Spelling suggestions: "subject:"detring theory"" "subject:"betring theory""
251 |
Quelques problèmes de géométrie énumérative, de matrices aléatoires, d'intégrabilité, étudiés via la géométrie des surfaces de Riemann / Some problems of enumerative geometry, random matrix theory, integrability, studied via complex analysisBorot, Gaëtan 23 June 2011 (has links)
La géométrie complexe est un outil puissant pour étudier les systèmes intégrables classiques, la physique statistique sur réseau aléatoire, les problèmes de matrices aléatoires, la théorie topologique des cordes, …Tous ces problèmes ont en commun la présence de relations, appelées équations de boucle ou contraintes de Virasoro. Dans le cas le plus simple, leur solution complète a été trouvée récemment, et se formule naturellement en termes de géométrie différentielle sur une surface de Riemann : la "courbe spectrale", qui dépend du problème. Cette thèse est une contribution au développement de ces techniques et de leurs applications.Pour commencer, nous abordons les questions de développement asymptotique à tous les ordres lorsque N tend vers l’infini, des intégrales N-dimensionnelles venant de la théorie des matrices aléatoires de taille N par N, ou plus généralement des gaz de Coulomb. Nous expliquons comment établir, dans les modèles de matrice beta et dans un régime à une coupure, le développement asymptotique à tous les ordres en puissances de N. Nous appliquons ces résultats à l'étude des grandes déviations du maximum des valeurs propres dans les modèles beta, et en déduisons de façon heuristique des informations sur l'asymptotique à tous les ordres de la loi de Tracy-Widom beta, pour tout beta positif. Ensuite, nous examinons le lien entre intégrabilité et équations de boucle. En corolaire, nous pouvons démontrer l'heuristique précédente concernant l'asymptotique de la loi de Tracy-Widom pour les matrices hermitiennes.Nous terminons avec la résolution de problèmes combinatoires en toute topologie. En théorie topologique des cordes, une conjecture de Bouchard, Klemm, Mariño et Pasquetti affirme que des séries génératrices bien choisies d'invariants de Gromov-Witten dans les espaces de Calabi-Yau toriques, sont solution d'équations de boucle. Nous l'avons démontré dans le cas le plus simple, où ces invariants coïncident avec les nombres de Hurwitz simples. Nous expliquons les progrès récents vers la conjecture générale, en relation avec nos travaux. En physique statistique sur réseau aléatoire, nous avons résolu le modèle O(n) trivalent sur réseau aléatoire introduit par Kostov, et expliquons la démarche à suivre pour résoudre des modèles plus généraux.Tous ces travaux soulignent l'importance de certaines "intégrales de matrices généralisées" pour les applications futures. Nous indiquons quelques éléments appelant à une théorie générale, encore basée sur des "équations de boucles", pour les calculer / Complex analysis is a powerful tool to study classical integrable systems, statistical physics on the random lattice, random matrix theory, topological string theory, … All these topics share certain relations, called "loop equations" or "Virasoro constraints". In the simplest case, the complete solution of those equations was found recently : it can be expressed in the framework of differential geometry over a certain Riemann surface which depends on the problem : the "spectral curve". This thesis is a contribution to the development of these techniques, and to their applications.First, we consider all order large N asymptotics in some N-dimensional integrals coming from random matrix theory, or more generally from "log gases" problems. We shall explain how to use loop equations to establish those asymptotics in beta matrix models within a one cut regime. This can be applied in the study of large fluctuations of the maximum eigenvalue in beta matrix models, and lead us to heuristic predictions about the asymptotics of Tracy-Widom beta law to all order, and for all positive beta. Second, we study the interplay between integrability and loop equations. As a corollary, we are able to prove the previous prediction about the asymptotics to all order of Tracy-Widom law for hermitian matrices.We move on with the solution of some combinatorial problems in all topologies. In topological string theory, a conjecture from Bouchard, Klemm, Mariño and Pasquetti states that certain generating series of Gromov-Witten invariants in toric Calabi-Yau threefolds, are solutions of loop equations. We have proved this conjecture in the simplest case, where those invariants coincide with the "simple Hurwitz numbers". We also explain recent progress towards the general conjecture, in relation with our work. In statistical physics on the random lattice, we have solved the trivalent O(n) model introduced by Kostov, and we explain the method to solve more general statistical models.Throughout the thesis, the computation of some "generalized matrices integrals" appears to be increasingly important for future applications, and this appeals for a general theory of loop equations.
|
252 |
Spacetime Symmetries from Quantum ErgodicityShoy Ouseph (18086125) 16 April 2024 (has links)
<p dir="ltr">In holographic quantum field theories, a bulk geometric semiclassical spacetime emerges from strongly coupled interacting conformal field theories in one less spatial dimension. This is the celebrated AdS/CFT correspondence. The entanglement entropy of a boundary spatial subregion can be calculated as the area of a codimension two bulk surface homologous to the boundary subregion known as the RT surface. The bulk region contained within the RT surface is known as the entanglement wedge and bulk reconstruction tells us that any operator in the entanglement wedge can be reconstructed as a non-local operator on the corresponding boundary subregion. This notion that entanglement creates geometry is dubbed "ER=EPR'' and has been the driving force behind recent progress in quantum gravity research. In this thesis, we put together two results that use Tomita-Takesaki modular theory and quantum ergodic theory to make progress on contemporary problems in quantum gravity.</p><p dir="ltr">A version of the black hole information loss paradox is the inconsistency between the decay of two-point functions of probe operators in large AdS black holes and the dual boundary CFT calculation where it is an almost periodic function of time. We show that any von Neumann algebra in a faithful normal state that is quantum strong mixing (two-point functions decay) with respect to its modular flow is a type III<sub>1</sub> factor and the state has a trivial centralizer. In particular, for Generalized Free Fields (GFF) in a thermofield double (KMS) state, we show that if the two-point functions are strong mixing, then the entire algebra is strong mixing and a type III<sub>1</sub> factor settling a recent conjecture of Liu and Leutheusser.</p><p dir="ltr">The semiclassical bulk geometry that emerges in the holographic description is a pseudo-Riemannian manifold and we expect a local approximate Poincaré algebra. Near a bifurcate Killing horizon, such a local two-dimensional Poincaré algebra is generated by the Killing flow and the outward null translations along the horizon. We show the emergence of such a Poincaré algebra in any quantum system with modular future and past subalgebras in a limit analogous to the near-horizon limit. These are known as quantum K-systems and they saturate the modular chaos bound. We also prove that the existence of (modular) future/past von Neumann subalgebras also implies a second law of (modular) thermodynamics.</p>
|
253 |
Field Theoretic Lagrangian From Off-shell Supermultiplet Gauge QuotientsKatona, Gregory 01 January 2013 (has links)
Recent efforts to classify off-shell representations of supersymmetry without a central charge have focused upon directed, supermultiplet graphs of hypercubic topology known as Adinkras. These encodings of Super Poincare algebras, depict every generator of a chosen supersymmetry as a node-pair transformtion between fermionic bosonic component fields. This research thesis is a culmination of investigating novel diagrammatic sums of gauge-quotients by supersymmetric images of other Adinkras, and the correlated building of field theoretic worldline Lagrangians to accommodate both classical and quantum venues. We find Ref [40], that such gauge quotients do not yield other stand alone or "proper" Adinkras as afore sighted, nor can they be decomposed into supermultiplet sums, but are rather a connected "Adinkraic network". Their iteration, analogous to Weyl's construction for producing all finite-dimensional unitary representations in Lie algebras, sets off chains of algebraic paradigms in discrete-graph and continuous-field variables, the links of which feature distinct, supersymmetric Lagrangian templates. Collectively, these Adiankraic series air new symbolic genera for equation to phase moments in Feynman path integrals. Guided in this light, we proceed by constructing Lagrangians actions for the N = 3 supermultiplet YI /(iDI X) for I = 1, 2, 3, where YI and X are standard, Salam-Strathdee superfields: YI fermionic and X bosonic. The system, bilinear in the component fields exhibits a total of thirteen free parameters, seven of which specify Zeeman-like coupling to external background (magnetic) fluxes. All but special subsets of this parameter space describe aperiodic oscillatory responses, some of which are found to be surprisingly controlled by the golden ratio, [phi] = 1.61803, Ref [52]. It is further determined that these Lagrangians allow an N = 3 - > 4 supersymmetric extension to the Chiral-Chiral and Chiral-twistedChiral multiplet, while a subset admits two inequivalent such extensions. In a natural proiii gression, a continuum of observably and usefully inequivalent, finite-dimensional off-shell representations of worldline N = 4 extended supersymmetry are explored, that are variate from one another but in the value of a tuning parameter, Ref [53]. Their dynamics turns out to be nontrivial already when restricting to just bilinear Lagrangians. In particular, we find a 34-parameter family of bilinear Lagrangians that couple two differently tuned supermultiplets to each other and to external magnetic fluxes, where the explicit parameter dependence is unremovable by any field redefinition and is therefore observable. This offers the evaluation of X-phase sensitive, off-shell path integrals with promising correlations to group product decompositions and to deriving source emergences of higher-order background flux-forms on 2-dimensional manifolds, the stacks of which comprise space-time volumes. Application to nonlinear sigma models would naturally follow, having potential use in M- and F- string theories.
|
Page generated in 0.0715 seconds