Spelling suggestions: "subject:"butress oxydant"" "subject:"butress d'oxydant""
121 |
La dysfonction musculaire du patient Broncho-pneumopathie Chronique Obstructive : à propos de quelques mécanismes impliqués dans l’amélioration de la fonction musculaire induite par les programmes de réentrainement / Muscle dysfunction of COPD patients : about some mechanisms involved in the improvement of muscle function induced by programs trainingAbdellaoui, Aldjia 14 October 2011 (has links)
Nous ne sommes plus autorisés à parler de la BPCO comme d'une simple maladie respiratoire mais plutôt comme une maladie générale. Parmi les atteintes systémiques, la dysfonction musculaire apparaît comme un facteur clé dans la physiopathologie de la BPCO car elle domine l'évolution de la maladie. Par ailleurs, le mystère autour de l'origine exacte de cette dysfonction reste encore entier. Il est maintenant bien établi qu'au cours des épisodes d'exacerbations, la dysfonction musculaire atteint son paroxysme, de plus en absence d'accompagnement musculaire spécifique la récupération est quasi nulle. Ainsi, les objectifs de ce travail de thèse ont étés la compréhension des mécanismes impliqués, d'une part, dans la dysfonction musculaire périphérique des patients BPCO stables et instables (après épisode d'exacerbation) et, d'autre part, dans l'amélioration de la fonction musculaire après différents programmes de réentraînements à l'effort. Dans le cadre de notre première étude, nous avons rapporté que l'oxydation des protéines, plus particulièrement les protéines mitochondriales était plus élevée dans le quadriceps des patients avec une BPCO stable. De plus, nous avons montré que les épisodes d'exacerbations sont associés à une augmentation de l'oxydation des protéines, au niveau mitochondriales et contractiles, corrélée à une dysfonction musculaire. Dans un second temps, nous avons envisagé un réentrainement par électrostimulation chez les patients en cours d'exacerbation et un réentrainement individualisé au seuil ventilatoire (intensité modérée) pour les patients cliniquement stables. Nos résultats indiquent que les deux programmes d'entraînement proposés préviennent le stress oxydant musculaire et améliorent la fonction musculaire périphérique chez les patients BPCO. Cependant, les adaptations mitochondriales restent limitées chez les patients BPCO stables comparativement aux sujets contrôles. En conclusion, nos résultats montrent que les protéines contractiles et mitochondriales sont la cible d'une augmentation du stress oxydant musculaire particulièrement au cours d'une exacerbation. Par ailleurs, des programmes de réentraînement adaptés à la sévérité de la fonction musculaire préviennent les dommages liés au stress oxydant musculaire et contribuent à l'amélioration de la fonction musculaire périphérique. Ainsi, nous pensons que nos résultats pourront probablement favoriser l'amélioration de la prescription du réentraînement à l'effort chez les patients BPCO. / We are no longer allowed to consider COPD as a simple respiratory disease but rather as a systemic disease. Among the systemic effects, muscle dysfunction appears to be a key factor in the pathogenesis of COPD because it strongly influences how the disease will progress. However, the exact origin of muscle dysfunction is still unknown. It is acknowledged that during COPD exacerbations muscle dysfunction is worsened and that, in the absence of post-exacerbation muscle training, recovery is slow and partial. Thus, the objectives of this thesis were first to try to understand the cellular mechanisms involved in the peripheral muscle dysfunction in patients with stable and unstable (after exacerbations) COPD and, then, to assess different programs of physical training to improve muscle function in such patients.Concerning the identification of the mechanisms underlying peripheral muscle dysfunction, we found that protein oxidation, particularly mitochondrial protein oxidation, is higher in the quadriceps of patients with stable COPD than in control subjects. In addition, we have shown that COPD exacerbations are associated with increased muscle oxidative damage of mitochondrial and contractile proteins that is correlated with the level of muscle dysfunction. We then assessed a training protocol using neuromuscular electrostimulation for patients during COPD exacerbation and a training program of moderate intensity (ventilatory threshold) for clinically stable patients. Our results indicate that the two training programs prevent oxidative stress and improve muscle function in COPD patients. However, mitochondrial adaptation is limited in patients with stable COPD compared with controls. In conclusion, our results show that contractile and mitochondrial proteins are the target of increased oxidative stress particularly during COPD exacerbation. However, training programs tailored to the severity of muscle dysfunction can prevent further oxidative damage and contribute to improving muscle function. Our findings might help improving the choice of training programs for patients with COPD.
|
122 |
Contrôle et régulation de la biogenèse mitochondriale chez la levure Saccharomyces cerevisiae / Control and regulation of mitochondrial biogenesis in the yeast Saccharomyces cerevisiaeYoboue, Djaha Edgar 15 December 2011 (has links)
Les mitochondries sont des organites qui remplissent d'importantes fonctions au sein de la cellule eucaryote notamment dans le métabolisme énergétique. En fonction de l'état physiologique (par exemple une variation de la demande énergétique), on peut constater d'importantes variations du contenu mitochondrial cellulaire. Ces variations impliquent une modification de la biogenèse mitochondriale qui est un processus complexe mettant à contribution divers acteurs protéiques ainsi que les génomes nucléaire et mitochondrial. Nous avons étudié la régulation de la biogenèse mitochondriale chez la levure Saccharomyces cerevisiae. Chez cet organisme, un des éléments clés de la biogenèse du compartiment mitochondrial est le facteur de transcription hétéromérique HAP. Ce dernier est constitué de 4 sous-unités dont la sous-unité activatrice est la protéine Hap4p. Nous avons mis en évidence une régulation de la protéine Hap4p par le stress oxydant et l'état rédox du glutathion. Ainsi, un stress oxydatif induit par des molécules pro-oxydantes ou encore un dysfonctionnement de la chaîne respiratoire mitochondriale induit une diminution de la protéine Hap4p. Cette diminution conduit à une diminution de la quantité de marqueurs mitochondriaux tels que les cytochromes et une forte diminution de la vitesse de respiration et de la vitesse de croissance. Nous nous sommes aussi intéressés à la régulation du complexe HAP par la molécule d'hème. Nos résultats sont les premiers à clairement mettre en évidence une régulation positive de la quantité de Hap4p par l'hème et suggèrent aussi une régulation post-traductionnelle de Hap4p par l'état rédox de cette molécule. Tous ces résultats apportent des éléments supplémentaires dans l'étude des mécanismes de la communication mitochondrie-noyau et de la régulation de la biogenèse mitochondriale. / Mitochondria are organelles that play important functions in eukaryotic cell especially in energy metabolism. According to the physiological state (for example energy demand variation), mitochondrial content can vary in large amounts within the cell. These variations involve the modification of mitochondrial biogenesis which is a complex process which depends on many proteins and both nuclear and mitochondrial genomes. We studied the regulation of mitochondrial biogenesis in the yeast Saccharomyces cerevisiae. In this organism, a key component of mitochondrial biogenesis is the heteromeric transcription factor HAP. It is constituted by 4 subunits, Hap4p being the activator subunit. We showed a regulation of Hap4p protein by oxidative stress and the glutathione redox state. Thus, oxidative stress induced by pro-oxidants or by mitochondrial respiratory chain dysfunction leads to a decrease in the Hap4p protein level. This decrease of Hap4p leads to a decrease in mitochondrial markers level such as cytochromes and a decrease of the respiratory and growth rates. We also interested in the regulation of the HAP complex by heme. Our results are the first to clearly show a positive regulation of Hap4p level by heme and also suggest a post-translational regulation of Hap4p by the heme redox state. Altogether, these results represent novel pieces to the study of the mitochondria-nucleus communication and the regulation of mitochondrial biogenesis.
|
123 |
Doigts de zinc et stress oxydant : réactivité vis-à-vis de l'oxygène singulet et l'acide hypochloreux / Zinc Fingers and oxidative stress : reactivity towards hypochlorous acid and singlet oxygenLebrun, Vincent 18 November 2014 (has links)
Très répandues dans le monde vivant, les protéines à doigt de zinc constituent une super-famille dont les membres possèdent un site à zinc de formule générale [ZnII(Cys)4-X(His)X] (x=0, 1 or 2). Tandis que la majorité de ces sites joue un rôle purement structural, certains présentent une fonction réactive, comme la détection de stress oxydant par exemple. En effet, les sites doigt de zinc de Hsp33 et de RsrA ont été décrits comme des interrupteurs rédox[1,2] : transmettant l'information « stress oxydant » sous forme d'un signal structural, via l'oxydation/réduction des cystéines coordonnées au zinc, détruisant/reformant le domaine doigt de zinc. Cependant, certains aspects de l'étape d'oxydation restent mal compris.Étant donné le grand nombre des protéines à doigt de zinc et leurs rôles clés, il est de tout intérêt d'identifier les facteurs contrôlant leur réactivité afin de comprendre pourquoi certaines espèces réactives de l'oxygène (ERO) sont capable d'oxyder des doigts de zinc in vivo, contrairement à H2O2. Durant ce projet, nous avons décidé de nous focaliser sur deux ERO très puissantes et jouant un rôle important en biologie : l'acide hypochloreux (HOCl) et l'oxygène singulet (1O2). Nous étudierons la réactivité des doigts de zinc vis-à-vis de ces deux oxydant en utilisant des modèles peptidiques, reproduisant parfaitement la structure de doigts de zinc courants. / Widely spread in the living world, zinc finger proteins constitute a large superfamily, with a zinc site of general formula [ZnII(Cys)4-X(His)X] (x=0, 1 or 2) as a common feature. Whereas the majority of such sites plays a purely structural role, a few of them exhibit a reactive function (e.g. oxidative stress detection). Indeed, zinc finger sites of Hsp33 and RsrA have been shown to act as redox switches[1,2]: transmitting the information “oxidative stress” as a structural signal, by means of oxidation/reduction of its ZnII-coordinating cysteines. However, the precise mechanism of the oxidation step remains poorly understood.Given the occurrence of zinc finger proteins and their key roles, it is of high biological interest to identify factors controlling their reactivity and to understand why some ROS are able to oxidize them in vivo, on the contrary to H2O2. In this project, we decided to focus on two major ROS: hypochlorous acid (HOCl), a key player of the immune response, and singlet oxygen (1O2), produced in significant amount by photosynthetic organisms. By use of peptide model complexes, reproducing perfectly the structure of some archetypal zinc fingers, we investigated the reactivity of zinc fingers toward those ROS.
|
124 |
Contribution à l'étude du rôle de la Sélénoprotéine T dans la maladie de ParkinsonBoukhzar, Loubna 12 January 2017 (has links)
Les maladies neurodégénératives sont des pathologies progressives qui affectent le système nerveux, entraînant la mort des cellules nerveuses. Les plus connues et les plus fréquentes sont la maladie d’Alzheimer et la maladie de Parkinson, mais il en existe d’autres. Toutes ces maladies se caractérisent par la perte progressive de neurones dans des régions plus ou moins localisées du système nerveux, entraînant des complications cognitives, motrices ou perceptives. La maladie de Parkinson (MP) est causée par la dégénérescence de neurones dopaminergiques de la substance noire et de leurs terminaisons nerveuses qui normalement libèrent la dopamine dans le striatum. Les deux principaux facteurs de risque communs aux maladies neurodégénératives sont l’âge et le stress oxydant. Le stress oxydant joue un rôle central dans la physiopathologie de la MP, mais les mécanismes impliqués dans le contrôle de ce stress dans les cellules dopaminergiques ne sont pas totalement élucidés. De nombreuses études montrent que les sélénoprotéines jouent un rôle central dans le contrôle de l'homéostasie redox et la protection cellulaire, mais la contribution précise des membres de cette famille de protéines au cours des maladies neurodégénératives est encore peu connue. Des études antérieures de l’Unité ont permis de découvrir le rôle essentiel d’une nouvelle sélénoprotéine, la sélénoprotéine T (SelT) dans les processus de différenciation neuronale, mais le rôle de cette sélénoprotéine dans les processus neurodégénératifs n’était pas connu. Nous avons montré d'abord que la SelT dont l’invalidation génétique est létale pendant l'embryogenèse, exerce une puissante activité oxydoréductase de type thiorédoxine. Dans un modèle cellulaire de neurones dopaminergiques, représenté par les cellules de neuroblastome SH-SY5Y, la modification de l’expression de la SelT affecte le niveau du stress oxydant et la survie cellulaire. Le traitement de souris sauvages par des neurotoxines ciblant les neurones dopaminergiques telles que le 1-méthyl-4-phényl-1,2,3,6-tétrahydropyridine (MPTP) ou la roténone induit une expression massive de la SelT dans la voie nigro-striée, suggérant que la SelT pourrait protéger ces neurones dans les conditions de dégénérescence. En revanche, ce même traitement administré chez les souris invalidées pour la SelT dans le cerveau provoque un syndrome parkinsonien, avec apparition de symptômes moteurs confirmant donc que la présence de la SelT doit participer à la protection des neurones dopaminergiques dans des conditions mimant la MP. Les symptômes moteurs observés sont associés à un stress oxydant et une dégénérescence marquée des neurones dopaminergiques. De même, nous avons observé une diminution de la forme active de la tyrosine hydroxylase, ce qui se traduit par des taux de dopamine réduits dans le striatum des souris invalidées et traitées par les neurotoxines. Ces données montrent que la SelT est essentielle à la survie et à la fonctionnalité des neurones dopaminergiques in vitro et in vivo dans les conditions de neurodégénérescence mimant la MP. Enfin, chez les patients souffrant de la MP, nous avons observé une augmentation considérable de la SelT au niveau du caudate-putamen mais pas d’autres structures cérébrales. L’ensemble de ces résultats révèle l'activité d'une nouvelle enzyme de type thiorédoxine qui protège les neurones dopaminergiques contre le stress oxydant et empêche l’apparition précoce de symptômes moteurs sévères chez les modèles animaux de la MP. Nos données indiquent que des sélénoprotéines telles que la SelT dont les taux sont élevés chez des parkinsoniens, jouent un rôle crucial dans la protection des neurones dopaminergiques contre le stress oxydant et la mort cellulaire ouvrant ainsi la voie au développement de nouvelles stratégies de neuroprotection ciblant ces protéines dans la MP. / Neurodegenerative diseases are progressive pathologies that affect the nervous system, causing the death of nerve cells. The best known and most frequent are Alzheimer's and Parkinson's disease, but there are others. All these diseases are characterized by the progressive loss of neurons of the nervous system, leading to cognitive, motor or perceptual complications. Parkinson's disease (PD) is caused by the degeneration of dopaminergic neurons of the substantia nigra and their nerve endings that normally release dopamine into the striatum. The two main risk factors common to neurodegenerative diseases are age and oxidative stress. Oxidative stress plays a central role in the pathophysiology of PD, but the mechanisms involved in controlling this stress in dopaminergic cells are not fully elucidated. Many studies show that selenoproteins play a central role in the control of redox homeostasis and cell protection, but the precise contribution of members of this family of proteins during neurodegenerative diseases is still unknown. Previous studies performed in our laboratory have uncovered the essential role of a new selenoprotein, selenoprotein T (SelT) in the processes of neuronal differentiation, but the role of this selenoprotein in neuroprotection was not known. We first showed that SelT, whose gene knock-out is lethal during embryogenesis, exerts a potent thioredoxin-like oxidoreductase activity. In a cellular model of dopaminergic neurons, represented by SH-SY5Y neuroblastoma cells, modification of SelT expression affects the level of oxidative stress and cell survival. Treatment of wild-type mice by neurotoxins targeting dopaminergic neurons such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone induced massive expression of SelT in the nigro-striatal system, suggesting that SelT could protect these neurons under conditions of degeneration. On the other hand, this same treatment given in mice invalidated for SelT in the brain caused a parkinsonian syndrome with the appearance of motor symptoms, thus confirming that the presence of SelT must participate in the protection of dopaminergic neurons under conditions mimiking PD. The observed motor symptoms are associated with oxidative stress and marked degeneration of dopaminergic neurons. Similarly, we observed a decrease in the active form of tyrosine hydroxylase, resulting in reduced dopamine levels in the striatum of invalidated and neurotoxin-treated mice. These data show that SelT is essential for the survival and functionality of dopaminergic neurons in vitro and in vivo under the conditions of neurodegeneration mimicking PD. Finally, in patients with PD, we observed a considerable increase in SelT levels in the caudate-putamen but not in other cerebral structures. Together, these results uncovered the activity of a novel thioredoxin-like enzyme that protects dopaminergic neurons against oxidative stress and prevents the early onset of severe motor symptoms in animal models of PD. Our data indicate that selenoproteins such as SelT, whose levels are increased in PD play a crucial role in protecting dopaminergic neurons against oxidative stress and cell death, thus paving the way for the development of new neuroprotection strategies targeting these proteins in PD.
|
125 |
Des mécanismes moléculaires pathologiques aux stratégies de correction génomique in vitro de la Dystrophie Facio-Scapulo-Humérale / Molecular mechanisms and in vitro genome correction strategies of Facioscapulohumeral dystrophyBou saada, Yara 28 September 2016 (has links)
La dystrophie Facio-Scapulo-Humérale (FSHD) fait partie des maladies musculaires génétiques les plus fréquentes. Elle se caractérise par une dégénérescence progressive et asymétrique d’un groupe spécifique de muscles striés squelettiques, dont principalement les muscles faciaux, scapulaires et huméraux. D’un point de vue génétique, la FSHD est une maladie multifactorielle qui résulte d’évènements génétiques situés sur la région sub-télomérique du chromosome 4, ainsi que d’évènements épigénétiques altérant l’organisation chromatinienne du locus 4q35. Ces anomalies provoquent une relaxation chromatinienne et une surexpression de la majorité des gènes du locus 4q35, dont DUX4, gène majeur impliqué dans la FSHD. Les répercussions de l’ensemble de ces altérations se traduisent notamment par une dérégulation de la signature transcriptionnelle des myoblastes primaires issus des patients FSHD, et par des anomalies de leur différenciation myogénique in vitro et leur hypersensibilité au stress oxydant. Plusieurs aspects de la maladie demeurent incompris, et la complexité de cette myopathie rend difficile le choix d’une stratégie thérapeutique optimale. Cependant, la découverte des outils de l’édition du génome et la multiplication de leurs applications à visée thérapeutique dans le cadre de maladies humaines, notamment les myopathies, ouvre de nouvelles perspectives pour la FSHD qui reste, jusque-là, incurable.Le travail de thèse a concerné, dans un premier temps, l’implication des dommages de l’ADN et du stress oxydant dans la pathophysiologie de la FSHD. Nous avons mis en évidence l’omniprésence de ces caractéristiques cellulaires dans les myoblastes FSHD, leur lien à l’expression aberrante de DUX4 et leur participation à la morphologie défectueuse des myotubes FSHD in vitro. Dans un second temps, le travail de thèse a consisté à concevoir et à développer des outils de l’édition génomique et épigénomique, capables de cibler spécifiquement un des évènements génétiques causal de la FSHD, le variant pathogénique 4qA161 touchant un site d’attachement à la matrice nucléaire, FR-MAR. A partir de ces outils développés, deux stratégies de corrections génomique et épigénomique à visée thérapeutique peuvent être alors envisagées in vitro, ayant pour but ultime de rétablir la fonction d’insulation de FR-MAR et la conformation chromatinienne de la région 4q35. / Facioscapulohumeral dystrophy (FSHD) is one of the most common genetic myopathies characterized by a progressive and asymmetric weakening of a specific group of skeletal muscles, typically facial, shoulder girdle and upper arms muscles. FSHD is a multifactorial disease that results from the combination of genetic and epigenetic events mapped at the 4q35 locus. These genetic and epigenetic alterations lead to chromatin relaxation and the subsequent overexpression of the majority of 4q35 genes, notably DUX4, the major actor in FSHD pathology. These genomic alterations lead to molecular and cellular defects observed in vitro. Cultured-FSHD myoblasts show a distinct transcription profile, they exhibit morphological differentiation defects and are sensitive to oxidative stress. Several aspects of the disease remain poorly understood, and the elaboration of an appropriate therapeutic strategy is limited by the complexity of this myopathy. However, the discovery of genome editing tools and their successful therapeutic applications in vitro and in animal models of several human diseases, including myopathies, open doors to potential therapeutic strategies for FSHD.This work highlighted the involvement of DNA damage and oxidative stress in the pathophysiology of FSHD, by revealing their constitutive presence in FSHD myoblasts, their link to DUX4 expression and their participation in morphological defects of FSHD myotubes observed in vitro. The second part of this work was aimed at developing genome- and epigenome-editing tools capable of specifically targeting one of the genetic events causing FSHD, a pathogenic variant 4qA161 that contains an insulator and a nuclear matrix attachment site (FR-MAR). These engineered tools will be then used to develop in vitro therapeutic strategies, with the intention of restoring the insulator activity of FR-MAR and the chromatin organization of 4q35 locus.
|
126 |
développement d'approches de correction des myoblastes issus de patients atteints de la dystrophie facio-scapulo-humérale / Development of Correction Approaches for Myoblasts from Patients with Facio-Scapulohumeral DystrophyDib, Carla 05 September 2018 (has links)
La dystrophie Facio-Scapulo-Humérale est caractérisée par une faiblesse musculaire progressive et asymétrique. Elle affecte principalement les muscles faciaux, scapulaires et huméraux. L’association de plusieurs évènements épigénétiques à trois facteurs génétiques de la région subtélomérique du chromosome 4 résulte en un changement dans l’organisation chromatinienne la rendant permissive à l’expression aberrante des gènes de la région 4q35. Les myoblastes DFSH présentent des défauts de différenciation in vitro et des dérégulations dans des voies majeures comme celle de la réponse cellulaire au stress oxydant et de la différenciation myogénique. L’enjeu génétique et épigénétique complexe dans la DFSH et les limitations de la thérapie cellulaire dans son contexte laissent la DFSH jusque-là incurable. Toutefois les avancées dans les thérapies cellulaires et génétiques des myopathies ouvrent des horizons pour de futures applications dans le cadre de la DFSH.Le travail de thèse s’articule autour de trois thématiques. Premièrement, nous démontrons la faisabilité de la correction phénotypique et fonctionnelle des myotubes DFSH in vitro par la fusion de 50% de myoblastes normaux avec des myoblastes DFSH. Ensuite, nous évaluons deux approches d’édition génomique. Dans la première approche, nous ciblons le site de rattachement du chromosome 4 à la matrice nucléaire, FR-MAR avec la protéine CTCF à l’aide du système CRISPR/dCas9 en vue du rétablissement de l’organisation chromatinienne et de la fonction isolatrice de FR-MAR. Dans la deuxième, nous échangeons par translocation les régions homologues 4q35 et 10q26 dans le but de corriger les myoblastes DFSH comme les trois facteurs génétiques du locus 4q35 ne sont pathogéniques que sur un fond génétique lié au chromosome 4. Finalement, nous étudions le rôle du stress oxydant dans la DFSH. / Facio-Scapulo-Humeral dystrophy is characterized by progressive and asymmetrical muscle weakness. It mainly affects the facial, scapular and humeral muscles. The association of several epigenetic events with three genetic factors of the subtelomeric region of chromosome 4 results in a chromatin organization modification making it permissive to the aberrant expression of genes in the 4q35 region. FSHD myoblasts exhibit differentiation defects in vitro and dysregulations in major pathways such as the cellular response to oxidative stress and myogenic differentiation. The limitations of cell therapy and the complex genetic and epigenetic interplay in FSHD leave it, till now, incurable. However advances in cellular and genetic therapies of myopathies open up new horizons for future applications in the FSHD context. The thesis work is structured around three themes. First, we demonstrate the feasibility of phenotypic and functional correction of FSHD myotubes in vitro by fusing 50% of normal myoblasts with FSHD myoblasts. Next, we evaluate two genomic editing approaches. In the first one, we target the site of attachment of chromosome 4 to the nuclear matrix, FR-MAR with the CTCF protein using the CRISPR / dCas9 system for the purpose of restoring the chromatin organization and the insulating function of FR-MAR. In the second one, we exchange the homologous regions 4q35 and 10q26 by translocation in order to correct the FSHD myoblasts as the three genetic factors of the 4q35 locus are pathogenic only on a genetic background linked to chromosome 4. Finally, we study the role of the oxidative stress in the FSHD.
|
127 |
Rôle du facteur de transcription Nrf2 dans la régulation des fonctions du neutrophile in vitro et dans l’allergie cutanée / The role of Nrf2 transcription factor in the regulation of neutrophil functions in vitro and in cutaneous allergyHelou, Doumet 09 October 2018 (has links)
Les neutrophiles constituent une première ligne de défense contre les agents infectieux. En revanche, leur activation incontrôlée peut exacerber certaines pathologies inflammatoires telles que les allergies cutanées. Notre équipe a montré précédemment que le facteur de transcription Nrf2 connu pour son rôle anti-oxydant, régulait l’inflammation cutanée dans l’hypersensibilité de contact (HSC). Ainsi ce travail a été mené pour évaluer in vitro l’implication de la voie Nrf2 dans les fonctions des neutrophiles et pour identifier son rôle dans le recrutement et l’activation des neutrophiles dans l’HSC.In vitro, nous montrons que la protéine Nrf2 est fortement exprimée dans les neutrophiles de la moelle osseuse. Nrf2 est fonctionnelle dans les neutrophiles stimulés : il active la transcription de gènes cibles cytoprotecteurs et diminue celle des gènes de l’inflammation. Ainsi, le prétraitement des neutrophiles avec un activateur de Nrf2 tel que le sulforaphane, réduit la production des formes réactives de l’oxygène (FRO)en réponse à une stimulation. En parallèle, l’absence de Nrf2 ne semble pas affecter la phagocytose et la nétose, deux fonctions clés du neutrophile. Enfin, Nrf2 est indispensable pour une migration optimale des neutrophiles en réponse aux chimiokines.Au cours de l’HSC induite par le dinitrochlorobenzène (DNCB), Nrf2 régule indirectement le recrutement des neutrophiles, en contrôlant le stress oxydant cutané et les voies inflammatoires impliquées dans la production de chimiokines, notamment CCL2, CCL4 et CCL11. En outre, Nrf2 induit l’augmentation d’expression du scavenger CD36 dans les macrophages et augmente ainsi leur capacité à éliminer les neutrophiles apoptotiques pour initier la résolution de l’inflammation.En conclusion, l’activation de Nrf2 dans les neutrophiles participe au contrôle de la production des FRO et la migration. En outre, Nrf2 émerge comme un effecteur clé dans le contrôle du recrutement et de la clairance des neutrophiles au cours de la réponse inflammatoire cutanée aux molécules allergisantes. La mise en évidence de ces mécanismes protecteurs de Nrf2 nous permet de proposer cette protéine comme nouvelle cible thérapeutique dans le contrôle d’inflammations cutanées chroniques. / Neutrophils form the first line of defense against infectious agents. However, their uncontrolled activation may exacerbate certain inflammatory conditions such as cutaneous allergies. Our team has previously shown that Nrf2 transcription factor known for its antioxidant role, regulates skin inflammation in contact hypersensitivity (CHS). Thus, our work was carried out to evaluate in vitro the involvement of Nrf2 pathway in neutrophil functions and to identify Nrf2 role in neutrophil recruitment and activation in CHS.In vitro, we showed that the protein Nrf2 was highly expressed in bone marrow neutrophils. Nrf2 is functional in stimulated neutrophils: it activates the transcription of cytoprotective genes and downregulates that of inflammatory genes. Thus, pretreatment of neutrophils with an Nrf2 activator such as sulforaphane reduces the production of reactive oxygen species (ROS) in response to stimulation. In parallel, Nrf2 does not affect two key functions of neutrophil, phagocytosis and netosis.Finally, Nrf2 is essential for optimal migration of neutrophils toward chemokines. In CHS induced by the dinitrochlorobenzene (DNCB), Nrf2 indirectly regulates the recruitment of neutrophils, through regulation of skin oxidant stress and inflammatory pathways that are involved in chemokines production, including CCL2, CCL4 and CCL11. In addition, Nrf2 induces the up-regulation of scavenger CD36 in macrophages and thus increases their ability to eliminate apoptotic neutrophils leading to the resolution of inflammation.In conclusion, Nrf2 activation in neutrophils participates in the control of ROS production and migration. In addition, Nrf2 emerges as an important effector in the control of neutrophil recruitment and clearance during the skin inflammatory response to allergenic molecules. The demonstration of Nrf2 protective mechanisms leads us to suggest this protein as a new therapeutic target in the control of chronic skin inflammations.
|
128 |
Functional analysis of catalase mutants and their application to the analysis of NADPH-linked pathways in oxidative signaling in Arabidopsis thaliana / Analyse fonctionnelle des mutants de la catalase et de leur application à l'analyse des voies liées au NADPH dans la signalisation oxydative chez Arabidopsis thalianaYang, Zheng 15 November 2018 (has links)
Les conditions contraignantes provoquent la modification de l’état redox et la signalisation liée aux formes actives de l’oxygène (ROS), dont les concentrations sont régulées par des systèmes antioxydant complexes. On dénombre de plus en plus de processus qui sont affectés par la régulation redox, mais nous avons toujours des connaissances fragmentaires quant à l’importance des interactions centrales entre ROS et systèmes antioxydants pour la signalisation cellulaire chez les plantes. Cette étude a utilisé des approches de génétique classique et inverse chez l’espèce-modèle, Arabidopsis thaliana dans le but d’élucider les rôles des catalases et des systèmes NADPH-glutathion-ascorbate dans le métabolisme du H₂O₂ et la signalisation qui en dépend. Une analyse de mutants ADN-T pour les trois gènes codant la catalase a révélé que la mutation cat2, à la différence de cat1 et de cat3, a fortement affecté la croissance et le développement de la plante. Lorsqu’il était cultivé dans l’air, le mutant cat2 présentait une croissance réduite à la fois au niveau de la rosette et des racines, mais ces effets étaient absents lors de la culture des plantes sous un taux de CO₂ élevé, suggérant que la taille diminuée est causée, directement ou indirectement, par une capacité compromise de métaboliser le H₂O₂ produit par la photorespiration. Une étude de cat2 cultivé dans des photopériodes différentes a mis en évidence une forte influence de la période d’illumination sur la signalisation oxydative et ceci d’une manière qui est indépendante de l’intensité du stress. Lorsque cat2 est cultivé en jours longs, le stress oxydant induit la voie de l’acide salicylique (SA), provoquant des lésions visibles sur les feuilles. Cette réponse au stress oxydant est annulée dans un double mutant cat2 g6pd5, chez lequel l’expression d’une forme spécifique de la glucose-6-phosphate déshydrogénase (G6PDH) a également été inactivée. Une approche de génétique classique a permis d’identifier plusieurs gènes susceptibles d’être impliqués dans la régulation de la formation de lésions SA-dépendante dans ce double mutant. Afin d’explorer les rôles des monodéshydroascorbate réductases (MDHAR) spécifiques dans des conditions optimales et de stress, des mutants d’insertion pour plusieurs gènes codant la MDHAR ont été obtenus. Ces mutants présentaient un phénotype sauvage dans des conditions de culture optimales, mais à la suite de son introduction dans le fond cat2, l’un d’entre eux a fortement modifié l’induction de la voie SA par le stress oxydant. Pris dans leur ensemble, les résultats soulignent l’importance de CAT2 et permettent de dessiner un lien fonctionnel entre des G6PDH et MDHAR spécifiques dans les voies de signalisation oxydative chez Arabidopsis, lien qui pourrait s’expliquer par la production de NADPH par la G6PDH et son utilisation par la MDHAR. / Stress conditions lead to modified redox states and signaling linked to reactive oxygen species (ROS), whose cellular concentrations are regulated by complex antioxidative systems. While the list of processes subject to redox regulation continues to grow, our understanding of the importance of the core interactions between ROS and plant antioxidative systems in cell signaling remains very fragmentary. This work used forward and reverse genetics to analyze the roles of catalases and the NADPH-glutathione-ascorbate systems in H₂O₂ metabolism and related signaling in the model species, Arabidopsis thaliana. An analysis of T-DNA mutants for the three catalase-encoding genes revealed that cat2, but not cat1 or cat3, substantially impacted plant growth and development. While the cat2 mutant showed decreased shoot and root size when grown in air, both these effects were annulled by growth at high CO₂, suggesting that they were caused, directly or indirectly, by compromised capacity to metabolize photorespiratory H₂O₂. An analysis conducted in cat2 rosettes following growth in different photoperiods revealed that oxidative signaling is strongly influenced by day length in a manner that is independent of stress intensity. When cat2 is grown in long days, oxidative stress induces the salicylic acid (SA) pathway, leading to visible lesions on the leaves. This response to oxidative stress is annulled in cat2 g6pd5, which has additionally lost the function of a specific glucose-6-phosphate dehydrogenase (G6PDH). A forward genetics approach identified several genes that may be involved in regulating SA-dependent lesion formation in this double mutant. To explore the roles of specific monodehydroascorbate reductases (MDHAR) in optimal and stress conditions, insertion mutants for several MDHAR-encoding genes were obtained. While these mutants showed a wild-type phenotype in optimal growth conditions, one of them markedly altered induction of the SA pathway by oxidative stress when introduced into the cat2 background. Together, the results underline the importance of CAT2 and point to functional coupling between specific NADPH-producing G6PDH and NADPH-requiring MDHAR in oxidative stress signaling pathways in Arabidopsis.
|
129 |
Role of alphaOGG1 in the Maintenance of Mitochondrial Physiology / Fonction de l'alphaOGG1 sur la maintenance de la physiologie mitochondrialeLia, Debora 16 May 2018 (has links)
Les mitochondries sont des structures uniques dans la cellule mammifère. Ces organites portent leur propre génome (ADN mitochondrial, ADNmt) qui se compose d'une petite molécule qui codifie pour 13 polypeptides de la chaîne de transport d'électrons (ETC), 22 ARNt et 2 gènes d'ARNr pour sa propre synthèse protéique. Le MTDNA est proposé pour être plus susceptible au stress oxydatif que le génome nucléaire (ADNn) parce que non seulement il manque d'histones protectrices, mais aussi en raison de sa proximité avec les complexes ETC qui sont les principaux producteurs de ROS dans les cellules de mammifères. Parmi tous les types de dommages à l'ADNmt, les dommages oxydatifs sont les plus répandus et, de loin, les mieux étudiés. La voie de réparation de l'excision de base (BER) est un mécanisme de réparation d'ADN conservé de façon évolutive qui répare les dommages de base d'ADN non volumineux. Puisque la guanine a le potentiel redox le plus bas de toute autre base dans l'ADN, elle est facilement oxydée à la 8-oxoguanine (8-oxoG) qui est l’altération la plus fréquente induite par les ROS sur les deux, l'ADNc et l'ADNmt. Si la fourche de réplication contourne le 8-oxoG avant son élimination, un A est souvent inséré sur le brin d'ADN opposé et les réplications subséquentes corrigent la transversion de G à T. Lorsqu'il est associé à la cytosine, le 8-oxoG est éliminé de l'ADN par l'ADN glycosylase de 8-oxoguanine (OGG1) qui, de cette manière, initie le procédé BER. OGG1 est une glycosylase de ménage bi fonctionnelle qui, conjointement avec d'autres enzymes BER différentes, est présente dans les compartiments nucléaires et mitochondriaux, soulignant l'importance de maintenir l'intégrité de l'ADNmt pour le fonctionnement cellulaire normal. Il a été démontré que la surexpression d'une version recombinante d'OGG1, spécifiquement destinée aux mitochondries par un signal de ciblage mitochondrial supplémentaire (MTS) (OGG1-MTS), protège les cellules d'un stress oxydatif, probablement en raison d'une efficacité accrue dans la réparation De 8-oxoG dans l'ADNmt. L'objectif principal de notre projet est d'élucider si la perte spécifique de l'activité de réparation 8-oxoG dans les mitochondries (mais pas dans le compartiment nucléaire) a un impact sur les fonctions organelles et / ou sur la viabilité cellulaire et aussi pour dévoiler le mécanisme / s Derrière les effets protecteurs d'OGG1 sur la physiologie mitochondriale et la maintenance d'ADNmt / Mitochondria are unique structures within the mammalian cell. These organelles carry their own genome (mitochondrial DNA, mtDNA) which consists of a small molecule that codifies for 13 polypeptides of the electron transport chain (ETC), 22 tRNA and 2 rRNA genes for its own protein synthesis. MtDNA is proposed to be more susceptible to oxidative stress than the nuclear genome (nDNA) because not only it lacks protective histones but also because of its proximity to ETC complexes which are the main ROS producers in mammalian cells. Among all the types of mtDNA damage, oxidative damage is the most prevalent and, by far, the best studied. Base excision repair (BER) pathway is an evolutionarily conserved DNA repair mechanism that repairs non-bulky DNA base damages. Since guanine has the lowest redox potential of any other bases in DNA, it is readily oxidized to 8-oxoguanine (8-oxoG) that is the most frequent alteration induced by ROS on both, nDNA and mtDNA. If the replication fork bypasses the 8-oxoG before its removal, an A is often inserted on the opposite DNA strand and subsequent replications fix the G to T transversion. When paired with cytosine, 8-oxoG is removed from DNA by the 8-oxoguanine DNA glycosylase (OGG1) that in such a way initiates the BER process. OGG1 is a bifunctional housekeeping glycosylase that, together with other various BER enzymes is present in both nuclear and mitochondrial compartments, highlighting the importance of maintaining mtDNA integrity for normal cellular functioning. It has been demonstrated that the overexpression of a recombinant version of OGG1, specifically targeted to mitochondria by an additional Mitochondrial Targeting Signal (MTS) (OGG1-MTS), protects the cells from an oxidative stress, likely due to an increased efficiency in the repair of 8-oxoG in mtDNA. The main goal of our project is to elucidate if the specific loss of 8-oxoG repair activity in mitochondria (but not in nuclear compartment) has an impact on the organelles’ functions and/or on cell viability and also to unveil the mechanism/s behind the protective effects of OGG1 on mitochondrial physiology and mtDNA maintenance.
|
130 |
La génération du stress oxydant comme stratégie thérapeutique anticancéreuse : Investigation des mécanismes d’action de la vitamine C, de l’auranofin et de leur combinaison / Generation of oxidative stress as an anticancer therapeutic strategy : Investigating the mechanism of action of vitamin C, auranofin and their combinationEl Banna, Nadine 18 September 2019 (has links)
L’équilibre rédox entre les niveaux des espèces réactives de l’oxygène et de l’azote (ROS, RNS) et les espèces antioxydantes cellulaires est déterminant pour le fonctionnement normal de la cellule et sa viabilité. Le déséquilibre redox ou « stress oxydant » peut altérer les voies de signalisation cellulaires et générer des dommages sur les protéines, les lipides et l’ADN des cellules. Il est ainsi associé à de nombreuses pathologies, notamment les cancers. Les cellules cancéreuses présentent une dérégulation redox importante et un stress oxydant basal intrinsèque plus élevé par rapport aux cellules normales. Elles sont donc très dépendantes des systèmes antioxydants pour leur viabilité. Ainsi, l’administration de drogues qui i) génèrent des ROS / RNS additionnelles ou ii) inhibent les systèmes antioxydant cellulaires, permet une cytotoxicité sélective contre les cellules cancéreuses. C’est la base biologique de la « thérapie anticancéreuse basée sur la modulation de l’équilibre redox». Dans ce contexte, nos travaux ont pour but de décrypter les mécanismes redox derrière l’activité anticancéreuse de la vitamine C (VitC) et de l’auranofin (AUF), seuls ou en combinaison, dans le modèle du cancer du sein. La VitC à des concentrations pharmacologiques élevées présente des propriétés pro-oxydantes. Dans cette étude, l’activité anticancéreuse de la VitC contre les lignées du cancer du sein est associée à une génération extracellulaire et intracellulaire de peroxyde d'hydrogène (H₂O₂) accompagnée d'une oxydation intracellulaire du glutathion (GSH). L’approche protéomique «redoxome» a révélé que la VitC induit une altération de l'état rédox d’enzymes antioxydantes clés et d'un certain nombre de protéines contenant des cystéines, impliquées dans les métabolismes de l’ARN et l’ADN et dans les processus énergétiques. La VitC est également responsable d’un retard dans la progression du cycle cellulaire et d’une inhibition de la traduction. Finalement, des analyses bioinformatiques ont montré que les niveaux d'expression de la peroxiredoxine 1 (PRDX1) sont corrélés à la cytotoxicité différentielle de la VitC dans les cellules cancéreuses du sein. L'AUF, un antirhumatismal, est un inhibiteur des thiorédoxines réductases qui a reçu une attention croissante pour son activité anticancéreuse. Nos travaux montrent que l’AUF inhibe également le système antioxydant du GSH et que cette inhibition est primordiale pour son activité anticancéreuse. L’AUF modifie l'état redox de nombreuses protéines impliquées dans la prolifération et le cycle cellulaire, et provoque une déplétion des dNTPs et un arrêt du cycle cellulaire. De façon remarquable, nous avons démontré que la combinaison de l’AUF et de la VitC présente une cytotoxicité accrue, synergique, médiée par H₂O₂ dans les cellules MDA-MB-231 et d'autres lignées cellulaires du cancer du sein sans trop affecter les cellules normales. In vivo, l’efficacité de la combinaison AUF/VitC a été validée sur des xénogreffes de MDA-MB-231 chez les souris sans présenter une toxicité notable, tandis que l'administration de l’AUF ou de la VitC en monothérapie n’inhibe pas la croissance tumorale. Enfin, les analyses protéomiques, bioinformatiques et fonctionnelles ont identifié la prostaglandine réductase 1 (PTGR1) comme biomarqueur prédictif de la réponse des cellules cancéreuses du sein à la combinaison AUF/VitC. En résumé, ces résultats contribuent à une meilleure compréhension des mécanismes anticancéreux de la VitC et de l'AUF, seuls et en combinaison. En particulier, la combinaison de ces deux médicaments disponibles et non toxiques pourrait être efficace contre le cancer du sein triple négatif et potentiellement d'autres cancers présentant des propriétés redox similaires. Ainsi, une évaluation préclinique et clinique de ces traitements ouvrira la voie à des nouvelles thérapies anticancéreuses basées sur la modulation de l’équilibre redox cellulaire. / Reactive oxygen and nitrogen species (ROS, RNS) homeostasis and intracellular reductive/oxidative (redox) dynamics play a key role in regulating cell fate and are critical for normal cellular functions. Oxidative stress via the disruption of redox homeostasis can lead to aberrant cell signaling and toxic oxidative damage of DNA, lipids and proteins, and is therefore associated with human pathologies such as cancers. Cancer cells experience extensive redox deregulation and generally exhibit higher intrinsic basal oxidative stress than normal cells, as a consequence, they are more dependent on their antioxidant systems for survival. Thus, the administration of a drug generating additional ROS / RNS or inhibiting cellular antioxidant systems will exert a selective cytotoxicity towards cancer cells while sparing their normal counterparts. This is the biological basis for « redox-based anticancer therapy ». The work described here aims to investigate the redox-based anticancer activity of vitamin C (VitC) and auranofin (AUF), as single drugs or in combination, in breast cancer model. VitC at high pharmacological concentrations shows pro-oxidant properties. In this study, we showed that VitC anticancer activity against breast cancer cell lines was associated to extracellular and intracellular generation of hydrogen peroxide (H₂O₂), accompanied by the oxidation of intracellular glutathione (GSH). A “redoxome” proteomics approach revealed that VitC induces alterations of the redox state of key antioxidant enzymes and a number of cysteines-containing proteins including many proteins involved in RNA and DNA metabolisms and energetic processes. Cell cycle arrest and translation inhibition are associated with VitC-induced cytotoxicity. Finally, bioinformatics analysis and biological experiments identified that peroxiredoxin 1 (PRDX1) expression levels correlate with VitC differential cytotoxicity in breast cancer cells. AUF, an antirheumatic drug and known inhibitor of thioredoxin reductases, has been repurposed recently as a potent anticancer drug. We showed that AUF acts on both the thioredoxin and GSH systems and its impact on GSH system is essential for its anticancer activity. AUF alters the redox state of a number of nucleic acid-binding proteins involved in cell proliferation, cell division and cell cycle, triggering dNTP depletion and cell cycle arrest. Importantly, we observed that the combination of AUF and VitC reveals a synergetic and H₂O₂-mediated cytotoxicity towards MDA-MB-231 cells and other breast cancer cell lines without much impact on normal cells, thus decreasing the cytotoxic concentrations of AUF or VitC single drug. The anticancer potential of AUF/VitC combinations was validated in vivo on MDA-MB-231 xenografts in mice without notable side effects, while administration of AUF or VitC as a single agent failed to suppress tumor growth. Finally, SILAC proteomics, bioinformatics analysis, and functional experiments linked prostaglandin reductase 1 (PTGR1) expression levels with breast cancer cell response to AUF/VitC combination, thus identifying a potential predictive biomarker. Overall, these results provide new insights into the anticancer mechanisms of VitC and AUF, as single drugs and in combination. In particular, this combination of two non-toxic and commonly available drugs could be efficient against triple-negative breast cancer and potentially other cancers with similar redox properties. Further assessment in preclinical and clinical studies of these drugs and combinations could open new avenues for redox-based anticancer therapy.
|
Page generated in 0.0648 seconds