• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 38
  • 19
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 199
  • 199
  • 68
  • 54
  • 53
  • 48
  • 44
  • 37
  • 31
  • 30
  • 26
  • 25
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Kvantitativ kartläggning av ekosystemtjänsten dagvatten- och flödesreglering : i Stockholms innerstad med verktyget ArcGIS / Quantitative mapping of the ecosystem service Stormwater treatment and Flow regulation : in the city of Stockholm using the tool ArcGIS

Osslund, Fabian, Alm, Max-Bernhard January 2018 (has links)
Till följd av klimatförändringar förväntas mer intensiva nederbördsmönster i framtiden. Dagvattenhantering är en essentiell del i urbana miljöer för att motverka översvämningar vid stora vattenflöden. Grön infrastruktur bidrar till dagvattenhanteringen genom dess ekosystemtjänst dagvatten- och flödesreglering. I uppsatsen undersöks ekosystemtjänstens kvantitativa potential att fånga upp vatten under ett 10-årsregn med varaktigheten en timme, med syftet att få en approximativ bild av grön infrastrukturs potentiella bidrag till dagvattenhanteringen i Stockholms innerstad. Studien är baserad på beräkningar i ArcGIS genom att försöka kvantifiera den gröna infrastrukturens bidragande parametrar till ekosystemtjänsten dagvatten- och flödesreglering. Resultatet av studien visade att dagens gröna infrastruktur har potential att ta hand om 26 % av ett 10-årsregn med varaktighet en timme, motsvarande siffra för nederbördsprojektioner för ett 10-årsregn år 2100 var 21 %. Uppsatsen redogör även för klimatförändringarnas påverkan på ekosystemtjänsten. / As a consequence of global warming, future precipitation patterns are predicted to be more intense. Thus, stormwater treatment plays an essential role in the urban environment to prevent flooding. Green infrastructure contributes to the treatment of stormwater through its ecosystem service “Stormwater treatment and flow regulation”. The objective of this study was to quantify the capacity of this ecosystem service by the use of Geographical Information Systems (GIS) for a precipitation event with a return period of 10 years and a duration of one hour. The aim was to get an estimation of the potential contribution by green infrastructure to the capacity of stormwater treatment in the inner city of Stockholm. The result of the study was a potential capacity of 26 % of a precipitation event with a return period of 10 years and a duration of one hour. Future predictions of that same precipitation event in the year of 2100 resulted in a capacity of 21%. The thesis also presents the predicted consequences of climate change to the ecosystem service.
132

Kvantitativ kartläggning av ekosystemtjänsten dagvatten- och flödesreglering : i Stockholms innerstad med verktyget ArcGIS / Quantitative mapping of the ecosystem service Stormwater treatment and Flow regulation : in the city of Stockholm using the tool ArcGIS

Osslund, Fabian, Alm, Max-Bernhard January 2018 (has links)
Till följd av klimatförändringar förväntas mer intensiva nederbördsmönster i framtiden. Dagvattenhantering är en essentiell del i urbana miljöer för att motverka översvämningar vid stora vattenflöden. Grön infrastruktur bidrar till dagvattenhanteringen genom dess ekosystemtjänst dagvatten- och flödesreglering. I uppsatsen undersöks ekosystemtjänstens kvantitativa potential att fånga upp vatten under ett 10-årsregn med varaktigheten en timme, med syftet att få en approximativ bild av grön infrastrukturs potentiella bidrag till dagvattenhanteringen i Stockholms innerstad. Studien är baserad på beräkningar i ArcGIS genom att försöka kvantifiera den gröna infrastrukturens bidragande parametrar till ekosystemtjänsten dagvatten- och flödesreglering. Resultatet av studien visade att dagens gröna infrastruktur har potential att ta hand om 26 % av ett 10-årsregn med varaktighet en timme, motsvarande siffra för nederbördsprojektioner för ett 10-årsregn år 2100 var 21 %. Uppsatsen redogör även för klimatförändringarnas påverkan på ekosystemtjänsten. / As a consequence of global warming, future precipitation patterns are predicted to be more intense. Thus, stormwater treatment plays an essential role in the urban environment to prevent flooding. Green infrastructure contributes to the treatment of stormwater through its ecosystem service “Stormwater treatment and flow regulation”. The objective of this study was to quantify the capacity of this ecosystem service by the use of Geographical Information Systems (GIS) for a precipitation event with a return period of 10 years and a duration of one hour. The aim was to get an estimation of the potential contribution by green infrastructure to the capacity of stormwater treatment in the inner city of Stockholm. The result of the study was a potential capacity of 26 % of a precipitation event with a return period of 10 years and a duration of one hour. Future predictions of that same precipitation event in the year of 2100 resulted in a capacity of 21%. The thesis also presents the predicted consequences of climate change to the ecosystem service.
133

Development of Treatment Train Techniques for the Evaluation of Low Impact Development in Urban Regions

Hardin, Mike 01 January 2014 (has links)
Stormwater runoff from urban areas is a major source of pollution to surface water bodies. The discharge of nutrients such as nitrogen and phosphorus is particularly damaging as it results in harmful algal blooms which can limit the beneficial use of a water body. Stormwater best management practices (BMPs) have been developed over the years to help address this issue. While BMPs have been investigated for years, their use has been somewhat limited due to the fact that much of the data collected is for specific applications, in specific regions, and it is unknown how these systems will perform in other regions and for other applications. Additionally, the research was spread across the literature and performance data was not easily accessible or organized in a convenient way. Recently, local governments and the USEPA have begun to collect this data in BMP manuals to help designers implement this technology. That being said, many times a single BMP is insufficient to meet water quality and flood control needs in urban areas. A treatment train approach is required in these regions. In this dissertation, the development of methodologies to evaluate the performance of two BMPs, namely green roofs and pervious pavements is presented. Additionally, based on an extensive review of the literature, a model was developed to assist in the evaluation of site stormwater plans using a treatment train approach for the removal of nutrients due to the use of BMPs. This model is called the Best Management Practices Treatment for Removal on an Annual basis Involving Nutrients in Stormwater (BMPTRAINS) model. The first part of this research examined a previously developed method for designing green roofs for hydrologic efficiency. The model had not been tested for different designs and assumed that evapotranspiration was readily available for all regions. This work tested this methodology against different designs, both lab scale and full scale. Additionally, the use of the Blaney-Criddle equation was examined as a simple way to determine the ET for regions where data was not readily available. It was shown that the methods developed for determination of green roof efficiency had good agreement with collected data. Additionally, the use of the Blaney-Criddle equation for estimation of ET had good agreement with collected and measured data. The next part of this research examined a method to design pervious pavements. The water storage potential is essential to the successful design of these BMPs. This work examined the total and effective porosities under clean, sediment clogged, and rejuvenated conditions. Additionally, a new type of porosity was defined called operating porosity. This new porosity was defined as the average of the clean effective porosity and the sediment clogged effective porosity. This porosity term was created due to the fact that these systems exist in the exposed environment and subject to sediment loading due to site erosion, vehicle tracking, and spills. Due to this, using the clean effective porosity for design purposes would result in system failure for design type storm events towards the end of its service life. While rejuvenation techniques were found to be somewhat effective, it was also observed that often sediment would travel deep into the pavement system past the effective reach of vacuum sweeping. This was highly dependent on the pore structure of the pavement surface layer. Based on this examination, suggested values for operating porosity were presented which could be used to calculate the storage potential of these systems and subsequent curve number for design purposes. The final part of this work was the development of a site evaluation model using treatment train techniques. The BMPTRAINS model relied on an extensive literature review to gather data on performance of 15 different BMPs, including the two examined as part of this work. This model has 29 different land uses programmed into it and a user defined option, allowing for wide applicability. Additionally, this model allows a watershed to be split into up to four different catchments, each able to have their own distinct pre- and post-development conditions. Based on the pre- and post-development conditions specified by the user, event mean concentrations (EMCs) are assigned. These EMCs can also be overridden by the user. Each catchment can also contain up to three BMPs in series. If BMPs are to be in parallel, they must be in a separate catchment. The catchments can be configured in up to 15 different configurations, including series, parallel, and mixed. Again, this allows for wide applicability of site designs. The evaluation of cost is also available in this model, either in terms of capital cost or net present worth. The model allows for up to 25 different scenarios to be run comparing cost, presenting results in overall capital cost, overall net present worth, or cost per kg of nitrogen and phosphorus. The wide array of BMPs provided and the flexibility provided to the user makes this model a powerful tool for designers and regulators to help protect surface waters.
134

The Effects of BAM as an Adsorptive Media on Phosphorus Removal in Stormwater

Salamah, Sultan 01 January 2014 (has links)
To maintain the quality of receiving water bodies, it is desirable to remove total phosphorus (TP) in stormwater runoff. Many media filtration technologies have been developed to achieve TP and soluble reactive phosphorus (SRP) removal. Efficient media adsorption is essential to insure control of stormwater phosphorus inputs to the receiving water body. This project develops and analyzes a functionalized Biosorption Media (BAM) to remove phosphorus species from stormwater runoff. One goal of this project is to find the BAM values for coefficients such as maximum adsorption capacity (QM: 4.35E-05) for the media through SRP isotherm equilibrium experiments using the Langmuir and Freundlich models. In addition, an upflow column experiment was also performed to study BAM nutrient removal from stormwater runoff. Finally, the information from the isotherm and the column experiments are used to estimate the life expectancy or quantity required of the media, and to define the effectiveness of BAM in phosphorus removal. The result of this study shows that BAM is a feasible stormwater treatment that can remove 60% SRP and > 40% TP at temperature between 21-23°C. The media is adequately modeled by both the Langmuir and the Freundlich models over the concentration range of interest in stormwater.
135

Green Technologies and Sensor Networks for BMP Evaluation in Stormwater Retention Ponds and Wetlands.

Crawford, Anthony 01 January 2014 (has links)
The aim of this thesis is to examine and develop new techniques in stormwater Best Management Practices (BMP) for nutrient and erosion reduction and monitoring by incorporation of low impact green technologies and sensor networks. Previous research has found excessive nutrient loading of nitrogen and phosphorus species from urban stormwater runoff can lead to ecological degradation and eutrophication of receiving lakes and rivers (Fareed and Abid, 2005). In response, the Florida Department of Environmental Protection (FDEP) has set forth reduction goals as established in Total Maximum Daily Load (TMDL) reports to reduce nutrient loading and restore, or maintain, Florida water bodies to reasonable conditions. Often times current stormwater management practices are not sufficient to attain these goals and further improvements in system design are required. In order to reach these goals, affordable technologies designed for both nutrient reduction and monitoring of system performance to deepen and improve our understanding of stormwater processes are required. Firstly this thesis examines the performance of three types of continuous-cycle Media Bed Reactors (MBRs) using Bio-activated Adsorptive Media (BAM) for nutrient reduction in three retention ponds located throughout the Central Florida region. Chapter 2 examines the use of a Sloped and Horizontal MBRs arranged in a baffling configuration, whereas Chapter 3 examines the field performance of a Floating MBR arranged in an upflow configuration. Each MBR was analyzed for performance in reducing total phosphorus, soluble reactive phosphorus, total nitrogen, organic nitrogen, ammonia, nitrates + nitrites, turbidity and chlorophyll a species as measured from the influent to effluent ends of the MBR. The results of the experiments indicate that MBRs may be combined with retention ponds to provide "green technology" alternatives for inter-event treatment of nutrient species in urban stormwater runoff by use of recyclable sorption media and solar powered submersible pumps. Secondly the thesis focusses on three new devices for BMP monitoring which may be integrated into wireless networks, including a Groundwater Variable Probe (GVP) for velocity, hydraulic conductivity and dispersion measurements in a retention pond bank (Chapter 4), an affordable Wireless Automated Sampling Network (WASN) for sampling and analysis of nutrient flux gradients in retention ponds (Chapter 5), and finally an Arc-Type Automated Pulse Tracer Velocimeter (APTV) for low velocity and direction surface water measurements in retention ponds and constructed wetlands (Chapter 6). The GVP was integrated with other environmental sensing probes to create a remote sensing station, capable of real-time data analysis of sub-surface conditions including soil moisture, water table stage. Such abilities, when synced with user control capabilities, may help to increase methods of monitoring for applications including erosion control, bank stability predictions, monitoring of groundwater pollutant plume migration, and establishing hydraulic residence times through subsurface BMPs such as permeable reactive barriers. Advancement of this technology may be used by establishing additional sub-stations, thereby creating sensing networks covering broader areas on the kilometer scale. Two methods for velocity calculation were developed for the GVP for low flow (Pe < 0.2) and high flow (Pe > 0.6) conditions. The GVP was found to operate from a 26-505 cmd-1 range in the laboratory to within ±26% of expected velocities for high-flow conditions and effectively measure directional flow angles to within ±14° of expected. Hydraulic conductivity measurements made by the GVP were confirmed to within ±12% as compared to laboratory measurements. The GVP was found capable of measuring the dispersion coefficient in the laboratory, however turbulent interferences caused during injection was found to occur. Further advancement of the technology may be merited to improve dispersion coefficient measurements. Automated water sampling can provide valuable information of the spatial and temporal distribution of pollutant loading in surface water environments. This ability is expanded with the development of the WASN, providing an affordable, ease-of-use method compared to conventional automated water samplers currently on the market. The WASN was found to effectively operate by text activation via GSM cellular networks to an activation module. Propagation of the signal was distributed to collection units via XBee modules operating on point-to-point star communication using an IEEE 802.15.4 protocol. Signal communications effectively transmitted in the field during a storm event to within a range of 200 feet and collected 50 ±4 ml samples at synced timed increments. A tracer study confirmed that no mixing of samples occurs when a factor of safety of 2 is applied to flush times. This technology provides similar abilities to current market devices at down to 10% of the cost, thereby allowing much more sampling locations for a similar budget. The Arc-Type APTV is useful in establishing both low range horizontal velocity fields and expanding low range velocity measurements below detection ranges of mechanical velocity meters. Installation of a field station showed system functionality, which may be integrated with other environmental sensing probes for surface water testing. This may assist in nutrient distribution analysis and understanding the complex behavior of hydraulic retention times within wetland systems. The device was found to work effectively in both lab and field environments from a 0.02 – 5.0 cms-1 range and measure velocity within approximately ±10% of an acoustic Doppler velocimeter and within an average of ±10° of directional measurements. A drop in accuracy was measured for velocity ranges > 4.5 cms-1. The field station operated on 3G CDMA cellular network two-way communication by installation of a Raven cellular modem. Use of LoggerNet software allowed control and data acquisition from anywhere with an internet connection. This thesis also introduces brief discussions on expanding these "point" measurement technologies into sensing networks. Installation of sub-stations with communication protocols to one central master node station may broaden the sensing system into much larger kilometer-scale ranges, thus allowing large spatial analysis of environmental conditions. Such an integration into controllable sensing networks may help bridge the gap and add calibration and verification abilities between fine-resolution "point" measurements and large scale technologies such as Electrical Resistivity Tomography and satellite remote sensing. Furthermore, application of sensing networks may assist in calibration and verification of surface and groundwater models such as ModFlow, SVFlux and FEHM.
136

Functional Characterization of Green Sorption Media and Scaling of Pilot Studies for Copper Removal in Stormwater Runoff

Houmann, Cameron 01 January 2015 (has links)
Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. The results found that the use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. A suite of tests were conducted on the media mixture and the individual media components including studies of isotherm, reaction kinetics, column adsorption and reaction kinetics. Batch adsorption tests revealed that the media and media mixture follow both the Freundlich and Langmuir isotherm models and that the coconut coir had the highest affinity for copper. A screening of desorbing agents revealed that hydrochloric acid has good potential for copper desorption, while batch tests for desorption with hydrochloric acid as the desorbing agent showed the data fit the Freundlich isotherm model. Reaction kinetics revealed that the adsorption reaction took less than 1 hour to reach equilibrium and that it followed pseudo-second order kinetics for the mixture and coconut. Desorption kinetic data had high correlation with the pseudo-second order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles found that the coconut coir and media mixture were the most resilient and demonstrated that they could be used through 3 or more adsorption/desorption cycles. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg?g-1, compared to 0.021 mg?g-1 at an influent concentration of 1.0 mg?L-1 and a hydraulic retention time of 30 minutes. A physical evaluation of the media found the macro-scale properties, such as particle size distribution and mass-volume relationships, and observed the micro-scale properties such as surface and pore microstructures, crystalline structures, and elemental composition. FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The equilibrium and dynamic adsorption testing results were confirmed by elemental analysis, which showed measureable quantities of copper in the coconut coir and media mixture after adsorption followed by partial desorption. A new scaling-up theory was developed through a joint consideration of the Damköhler and Péclet numbers for a constant media particle size such that a balance between transport-controlled and reaction-controlled kinetics can be harmonized. A series of column breakthrough tests at varying hydraulic residence times revealed a clear peak adsorptive capacity for the media mixture at a Damköhler number of 2.7. The Péclet numbers for the column breakthrough tests indicated that mechanical dispersion is an important effect that requires further consideration in the scaling-up process. However, perfect similitude of the Damköhler number cannot be maintained for a constant media particle size, and relaxation of hydrodynamic similitude through variation of the Péclet number must occur.
137

Chemophysical Characteristics And Application Of Biosorption Activated Media (bam) For Copper And Nutrient Removal In Stormwater Management

Jones, Jamie 01 January 2013 (has links)
For high groundwater table areas, stormwater wet detention ponds are utilized as the preferred stormwater management throughout the state of Florida. Previous research has found that accumulations of nutrients, algae, heavy metals, pesticides, chlorophyll a, fecal coliform bacteria and low concentrations of dissolved oxygen (DO) are common characteristics of stormwater wet detention ponds. Although these pollutant levels are not regulated within the ponds, states are required to compute the pollutant load reductions through total maximum daily load (TMDL) programs to meet the water quality requirements addressed by the Clean Water Act (CWA). In this study, field sampling data of stormwater ponds throughout Florida are presented to identify concentration levels of the main contaminants of concern in the discharge of wet detention ponds. Sampling was done to identify possible sources, in addition to possible removal mechanisms via the use of specific sorption media. Nutrients were found as a main problematic pollutant, of which orthophosphate, total phosphorus, ammonia, nitrate, and total nitrogen were targeted whereas heavy metals exhibited minor concerns. Accumulation of high nutrient concentrations may be mitigated by the adoption of best management practices (BMPs) utilizing biosorption activated media (BAM) to remove phosphorus and nitrogen species through physical, chemical, and biological processes. This study aims to increase overall scientific understanding of phosphorus removal dynamics in sorption media systems via Langmuir and Freundlich isotherms and column studies. The removal of phosphorus (P) was proven effective primarily through chemophysical processes. The maximum orthophosphate adsorption capacities were determined under varying conditions of the media within the columns, which were found up to 0.000534 mg-P adsorbed per gram BAM with influent concentrations of 1 mg∙L -1 orthophosphate in distilled water and 1 hour hydraulic residence time (HRT). When using iv spiked pond water under the same conditions, the adsorption capacity was increased about 30 times to 0.01507 mg-P∙g -1 BAM presumably due to the properties and concentrations of ions affecting the diffusion rate regulating the surface orthophosphate reactions. These equilibrium media uptake values (q) were used to calculate the life expectancies of the media under varying HRT and influent concentrations of treatment. Chemophysical and biological removal capabilities of the media for total nitrogen, ammonia, and nitrate were effective in columns using 1100 g of BAM. In flow-through column conditions, ammonia had a consistent ~95% removal while effluent nitrate concentrations were highly variable due to the simultaneous nitrificationdenitrification processes once an aerobic-anaerobic environment was established. Batch column experiments simulating no-flow conditions within a media bed reactor resulted in orthophosphate removals comparable with the continuous flow conditions, increased total phosphorus effluents indicative of chemical precipitation of orthophosphate, decreased ammonia removal, and increased nitrate removal. Due to a biofilm’s sensitivity to even low copper concentrations and accumulation in ponds, a copper sorption media mix of "green" materials was generated. Freundlich and Langmuir isotherm tests concluded a successful mix resulting in copper removal efficiencies up to 96%.
138

An Internship in Environmental Science with Evans, Mechwart, Hambleton & Tilton (EMH&T)

Sallee, Rian Elizabeth 04 September 2008 (has links)
No description available.
139

Assessment of the Potential Environmental Impacts of Stormwater Management from a Life cycle perspective : A case study of stormwater treatment alternatives in Finspång Municipality / Analys av de potentiella miljöeffekterna av dagvattenhantering ur ett livscykelperspektiv : En fallstudie av dagvattenreningsalternativ i Finspångs kommun

Nieminen, Neea January 2021 (has links)
Finspång Municipality suspects that the stormwater discharge has a negative impact on the quality of lake Skutbosjön due to its poor quality. Therefore, Tyréns is currently working together with the municipality to introduce new stormwater measures that would help to improve the state of the lake. This study will provide supporting evidence for decision-making by analysing and comparing the potential environmental impacts of a detention pond, an underground detention chamber system (UDCS) and a biofiltration system by utilising life cycle assessment (LCA) methodology. Metrics used in this study include 18 mid-point impact categories that are quantified for each system’s life cycle. The modelled pond had significantly lower adverse environmental impact in 12 impact categories than other systems, and UDCS had the highest environmental impacts in 13 impact categories. For pond, majority of the impacts where attributed to the transport of bulky materials during the decommissioning phase while for UDCS and biofilters, the material production in the construction phase dominated the life cycle impacts. Overall, applying LCA in a context of stormwater management can help in gaining a better understanding of the system’s life cycle and identifying areas of improvement. / Finspångs kommun misstänker att dagvattenutsläppet till Skutbosjön har en negativ påverkan på vattenkvalitet i sjön. Därför arbetar Tyréns tillsammans med kommunen för att införa nya dagvattenåtgärder som ska bidra till att förbättra sjöns tillstånd. Denna studie kommer att ge underlag för beslutsfattande genom att analysera och jämföra den potentiella miljöpåverkan av en dagvattendamm, ett underjordiskt avsättningsmagasin och dagvattenbiofilter genom en livscykelanalys (LCA). Mätvärden som används i denna studie inkluderar 18 effektkategorier som är kvantifierade för varje systems livscykel. Den modellerade dammen hade betydligt lägre negativ miljöpåverkan i 12 effektkategorier än andra system, och avsättningsmagasinen hade den högsta miljöpåverkan i 13 effektkategorier. För dammen tillskrevs merparten av påverkan transporten av skrymmande material under byggfasen, medan för avsättningsmagasinen och dagvattenbiofilter dominerade materialproduktionen i byggfasen. Att tillämpa LCA i ett sammanhang med dagvattenhantering kan hjälpa till att få en bättre förståelse av systemets livscykel och identifiera förbättringsområden.
140

Enhancement and Evaluation of a Rainfall-Runoff Single Event Model

Salazar Mejia, Germania 12 May 2012 (has links)
Planning and design of stormwater facilities (including best management practices and low impact development) involve the calculation of peak flows and runoff volumes. Rainfall-runoff models are frequently utilized to estimate this information. A userriendly rainfall-runoff tool (LIDIA) was developed using Visual Basic for Applications in Microsoft Office Excel. This research showed comprehensive guidelines on how to setup a model in LIDIA and reported the first evaluation of LIDIA using field data. LIDIA hydrologic module was tested using 10-minute rainfall, land cover, soil series, land cover management, and runoff data from two small watersheds in North Mississippi. Eleven storm events, over a period of seven months were used for the one evaluation site and 11 storm events were used for the second case study. Overall the development and results of LIDIA tool showed in this study are positive in keeping the enhancement of the model.

Page generated in 0.096 seconds