of capital expenditure can increase the explanatory power of earnings/return relationship.
52

Essays on numerically efficient inference in nonlinear and non-Gaussian state space models, and commodity market analysis

Djegnéné, Gbowan Barnabé 06 1900 (has links)
No description available.
53

INFLATION DYNAMICS IN THE CZECH REPUBLIC: ESTIMATING THE NEW KEYNESIAN PHILLIPS CURVE / Dynamika inflace v Česká republice: Odkad novokeynesiánské Phillipsove křivky

Milučká, Daniela January 2013 (has links)
Recent breakthrough studies by Gali and Gertler (1999), Sbordone (2002) and Roberts (2001) argue that the New Keynesian Phillips curve (based on Calvo pricing model) is empirically valid concept and they conclude that the real marginal costs are preferred driving force to output gap in inflation dynamics for open economies. Neiss and Nelson (2002) and Gali, Gertler and Salido (2001), in turn, contradict that to date, there has been only little empirical evidence to support this statement. Neiss and Nelson (2002) add that "once output gap is defined consistently with economic theory, the gap-based New Keynesian Phillips curve has a fit with data which is at least as good as the real marginal costs-based one". For this purpose, my study investigates relationship between output gap and inflation described in the hybrid New Keynesian Phillips curve. Study estimates key coefficients of the hybrid gap-based New Keynesian Phillips curve, with both forward- and backward-looking inflation components, in the Czech Republic for periods 2000Q1 - 2012Q4 using Kalman filtration. My findings suggest that (i) output gap has a significant impact on Czech inflation dynamics (ii) share of forward-looking agents predominates to backward-looking agents in the Czech Republic and (iii) Czech inflation seems to be significantly driven by change in import prices.
54

Modélisation statistique de l’état de charge des batteries électriques / Statistical modeling of the state of charge of electric batteries

Kalawoun, Jana 30 November 2015 (has links)
Les batteries électriques sont omniprésentes dans notre vie quotidienne : ordinateur, téléphone, etc. Elles jouent un rôle important dans le défi de la transition énergétique : anticiper la raréfaction des énergies fossiles et réduire la pollution, en développant le stockage des énergies renouvelables et les transports électriques. Cependant, l'estimation de l'état de charge (State of Charge – SoC) d'une batterie est difficile et les modèles de prédiction actuels sont peu robustes. En effet, une batterie est un système électrochimique complexe, dont la dynamique est influencée non seulement par ses caractéristiques internes, mais aussi par les conditions d'usages souvent non contrôlables : température, profil d’utilisation, etc. Or, une estimation précise du SoC permet de garantir une utilisation sûre de la batterie en évitant une surcharge ou surdécharge ; mais aussi d’estimer son autonomie. Dans cette étude, nous utilisons un modèle à espaces d'états gouverné par une chaîne de Markov cachée. Ce modèle est fondé sur des équations physiques et la chaîne de Markov cachée permet d’appréhender les différents «régimes de fonctionnement» de la batterie. Pour garantir l’unicité des paramètres du modèle, nous démontrons son identifiabilité à partir de contraintes simples et naturelles sur ses paramètres «physiques ». L’estimation du SoC dans un véhicule électrique doit être faîte en ligne et avec une puissance de calcul limitée. Nous estimons donc le SoC en utilisant une technique d’échantillonnage préférentiel séquentiel. D’autre part l’estimation des paramètres est faîte à partir d’une base d’apprentissage pour laquelle les états de la chaîne de Markov et le SoC ne sont pas observés. Nous développons et testons trois algorithmes adaptés à notre modèle à structure latente : un échantillonneur particulaire de Gibbs, un algorithme de Monte-Carlo EM pénalisé par des contraintes d’identifiabilité et un algorithme de Monte-Carlo EM pénalisé par une loi a priori. Par ailleurs les états cachés de la chaîne de Markov visent à modéliser les différents régimes du fonctionnement de la batterie. Nous identifions leur nombre par divers critères de sélection de modèles. Enfin, à partir de données issues de trois types de batteries (cellule, module et pack d’un véhicule électrique), notre modèle a permis d’appréhender les différentes sollicitations de la batterie et donne des estimations robustes et précises du SoC. / Electric batteries are omnipresent in our daily lives: computers, smartphones, etc. Batteries are important for anticipating the scarcity of fossil fuels and tackling their environmental impact. Therefore, estimating the State of Charge (SoC) of a battery is nowadays a challenging issue, as existing physical and statistical models are not yet robust. Indeed a battery is a complex electrochemical system. Its dynamic depends not only on its internal characteristics but also on uncontrolled usage conditions: temperature, usage profile, etc. However the SoC estimation helps to prevent overcharge and deep discharge, and to estimate the battery autonomy. In this study, the battery dynamics are described by a set of physical linear equations, switching randomly according to a Markov chain. This model is referred to as switching Markov state space model. To ensure the unicity of the model parameters, we prove its identifiability by applying straightforward and natural constraints on its “physical” parameters. Embedded applications, like electric vehicles, impose online estimated with hardware and time constraints. Therefore we estimate the SoC using a sequential importance sampling technique. Furthermore the model includes two latent variables: the SoC and the Markov chain state. Thus, to estimate the parameters, we develop and test three algorithms adapted to latent structure models: particle Gibbs sampler, Monte Carlo EM penalized with identifiability constraints, and Monte Carlo EM penalized with a prior distribution. The hidden Markov states aim to model the different “regimes” of the battery dynamics. We identify their number using different model selection criteria. Finally, when applied to various data from three battery types (cell, module and pack of an electric vehicle) our model allows us to analyze the battery dynamics and to obtain a robust and accurate SoC estimation under uncontrolled usage conditions.
55

Modélisation stochastique des marchés financiers et optimisation de portefeuille / Stochastic modeling of financial markets and portfolio optimization

Bonelli, Maxime 08 September 2016 (has links)
Cette thèse présente trois contributions indépendantes. La première partie se concentre sur la modélisation de la moyenne conditionnelle des rendements du marché actions : le rendement espéré du marché. Ce dernier est souvent modélisé à l'aide d'un processus AR(1). Cependant, des études montrent que lors de mauvaises périodes économiques la prédictibilité des rendements est plus élevée. Etant donné que le modèle AR(1) exclut par construction cette propriété, nous proposons d'utiliser un modèle CIR. Les implications sont étudiées dans le cadre d'un modèle espace-état bayésien. La deuxième partie est dédiée à la modélisation de la volatilité des actions et des volumes de transaction. La relation entre ces deux quantités a été justifiée par l'hypothèse de mélange de distribution (MDH). Cependant, cette dernière ne capture pas la persistance de la variance, à la différence des spécifications GARCH. Nous proposons un modèle à deux facteurs combinant les deux approches, afin de dissocier les variations de volatilité court terme et long terme. Le modèle révèle plusieurs régularités importantes sur la relation volume-volatilité. La troisième partie s'intéresse à l'analyse des stratégies d'investissement optimales sous contrainte «drawdown ». Le problème étudié est celui de la maximisation d'utilité à horizon fini pour différentes fonctions d'utilité. Nous calculons les stratégies optimales en résolvant numériquement l'équation de Hamilton-Jacobi-Bellman, qui caractérise le principe de programmation dynamique correspondant. En se basant sur un large panel d'expérimentations numériques, nous analysons les divergences des allocations optimales / This PhD thesis presents three independent contributions. The first part is concentrated on the modeling of the conditional mean of stock market returns: the expected market return. The latter is often modeled as an AR(1) process. However, empirical studies have found that during bad times return predictability is higher. Given that the AR(1) model excludes by construction this property, we propose to use instead a CIR model. The implications of this specification are studied within a flexible Bayesian state-space model. The second part is dedicated to the modeling of stocks volatility and trading volume. The empirical relationship between these two quantities has been justified by the Mixture of Distribution Hypothesis (MDH). However, this framework notably fails to capture the obvious persistence in stock variance, unlike GARCH specifications. We propose a two-factor model of volatility combining both approaches, in order to disentangle short-run from long-run volatility variations. The model reveals several important regularities on the volume-volatility relationship. The third part of the thesis is concerned with the analysis of optimal investment strategies under the drawdown constraint. The finite horizon expectation maximization problem is studied for different types of utility functions. We compute the optimal investments strategies, by solving numerically the Hamilton–Jacobi–Bellman equation, that characterizes the dynamic programming principle related to the stochastic control problem. Based on a large panel of numerical experiments, we analyze the divergences of optimal allocation programs
56

Beitrag zur numerischen Beschreibung des funktionellen Verhaltens von Piezoverbundmodulen

Kranz, Burkhard 12 June 2012 (has links)
Die Arbeit befasst sich mit der effizienten Simulation des funktionellen Verhaltens von Piezoverbundmodulen als Aktor oder Sensor zur Schwingungsbeeinflussung mechanischer Strukturen. Ausgehend von einem FE-Modell werden über den Ansatz energetischer Äquivalenz die effektiven elektro-mechanischen Materialparameter ermittelt. Zur Berücksichtigung im Inneren der Einheitszelle liegender Elektroden werden die elektrischen Randbedingungen der Homogenisierungslastfälle angepasst. Die Homogenisierungslastfälle werden auch genutzt, um Phasenkonzentrationen für die Beanspruchungen der Verbundkomponenten zu ermitteln. Diese Phasenkonzentrationen werden eingesetzt, um aus dem effektiven Gesamtmodell die Beanspruchungen der Komponenten zu extrahieren. Zur dynamischen Modellbildung wird die Zustandsraumbeschreibung verwendet. Die Überführung einer piezo-mechanischen FE-Diskretisierung in ein Zustandsraummodell gelingt mit der Betrachtung der mechanischen Freiheitsgrade als Zustandsvariablen. Zur Abbildung der elektrischen Impedanz im Zustandsraum muss die elektrische Kapazitätsmatrix als Durchgangsmatrix einbezogen werden. Die Reduktion des Zustandsraums basiert auf der modalen Superposition. Die modale Transformationsbasis wird um Moden ergänzt, die die Verformung bei statischer elektrischer Erregung charakterisieren. Die Zustandsraumbeschreibung wird sowohl für eine Potential- als auch für eine Ladungserregung ausgeführt. Das Zustandsraummodell wird unter Verwendung von Filtermatrizen um Ausgangssignale für die mechanischen und elektrischen Beanspruchungsgrößen erweitert. Dies gestattet eine Kopplung der Zustandsraummodelle mit den Beanspruchungsanalysen. Die Anwendung der Berechnungsmethode wird am Beispiel der im SFB/TRR PT-PIESA entwickelten Piezo-Metall-Module demonstriert, die durch direkte Integration von piezokeramischen Basiselementen in Blechstrukturen gekennzeichnet sind.:1 Einleitung 2 Grundlagen 3 Stand der Forschung 4 Beanspruchungsermittlung für piezo-mechanische Verbunde 5 Zustandsraumbeschreibung piezo-mechanischer Systeme 6 Gesamtmodell 7 Zusammenfassung / This thesis deals with the efficient simulation of the functional behaviour of piezo composite modules for applications as actuators or sensors to influence vibrations of machine structures. Based on a FE-discretisation the effective electro-mechanical material parameters of the piezo composite modules are determined with an ansatz of energetic equivalence. To consider electrodes which are located inside the representative volume element the electrical boundary conditions of the load cases for homogenisation are adapted. The load cases for homogenisation are also used to determine the phase concentrations (or fluctuation fields) of stress/strain and electric field/electric displacement field in the composite constituents. These phase concentrations are required to extract stress and strain of the composite components based on the overall model with effective material parameters. For dynamical modelling a state space representation is used. The transformation of a FE-discretisation of the piezo-mechanical system into a state space model is possible by choosing the mechanical degree of freedom as state variables. For consideration of the electrical impedance in the state space model the electrical stiffness respectively capacitance matrix has to incorporate as feedthrough matrix. The dynamical model reduction of the state space model is based on modal superposition. For the correct reproduction of the electrical impedance the modal transformation basis has to be amended by deformation modes which represent the deformation behaviour due to static electrical excitation at the electrodes. The state space representation is built for potential and charge excitation. The state space model is enhanced by filter matrices to incorporate output signals for stress/strain and also for electric field/electric displacement field. This allows the coupling of the state space models with the stress analyses. The application of the simulation method is demonstrated using the example of the piezo-metal-modules developed in the CRC/TR PT-PIESA (German: SFB/TRR PT-PIESA). These piezo-metal-modules are characterised by direct integration of piezoceramic base elements in sheet metal structures.:1 Einleitung 2 Grundlagen 3 Stand der Forschung 4 Beanspruchungsermittlung für piezo-mechanische Verbunde 5 Zustandsraumbeschreibung piezo-mechanischer Systeme 6 Gesamtmodell 7 Zusammenfassung
57

Prediction of the Average Value of State Variables for Switched Power Converters Considering the Modulation and Measuring Method

Rojas Vidal, Sebastian Sady 29 January 2020 (has links)
In power electronics, the switched converter plays a fundamental role in the efficient conversion and dynamical control of electrical energy. Due to the switching operation of these systems, overlaid disturbances come into existence in addition to the desired behavior of the variables, causing deviations in the current and voltages. From a control perspective, these disturbances are of no interest since they cannot be compensated. They can even alter the measurements given to the control system, affecting its behavior. Furthermore, during the control design, averaged models are often used, by which the switching operation is somehow disregarded. They consider instead the average behavior of the system variables. Thus, it is essential that the measuring setup provides a measurement of the average value to the control system. To accomplish this goal, there are in practice different approaches. For example, the disturbances originated by the switching operation can be either suppressed using an analog or digital filter, or the sampling of the variables can be carried out in a suitable manner, synchronous to the carrier of the modulation method. Unfortunately, the use of filters adds an extra phase shift or delay to the control loop, reducing its dynamical performance. Moreover, the synchronous sampling method provides a good approximation of the average value only if certain conditions are met, otherwise a distortion due to aliasing takes place. A method is developed in this work to predict, in every switching cycle, the average value of the system variables in a switched power converter. In this context, the work presents an alternative method to carry out the measurement of the average value, avoiding the principal drawbacks of the standard measuring methods. To achieve this, a suitable model of the converter is used, incorporating the modulation method and the type of analog-to-digital converter, either a conventional sample-and-hold or a sigma-delta converter. The measurement given by the analog-to-digital converter is used to predict the time behavior of the system variables during the present switching period and then to evaluate its average value, before the period is completed. The method allows to obtain simultaneously the average value of currents and voltages, to get rid of the delay introduced by filtering, and to avoid the drawback of sampling in the measurement, i.e. aliasing. In this work, an overview of the standard measuring methods for switched power converters is first presented. The problematics that arise from the sampling process are also discussed. Next, the theoretical grounds of the method are developed and the tools needed to implement it are derived. To illustrate its applicability, the method is used first in DC-DC converters, where the case of the buck converter is analyzed in detail. Similarly, the method is applied to a three-phase two-level voltage source converter. In both cases, simulation results and experimental verification are presented for different operational modes. The usage of the method in open and closed loop is discussed, and its effect in the system behavior is shown. The performance of the prediction method is contrasted with other standard measuring methods.
58

Joint Estimation and Calibration for Motion Sensor

Liu, Peng January 2020 (has links)
In the thesis, a calibration method for positions of each accelerometer in an Inertial Sensor Array (IMU) sensor array is designed and implemented. In order to model the motion of the sensor array in the real world, we build up a state space model. Based on the model we use, the problem is to estimate the parameters within the state space model. In this thesis, this problem is solved using Maximum Likelihood (ML) framework and two methods are implemented and analyzed. One is based on Expectation Maximization (EM) and the other is to optimize the cost function directly using Gradient Descent (GD). In the EM algorithm, an ill-conditioned problem exists in the M step, which degrades the performance of the algorithm especially when the initial error is small, and the final Mean Square Error (MSE) curve will diverge in this case. The EM algorithm with enough data samples works well when the initial error is large. In the Gradient Descent method, a reformulation of the problem avoids the ill-conditioned problem. After the parameter estimation part, we analyze the MSE curve of these parameters through the Monte Carlo Simulation. The final MSE curves show that the Gradient Descent based method is more robust in handling the numerical issues of the parameter estimation. The Gradient Descent method is also robust to noise level based on the simulation result. / I denna rapport utvecklas och implementeras en kalibreringsmethod för att skatta positionen för en grupp av accelerometrar placerade i en så kallad IMU sensor array. För att beskriva rörelsen för hela sensorgruppen, härleds en dynamisk tillståndsmodell. Problemställningen är då att skatta parametrarna i tillståndsmodellen. Detta löses med hjälp av Maximum Likelihood-metoden (ML) där två stycken algoritmer implementeras och analyseras. En baseras på Expectation Maximization (EM) och i den andra optimeras kostnadsfunktionen direkt med gradientsökning. I EM-algoritmen uppstår ett illa konditionerat delproblem i M-steget, vilket försämrar algoritmens prestanda, speciellt när det initiala felet är litet. Den resulterande MSE-kurvan kommer att avvika i detta fall. Däremot fungerar EM-algoritmen väl när antalet datasampel är tillräckligt och det initiala felet är större. I gradientsökningsmetoden undviks konditioneringsproblemen med hjälp av en omformulering. Slutligen analyseras medelkvadratfelet (MSE) för parameterskattningarna med hjälp av Monte Carlo-simulering. De resulterande MSE-kurvorna visar att gradientsökningsmetoden är mer robust mot numeriska problem, speciellt när det initiala felet är litet. Simuleringarna visar även att gradientsökning är robust mot brus.
59

Bayesian estimation of discrete signals with local dependencies. / Estimation bayésienne de signaux discrets à dépendances locales

Majidi, Mohammad Hassan 24 June 2014 (has links)
L'objectif de cette thèse est d'étudier le problème de la détection de données dans le système de communication sans fil, à la fois pour le cas de l'information d'état de canal parfaite et imparfaite au niveau du récepteur. Comme on le sait, la complexité de MLSE est exponentielle en la mémoire de canal et la cardinalité de l'alphabet symbole est rapidement ingérable, ce qui force à recourir à des approches sousoptimales. Par conséquent, en premier lieu, nous proposons une nouvelle égalisation itérative lorsque le canal est inconnu à l'émetteur et parfaitement connu au niveau du récepteur. Ce récepteur est basé sur une approche de continuation, et exploite l'idée d'approcher une fonction originale de coût d'optimisation par une suite de fonctions plus dociles et donc de réduire la complexité de calcul au récepteur.En second lieu, en vue de la détection de données sous un canal dynamique linéaire, lorsque le canal est inconnu au niveau du récepteur, le récepteur doit être en mesure d'effectuer conjointement l'égalisation et l'estimation de canal. De cette manière, on formule une représentation de modèle état-espace combiné du système de communication. Par cette représentation, nous pouvons utiliser le filltre de Kalman comme le meilleur estimateur des paramètres du canal. Le but de cette section est de motiver de façon rigoureuse la mise en place du filltre de Kalman dans l'estimation des sequences de Markov par des canaux dynamiques Gaussien. Par la présente, nous interprétons et explicitons les approximations sous-jacentes dans les approaches heuristiques.Enfin, si nous considérons une approche plus générale pour le canal dynamique non linéaire, nous ne pouvons pas utiliser le filtre de Kalman comme le meilleur estimateur. Ici, nous utilisons des modèles commutation d’espace-état (SSSM) comme modèles espace-état non linéaires. Ce modèle combine le modèle de Markov caché (HMM) et le modèle espace-état linéaire (LSSM). Pour l'estimation de canal et la detection de données, l'approche espérance et maximisation (EM) est utilisée comme approche naturelle. De cette façon, le filtre de Kalman étendu (EKF) et les filtres à particules sont évités. / The aim of this thesis is to study the problem of data detection in wireless communication system, for both case of perfect and imperfect channel state information at the receiver. As well known, the complexity of MLSE being exponential in the channel memory and in the symbol alphabet cardinality is quickly unmanageable and forces to resort to sub-optimal approaches. Therefore, first we propose a new iterative equalizer when the channel is unknown at the transmitter and perfectly known at the receiver. This receiver is based on continuation approach, and exploits the idea of approaching an original optimization cost function by a sequence of more tractable functions and thus reduce the receiver's computational complexity. Second, in order to data detection under linear dynamic channel, when the channel is unknown at the receiver, the receiver must be able to perform joint equalization and channel estimation. In this way, we formulate a combined state-space model representation of the communication system. By this representation, we can use the Kalman filter as the best estimator for the channel parameters. The aim in this section is to motivate rigorously the introduction of the Kalman filter in the estimation of Markov sequences through Gaussian dynamical channels. By this we interpret and make clearer the underlying approximations in the heuristic approaches. Finally, if we consider more general approach for non linear dynamic channel, we can not use the Kalman filter as the best estimator. Here, we use switching state-space model (SSSM) as non linear state-space model. This model combines the hidden Markov model (HMM) and linear state-space model (LSSM). In order to channel estimation and data detection, the expectation and maximization (EM) procedure is used as the natural approach. In this way extended Kalman filter (EKF) and particle filters are avoided.
60

Applications of Advanced Time Series Models to Analyze the Time-varying Relationship between Macroeconomics, Fundamentals and Pan-European Industry Portfolios / Anwendungen moderner Zeitreihenverfahren zur Analyse zeitvariabler Zusammenhänge zwischen gesamtwirtschaftlichen Entwicklungen, Fundamentaldaten und europäischen Branchenportfolios

Mergner, Sascha 04 March 2008 (has links)
No description available.

Page generated in 0.0729 seconds