• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Pricing Complex derivatives under the Heston model / Prissättning av komplexa derivat enligt Heston modellen

Naim, Omar January 2021 (has links)
The calibration of model parameters is a crucial step in the process of valuation of complex derivatives. It consists of choosing the model parameters that correspond to the implied market data especially the call and put prices. We discuss in this thesis the calibration strategy for the Heston model, one of the most used stochastic volatility models for pricing complex derivatives. The main problem with this model is that the asset price does not have a known probability distribution function. Thus we use either Fourier expansions through its characteristic function or Monte Carlo simulations to have access to it. We hence discuss the approximation induced by these methods and elaborate a calibration strategy with a focus on the choice of the objective function and the choice of inputs for the calibration. We assess that the put option prices are a better input than the call prices for the optimization function. Then through a set of experiments on simulated put prices, we find that the sum of squared error performs better choice of the objective function for the differential evolution optimization. We also establish that the put option prices where the Black Scholes delta is equal to 10\%, 25\%, 50\% 75\% and 90\% gives enough in formations on the implied volatility surface for the calibration of the Heston model. We then implement this calibration strategy on real market data of Eurostoxx50 Index and observe the same distribution of errors as in the set of experiments. / Kalibreringen av modellparametrar är ett viktigt steg i värderingen av komplexa derivat. Den består av att välja modellparametrar som motsvarar de implicita marknadsdata, särskilt köp- och säljpriserna. I denna avhandling diskuterar vi kalibreringsstrategin för Hestonmodellen, en av de mest använda modellerna för stokastisk volatilitet för prissättning av komplexa derivat. Huvudproblemet med denna modell är att tillgångspriset inte har en känd sannolikhetsfördelningsfunktion. Därför använder vi antingen Fourier-expansioner genom dess karakteristiska funktion eller Monte Carlo-simuleringar för att få tillgång till den. Vi diskuterar därför den approximation som dessa genereras av dessa metoder och utarbetar en kalibreringsstrategi med fokus på valet av målfunktion och valet av indata för kalibreringen. Vi bedömer att säljoptionspriserna är en bättre input än samtalspriserna för differentialutvecklingsoptimeringsfunktionen. Genom flera experiment med simulerade säljpriser finner vi sedan att summan av kvadratfel ger bättre val av objektivfunktionen för differentialutvecklingsoptimering. Vi konstaterar också att säljoptionspriserna där Black Scholes deltat är lika med 10\%, 25\%, 50\%, 75\% och 90\% ger tillräcklig information om den implicita volatilitetsytan för kalibrering av Hestonmodellen. Vi tillämpar sedan denna kalibreringsstrategi på verkliga marknadsdata för Eurostoxx50-indexet och observerar samma felfördelning som i experimenten.
12

Trend Fundamentals and Exchange Rate Dynamics

Huber, Florian, Kaufmann, Daniel 01 1900 (has links) (PDF)
We estimate a multivariate unobserved components stochastic volatility model to explain the dynamics of a panel of six exchange rates against the US Dollar. The empirical model is based on the assumption that both countries' monetary policy strategies may be well described by Taylor rules with a time-varying inflation target, a time-varying natural rate of unemployment, and interest rate smoothing. The estimates closely track major movements along with important time series properties of real and nominal exchange rates across all currencies considered. The model generally outperforms a benchmark model that does not account for changes in trend inflation and trend unemployment. (authors' abstract) / Series: Department of Economics Working Paper Series
13

Stochastic Volatility Models and Simulated Maximum Likelihood Estimation

Choi, Ji Eun 08 July 2011 (has links)
Financial time series studies indicate that the lognormal assumption for the return of an underlying security is often violated in practice. This is due to the presence of time-varying volatility in the return series. The most common departures are due to a fat left-tail of the return distribution, volatility clustering or persistence, and asymmetry of the volatility. To account for these characteristics of time-varying volatility, many volatility models have been proposed and studied in the financial time series literature. Two main conditional-variance model specifications are the autoregressive conditional heteroscedasticity (ARCH) and the stochastic volatility (SV) models. The SV model, proposed by Taylor (1986), is a useful alternative to the ARCH family (Engle (1982)). It incorporates time-dependency of the volatility through a latent process, which is an autoregressive model of order 1 (AR(1)), and successfully accounts for the stylized facts of the return series implied by the characteristics of time-varying volatility. In this thesis, we review both ARCH and SV models but focus on the SV model and its variations. We consider two modified SV models. One is an autoregressive process with stochastic volatility errors (AR--SV) and the other is the Markov regime switching stochastic volatility (MSSV) model. The AR--SV model consists of two AR processes. The conditional mean process is an AR(p) model , and the conditional variance process is an AR(1) model. One notable advantage of the AR--SV model is that it better captures volatility persistence by considering the AR structure in the conditional mean process. The MSSV model consists of the SV model and a discrete Markov process. In this model, the volatility can switch from a low level to a high level at random points in time, and this feature better captures the volatility movement. We study the moment properties and the likelihood functions associated with these models. In spite of the simple structure of the SV models, it is not easy to estimate parameters by conventional estimation methods such as maximum likelihood estimation (MLE) or the Bayesian method because of the presence of the latent log-variance process. Of the various estimation methods proposed in the SV model literature, we consider the simulated maximum likelihood (SML) method with the efficient importance sampling (EIS) technique, one of the most efficient estimation methods for SV models. In particular, the EIS technique is applied in the SML to reduce the MC sampling error. It increases the accuracy of the estimates by determining an importance function with a conditional density function of the latent log variance at time t given the latent log variance and the return at time t-1. Initially we perform an empirical study to compare the estimation of the SV model using the SML method with EIS and the Markov chain Monte Carlo (MCMC) method with Gibbs sampling. We conclude that SML has a slight edge over MCMC. We then introduce the SML approach in the AR--SV models and study the performance of the estimation method through simulation studies and real-data analysis. In the analysis, we use the AIC and BIC criteria to determine the order of the AR process and perform model diagnostics for the goodness of fit. In addition, we introduce the MSSV models and extend the SML approach with EIS to estimate this new model. Simulation studies and empirical studies with several return series indicate that this model is reasonable when there is a possibility of volatility switching at random time points. Based on our analysis, the modified SV, AR--SV, and MSSV models capture the stylized facts of financial return series reasonably well, and the SML estimation method with the EIS technique works very well in the models and the cases considered.
14

Stochastic Volatility Models and Simulated Maximum Likelihood Estimation

Choi, Ji Eun 08 July 2011 (has links)
Financial time series studies indicate that the lognormal assumption for the return of an underlying security is often violated in practice. This is due to the presence of time-varying volatility in the return series. The most common departures are due to a fat left-tail of the return distribution, volatility clustering or persistence, and asymmetry of the volatility. To account for these characteristics of time-varying volatility, many volatility models have been proposed and studied in the financial time series literature. Two main conditional-variance model specifications are the autoregressive conditional heteroscedasticity (ARCH) and the stochastic volatility (SV) models. The SV model, proposed by Taylor (1986), is a useful alternative to the ARCH family (Engle (1982)). It incorporates time-dependency of the volatility through a latent process, which is an autoregressive model of order 1 (AR(1)), and successfully accounts for the stylized facts of the return series implied by the characteristics of time-varying volatility. In this thesis, we review both ARCH and SV models but focus on the SV model and its variations. We consider two modified SV models. One is an autoregressive process with stochastic volatility errors (AR--SV) and the other is the Markov regime switching stochastic volatility (MSSV) model. The AR--SV model consists of two AR processes. The conditional mean process is an AR(p) model , and the conditional variance process is an AR(1) model. One notable advantage of the AR--SV model is that it better captures volatility persistence by considering the AR structure in the conditional mean process. The MSSV model consists of the SV model and a discrete Markov process. In this model, the volatility can switch from a low level to a high level at random points in time, and this feature better captures the volatility movement. We study the moment properties and the likelihood functions associated with these models. In spite of the simple structure of the SV models, it is not easy to estimate parameters by conventional estimation methods such as maximum likelihood estimation (MLE) or the Bayesian method because of the presence of the latent log-variance process. Of the various estimation methods proposed in the SV model literature, we consider the simulated maximum likelihood (SML) method with the efficient importance sampling (EIS) technique, one of the most efficient estimation methods for SV models. In particular, the EIS technique is applied in the SML to reduce the MC sampling error. It increases the accuracy of the estimates by determining an importance function with a conditional density function of the latent log variance at time t given the latent log variance and the return at time t-1. Initially we perform an empirical study to compare the estimation of the SV model using the SML method with EIS and the Markov chain Monte Carlo (MCMC) method with Gibbs sampling. We conclude that SML has a slight edge over MCMC. We then introduce the SML approach in the AR--SV models and study the performance of the estimation method through simulation studies and real-data analysis. In the analysis, we use the AIC and BIC criteria to determine the order of the AR process and perform model diagnostics for the goodness of fit. In addition, we introduce the MSSV models and extend the SML approach with EIS to estimate this new model. Simulation studies and empirical studies with several return series indicate that this model is reasonable when there is a possibility of volatility switching at random time points. Based on our analysis, the modified SV, AR--SV, and MSSV models capture the stylized facts of financial return series reasonably well, and the SML estimation method with the EIS technique works very well in the models and the cases considered.
15

Merton's Portfolio Problem under Jourdain--Sbai Model

Saadat, Sajedeh January 2023 (has links)
Portfolio selection has always been a fundamental challenge in the field of finance and captured the attention of researchers in the financial area. Merton's portfolio problem is an optimization problem in finance and aims to maximize an investor's portfolio. This thesis studies Merton's Optimal Investment-Consumption Problem under the Jourdain--Sbai stochastic volatility model and seeks to maximize the expected discounted utility of consumption and terminal wealth. The results of our study can be split into three main parts. First, we derived the Hamilton--Jacobi--Bellman equation related to our stochastic optimal control problem.  Second, we simulated the optimal controls, which are the weight of the risky asset and consumption. This has been done for all the three models within the scope of the Jourdain--Sbai model: Quadratic Gaussian, Stein & Stein, and Scott's model. Finally, we developed the system of equations after applying the Crank-Nicolson numerical scheme when solving our HJB partial differential equation.
16

Stochastic volatility Libor modeling and efficient algorithms for optimal stopping problems

Ladkau, Marcel 12 July 2016 (has links)
Die vorliegende Arbeit beschäftigt sich mit verschiedenen Aspekten der Finanzmathematik. Ein erweitertes Libor Markt Modell wird betrachtet, welches genug Flexibilität bietet, um akkurat an Caplets und Swaptions zu kalibrieren. Weiterhin wird die Bewertung komplexerer Finanzderivate, zum Beispiel durch Simulation, behandelt. In hohen Dimensionen können solche Simulationen sehr zeitaufwendig sein. Es werden mögliche Verbesserungen bezüglich der Komplexität aufgezeigt, z.B. durch Faktorreduktion. Zusätzlich wird das sogenannte Andersen-Simulationsschema von einer auf mehrere Dimensionen erweitert, wobei das Konzept des „Momentmatchings“ zur Approximation des Volaprozesses in einem Heston Modell genutzt wird. Die daraus resultierende verbesserten Konvergenz des Gesamtprozesses führt zu einer verringerten Komplexität. Des Weiteren wird die Bewertung Amerikanischer Optionen als optimales Stoppproblem betrachtet. In höheren Dimensionen ist die simulationsbasierte Bewertung meist die einzig praktikable Lösung, da diese eine dimensionsunabhängige Konvergenz gewährleistet. Eine neue Methode der Varianzreduktion, die Multilevel-Idee, wird hier angewandt. Es wird eine untere Preisschranke unter zu Hilfenahme der Methode der „policy iteration“ hergeleitet. Dafür werden Konvergenzraten für die Simulation des Optionspreises erarbeitet und eine detaillierte Komplexitätsanalyse dargestellt. Abschließend wird das Preisen von Amerikanischen Optionen unter Modellunsicherheit behandelt, wodurch die Restriktion, nur ein bestimmtes Wahrscheinlichkeitsmodell zu betrachten, entfällt. Verschiedene Modelle können plausibel sein und zu verschiedenen Optionswerten führen. Dieser Ansatz führt zu einem nichtlinearen, verallgemeinerten Erwartungsfunktional. Mit Hilfe einer verallgemeinerte Snell''sche Einhüllende wird das Bellman Prinzip hergeleitet. Dadurch kann eine Lösung durch Rückwärtsrekursion erhalten werden. Ein numerischer Algorithmus liefert untere und obere Preisschranken. / The work presented here deals with several aspects of financial mathematics. An extended Libor market model is considered offering enough flexibility to accurately calibrate to various market data for caplets and swaptions. Moreover the evaluation of more complex financial derivatives is considered, for instance by simulation. In high dimension such simulations can be very time consuming. Possible improvements regarding the complexity of the simulation are shown, e.g. factor reduction. In addition the well known Andersen simulation scheme is extended from one to multiple dimensions using the concept of moment matching for the approximation of the vola process in a Heston model. This results in an improved convergence of the whole process thus yielding a reduced complexity. Further the problem of evaluating so called American options as optimal stopping problem is considered. For an efficient evaluation of these options, particularly in high dimensions, a simulation based approach offering dimension independent convergence often happens to be the only practicable solution. A new method of variance reduction given by the multilevel idea is applied to this approach. A lower bound for the option price is obtained using “multilevel policy iteration” method. Convergence rates for the simulation of the option price are obtained and a detailed complexity analysis is presented. Finally the valuation of American options under model uncertainty is examined. This lifts the restriction of considering one particular probabilistic model only. Different models might be plausible and may lead to different option values. This approach leads to a non-linear expectation functional, calling for a generalization of the standard expectation case. A generalized Snell envelope is obtained, enabling a backward recursion via Bellman principle. A numerical algorithm to valuate American options under ambiguity provides lower and upper price bounds.
17

Lévy過程下Stochastic Volatility與Variance Gamma之模型估計與實證分析 / Estimation and Empirical Analysis of Stochastic Volatility Model and Variance Gamma Model under Lévy Processes

黃國展, Huang, Kuo Chan Unknown Date (has links)
本研究以Lévy過程為模型基礎,考慮Merton Jump及跳躍強度服從Hawkes Process的Merton Jump兩種跳躍風險,利用Particle Filter方法及EM演算法估計出模型參數並計算出對數概似值、AIC及BIC。以S&P500指數為實證資料,比較隨機波動度模型、Variance Gamma模型及兩種不同跳躍風險對市場真實價格的配適效果。實證結果顯示,隨機波動度模型其配適效果勝於Variance Gamma模型,且加入跳躍風險後可使模型配適效果提升,尤其在模型中加入跳躍強度服從Hawkes Process的Merton Jump,其配適效果更勝於Merton Jump。整體而言,本研究發現,以S&P500指數為實證資料時,SVHJ模型有較好的配適效果。 / This paper, based on the Lévy process, considers two kinds of jump risk, Merton Jump and the Merton Jump whose jump intensity follows Hawkes Process. We use Particle Filter method and EM Algorithm to estimate the model parameters and calculate the log-likelihood value, AIC and BIC. We collect the S&P500 index for our empirical analysis and then compare the goodness of fit between the stochastic volatility model, the Variance Gamma model and two different jump risks. The empirical results show that the stochastic volatility model is better than the Variance Gamma model, and it is better to consider the jump risk in the model, especially the Merton Jump whose jump intensity follows Hawkes Process. The goodness of fit is better than Merton Jump. Overall, we find SVHJ model has better goodness of fit when S&P500 index was used as the empirical data.
18

Méthodes de Monte-Carlo EM et approximations particulaires : application à la calibration d'un modèle de volatilité stochastique / Monte Carlo EM methods and particle approximations : application to the calibration of stochastic volatility model

Allaya, Mouhamad M. 09 December 2013 (has links)
Ce travail de thèse poursuit une perspective double dans l'usage conjoint des méthodes de Monte Carlo séquentielles (MMS) et de l'algorithme Espérance-Maximisation (EM) dans le cadre des modèles de Markov cachés présentant une structure de dépendance markovienne d'ordre supérieur à 1 au niveau de la composante inobservée. Tout d'abord, nous commençons par un exposé succinct de l'assise théorique des deux concepts statistiques à Travers les chapitres 1 et 2 qui leurs sont consacrés. Dans un second temps, nous nous intéressons à la mise en pratique simultanée des deux concepts au chapitre 3 et ce dans le cadre usuel ou la structure de dépendance est d'ordre 1, l'apport des méthodes MMS dans ce travail réside dans leur capacité à approximer efficacement des fonctionnelles conditionnelles bornées, notamment des quantités de filtrage et de lissage dans un cadre non linéaire et non gaussien. Quant à l'algorithme EM, il est motivé par la présence à la fois de variables observables, et inobservables (ou partiellement observées) dans les modèles de Markov Cachés et singulièrement les modèles de volatilité stochastique étudié. Après avoir présenté aussi bien l'algorithme EM que les méthodes MCS ainsi que quelques une de leurs propriétés dans les chapitres 1 et 2 respectivement, nous illustrons ces deux outils statistiques au travers de la calibration d'un modèle de volatilité stochastique. Cette application est effectuée pour des taux change ainsi que pour quelques indices boursiers au chapitre 3. Nous concluons ce chapitre sur un léger écart du modèle de volatilité stochastique canonique utilisé ainsi que des simulations de Monte Carlo portant sur le modèle résultant. Enfin, nous nous efforçons dans les chapitres 4 et 5 à fournir les assises théoriques et pratiques de l'extension des méthodes Monte Carlo séquentielles notamment le filtrage et le lissage particulaire lorsque la structure markovienne est plus prononcée. En guise d’illustration, nous donnons l'exemple d'un modèle de volatilité stochastique dégénéré dont une approximation présente une telle propriété de dépendance. / This thesis pursues a double perspective in the joint use of sequential Monte Carlo methods (SMC) and the Expectation-Maximization algorithm (EM) under hidden Mar­kov models having a Markov dependence structure of order grater than one in the unobserved component signal. Firstly, we begin with a brief description of the theo­retical basis of both statistical concepts through Chapters 1 and 2 that are devoted. In a second hand, we focus on the simultaneous implementation of both concepts in Chapter 3 in the usual setting where the dependence structure is of order 1. The contribution of SMC methods in this work lies in their ability to effectively approximate any bounded conditional functional in particular, those of filtering and smoothing quantities in a non-linear and non-Gaussian settings. The EM algorithm is itself motivated by the presence of both observable and unobservable ( or partially observed) variables in Hidden Markov Models and particularly the stochastic volatility models in study. Having presented the EM algorithm as well as the SMC methods and some of their properties in Chapters 1 and 2 respectively, we illustrate these two statistical tools through the calibration of a stochastic volatility model. This application is clone for exchange rates and for some stock indexes in Chapter 3. We conclude this chapter on a slight departure from canonical stochastic volatility model as well Monte Carlo simulations on the resulting model. Finally, we strive in Chapters 4 and 5 to provide the theoretical and practical foundation of sequential Monte Carlo methods extension including particle filtering and smoothing when the Markov structure is more pronounced. As an illustration, we give the example of a degenerate stochastic volatility model whose approximation has such a dependence property.
19

Particle-based Stochastic Volatility in Mean model / Partikel-baserad stokastisk volatilitet medelvärdes model

Kövamees, Gustav January 2019 (has links)
This thesis present a Stochastic Volatility in Mean (SVM) model which is estimated using sequential Monte Carlo methods. The SVM model was first introduced by Koopman and provides an opportunity to study the intertemporal relationship between stock returns and their volatility through inclusion of volatility itself as an explanatory variable in the mean-equation. Using sequential Monte Carlo methods allows us to consider a non-linear estimation procedure at cost of introducing extra computational complexity. The recently developed PaRIS-algorithm, introduced by Olsson and Westerborn, drastically decrease the computational complexity of smoothing relative to previous algorithms and allows for efficient estimation of parameters. The main purpose of this thesis is to investigate the volatility feedback effect, i.e. the relation between expected return and unexpected volatility in an empirical study. The results shows that unanticipated shocks to the return process do not explain expected returns. / Detta examensarbete presenterar en stokastisk volatilitets medelvärdes (SVM) modell som estimeras genom sekventiella Monte Carlo metoder. SVM-modellen introducerades av Koopman och ger en möjlighet att studera den samtida relationen mellan aktiers avkastning och deras volatilitet genom att inkludera volatilitet som en förklarande variabel i medelvärdes-ekvationen. Sekventiella Monte Carlo metoder tillåter oss att använda icke-linjära estimerings procedurer till en kostnad av extra beräkningskomplexitet. Den nyligen utvecklad PaRIS-algoritmen, introducerad av Olsson och Westerborn, minskar drastiskt beräkningskomplexiteten jämfört med tidigare algoritmer och tillåter en effektiv uppskattning av parametrar. Huvudsyftet med detta arbete är att undersöka volatilitets-återkopplings-teorin d.v.s. relationen mellan förväntad avkastning och oväntad volatilitet i en empirisk studie. Resultatet visar på att oväntade chockar i avkastningsprocessen inte har förklarande förmåga över förväntad avkastning.
20

Numerical methods for pricing American put options under stochastic volatility / Dominique Joubert

Joubert, Dominique January 2013 (has links)
The Black-Scholes model and its assumptions has endured its fair share of criticism. One problematic issue is the model’s assumption that market volatility is constant. The past decade has seen numerous publications addressing this issue by adapting the Black-Scholes model to incorporate stochastic volatility. In this dissertation, American put options are priced under the Heston stochastic volatility model using the Crank- Nicolson finite difference method in combination with the Projected Over-Relaxation method (PSOR). Due to the early exercise facility, the pricing of American put options is a challenging task, even under constant volatility. Therefore the pricing problem under constant volatility is also included in this dissertation. It involves transforming the Black-Scholes partial differential equation into the heat equation and re-writing the pricing problem as a linear complementary problem. This linear complimentary problem is solved using the Crank-Nicolson finite difference method in combination with the Projected Over-Relaxation method (PSOR). The basic principles to develop the methods necessary to price American put options are covered and the necessary numerical methods are derived. Detailed algorithms for both the constant and the stochastic volatility models, of which no real evidence could be found in literature, are also included in this dissertation. / MSc (Applied Mathematics), North-West University, Potchefstroom Campus, 2013

Page generated in 0.0758 seconds