1 |
Aspectos da teoria invariante e equivariante para a ação do grupo de Lorentz no espaço de Minkowski / Aspects of the invariant and equivariant theory for the action of the Lorentz group in Minkowski spaceOliveira, Leandro Nery de 30 June 2017 (has links)
Neste trabalho, introduzimos a teoria invariante e equivariante para a ação do grupo de Lorentz no espaço de Minkowski. Na teoria clássica, muitos resultados são válidos somente para a ação de grupos compactos em espaços Euclideanos. Continuamos o estudo para alguns subgrupos de Lorentz compactos e apresentamos uma forma de calcular as involuções de Lorentz em O(n;1). Fazemos uma empolgante discussão sobre uma classe de matrizes centrossimétricas polinomiais com aplicações em teoria invariante, estabelecendo um rumo para a pesquisa em subgrupos de Lorentz não compactos. Por fim, apresentamos alguns resultados da teoria equivariante para subgrupos de Lorentz. / In this work, we introduce the invariant and equivariant theory for the Lorentz group on the Minkowski space. In the classical theory, many results are valid only for compact groups on Euclidean spaces. We continue the study of some compact Lorentz subgroups and present a way of calculating the Lorentz involutions in O(n;1). We make an exciting discussion about a class of polynomial centrosymmetric matrices with applications in invariant theory, setting a course for research in non-compact Lorentz groups. Finally, we present some results for the equivariant theory of Lorentz subgroups.
|
2 |
Lorentz Group In Polarization OpticsOktay, Onur 01 September 2012 (has links) (PDF)
The group theory allows one to study different branches of physics using the same set of commutation
relations. It is shown that a formulation of the polarization optics that depends on
the representations of the Lorentz group is possible. The set of four Stokes parameters, which
is a standard tool of polarization optics, can be used to form a four-vector that is physically
unrelated but mathematically equivalent to the space-time four-vector of the special relativity.
By using the Stokes parameters, it is also possible to generate four-by-four matrix representations
of the ordinary optical filters that are traditionally represented with the two-by-two Jones
matrices. These four-by-four matrices are treated as the entities of the Lorentz group. They
are like the Lorentz transformations applicable to the four-dimensional polarization space.
Besides, optical decoherence process can be formulated within the framework of the SO(3,2)
de Sitter group. The connection between the classical and quantum mechanical descriptions
of the polarization of light allows the extension of the Stokes parameters to the quantum domain.
In this respect, the properties of the polarization of the two-photon system can also be
studied within the framework of the Lorentz group.
|
3 |
Aspectos da teoria invariante e equivariante para a ação do grupo de Lorentz no espaço de Minkowski / Aspects of the invariant and equivariant theory for the action of the Lorentz group in Minkowski spaceLeandro Nery de Oliveira 30 June 2017 (has links)
Neste trabalho, introduzimos a teoria invariante e equivariante para a ação do grupo de Lorentz no espaço de Minkowski. Na teoria clássica, muitos resultados são válidos somente para a ação de grupos compactos em espaços Euclideanos. Continuamos o estudo para alguns subgrupos de Lorentz compactos e apresentamos uma forma de calcular as involuções de Lorentz em O(n;1). Fazemos uma empolgante discussão sobre uma classe de matrizes centrossimétricas polinomiais com aplicações em teoria invariante, estabelecendo um rumo para a pesquisa em subgrupos de Lorentz não compactos. Por fim, apresentamos alguns resultados da teoria equivariante para subgrupos de Lorentz. / In this work, we introduce the invariant and equivariant theory for the Lorentz group on the Minkowski space. In the classical theory, many results are valid only for compact groups on Euclidean spaces. We continue the study of some compact Lorentz subgroups and present a way of calculating the Lorentz involutions in O(n;1). We make an exciting discussion about a class of polynomial centrosymmetric matrices with applications in invariant theory, setting a course for research in non-compact Lorentz groups. Finally, we present some results for the equivariant theory of Lorentz subgroups.
|
4 |
Representation Theory Arising From Groups In PhysicsGreen, Jaxon 01 September 2024 (has links) (PDF)
A representation is a group homomorphism whose image is a group of invertible matrices. Representations and their associated matrices are analyzed through well-established techniques from linear algebra. We characterize representations by a unique decomposition into irreducible representations just as we characterize the decomposition of matrices into their eigenspaces. Through the study of these representations, we uncover mathematical relationships that underlie groups with physical applications. Due to physical symmetries, we study how the irreducible representations of groups that embody the actions of even the most basic rotations are utilized in the computation of irreducible representations groups that reflect more complicated mechanics, like the Poincar\'e Group. Further, we utilize the representations of the abstract braid group to gain key insights into understanding the behavior of anyonic systems in quantum mechanics. Finally, we explore the behavior of Fibonacci anyons for ways to understand to illustrate the underlying braid relations.
|
5 |
Lorentzova grupa a její aplikace v kvantové teorii gravitace / Lorentz group and its application in the theory of quantum gravityPejcha, Jakub January 2016 (has links)
In this thesis we are dealing with basic methods of theoretical physics focusing on quantum theory of gravity, that are: Hamilton-Dirac formalism for singular systems, Dirac`s method of quantizing systems with constraints and its mathematical formulation - refined algebraic quantization, representation of compact groups and representation of Lorentz group. We apply these methods to find eigenstates of Lorentz group and General linear group generators. We construct a physical Hilbert space on temporal part of 3+1 decomposition of Einstein-Cartan theory. Powered by TCPDF (www.tcpdf.org)
|
6 |
The 2+1 Lorentz Group and Its RepresentationsSjöstedt, Klas January 2020 (has links)
The Lorentz group is a symmetry group on Minkowski space, and as such is central to studying the geometry of this and related spaces. The group therefore shows up also from physical considerations, such as trying to formulate quantum physics in anti-de Sitter space. In this thesis, the Lorentz group in 2+1 dimensions and its representations are investigated, and comparisons are made to the analogous rotation group. Firstly, all unitary irreducible representations are found and classified. Then, those representations are realised as the square-integrable, analytic functions on the unit circle and the unit disk, which turn out to correspond to the projective lightcone and the hyperbolic plane, respectively. Also, a way to realise a particular class of representations on 1+1-dimensional anti-de Sitter space is shown. / Lorentzgruppen är en symmetrigrupp på Minkowski-rum, och är således central för att studera geometrin i detta och relaterade rum. Gruppen dyker också därför upp från fysikaliska frågeställningar, såsom att försöka formulera kvantfysik i anti-de Sitter-rum. Denna uppsats undersöker Lorentzgruppen i 2+1 dimensioner och dess representationer, och jämför med den analoga rotationsgruppen. Först konstrueras och klassificeras alla unitära irreducibla representationer. Sedan realiseras dessa representationer som de analytiska funktioner på enhetscirkeln och enhetsskivan vars belopp i kvadrat är integrerbara. Det visar sig att denna cirkel respektive skiva svarar mot den projektiva ljuskonen respektive det hyperboliska planet. Dessutom visas att en särskild klass av representationer blir relevanta för att formulera kvantfysik i 1+1-dimensionellt anti-de Sitter-rum.
|
7 |
Symmetries of the Point ParticleSöderberg, Alexander January 2014 (has links)
We study point particles to illustrate the various symmetries such as the Poincaré group and its non-relativistic version. In order to find the Noether charges and the Noether currents, which are conserved under physical symmetries, we study Noether’s theorem. We describe the Pauli-Lubanski spin vector, which is invariant under the Poincaré group and describes the spin of a particle in field theory. By promoting the Pauli-Lubanski spin vector to an operator in the quantized theory we will see that it describes the spin of a particle. Moreover, we find an action for a smooth spinning bosonic particle by compactifying one string dimension together with one embedding dimension. As with the Pauli-Lubanski spin vector, we need to quantize this action to confirm that it is the action for a smooth spinning particle. / Vi studerar punktpartiklar för att illustrera olika symemtrier som t.ex. Poincaré gruppen och dess icke-relativistiska version. För att hitta de Noether laddningar och Noether strömmar, vilka är bevarade under symmetrier, studerar vi Noether’s sats. Vi beskriver Pauli-Lubanksi spin vektorn, vilken har en invarians under Poincaré gruppen och beskriver spin hos en partikel i fältteori. Genom att låta Pauli-Lubanski spin vektorn agera på ett tillstånd i kvantfältteori ser vi att den beskriver spin hos en partikel. Dessutom finner vi en verkan för en spinnande partikel genom att kompaktifiera en bosonisk sträng dimension tillsammans med en inbäddad dimension. Som med Pauli-Lubanski spin vektorn, kvantiserar vi denna verkan för att bekräfta att det är en verkan för en spinnande partikel.
|
8 |
Deux problèmes de contrôle géométrique : holonomie horizontale et solveur d'esquisse / Two problems of Geometric Control : Horizontal Holonomy and Solver of SketchHafassa, Boutheina 13 January 2016 (has links)
Nous étudions deux problèmes différents qui ont leur origine dans la théorie du contrôle géométrique. Le Problème I consiste à étendre le concept du groupe d'holonomie horizontale sur une variété affine. Plus précisément, nous considérons une variété connexe lisse de dimension finie M, une connexion affine ∇ avec le groupe d'holonomie H∇ et une distribution lisse ∆ complètement non intégrable. Dans un premier temps, nous définissons le groupe d'holonomie ∆-horizontale H∆∇ comme le sous-groupe de H∇ obtenu par le transport parallèle le long des lacets tangents à ∆. Nous donnons les propriétés élémentaires de H∆∇ et ensuite nous faisons une étude détaillée en utilisant le formalisme de roulement. Il est montré en particulier que H∆∇ est un groupe de Lie. Dans un second temps, nous avons étudié un exemple explicite où M est un groupe de Carnot libre d'ordre 2 avec m ≥ 2 générateurs, et ∇ est la connexion de Levi-Civita associé à une métrique riemannienne sur M. Nous avons montré dans ce cas particulier que H∆∇ est compact et strictement inclus dans H∇ dès que m≥3. Le Problème II étudie la modélisation du problème du solveur d'esquisse. Ce problème est une des étapes d'un logiciel de CFAO. Notre but est d'arriver à une modélisation mathématique bien fondée et systématique du problème du solveur d'esquisse. Il s'agira ensuite de comprendre la convergence de l'algorithme, d'en améliorer les résultats et d'en étendre les fonctionnalités. L'idée directrice de l'algorithme est de remplacer tout d'abord les points de l'espace des sphères par des déplacements (éléments du groupe) et puis d'utiliser une méthode de Newton sur les groupes de Lie ainsi obtenus. Dans cette thèse, nous avons classifié les groupes de déplacements possibles en utilisant la théorie des groupes de Lie. En particulier, nous avons distingué trois ensembles, chaque ensemble contenant un type d'objet: le premier est l'ensemble des points, noté Points , le deuxième est l'ensemble des droites, noté Droites, et le troisième est l'ensemble des cercles et des droites, que nous notons ∧. Pour chaque type d'objet nous avons étudié tous les groupes de déplacements possibles, selon les propriétés souhaitées. Nous proposons finalement d'utiliser les groupes de déplacements suivant: pour le déplacement des points, le groupe des translations, qui agit transitivement sur Points ; pour les droites, le groupe des translations et rotations, qui est de dimension 3 et agit transitivement (globalement mais pas localement) sur Droites ; sur les droites et cercles, le groupe des anti-translations, rotations et dilatations qui est de dimension 4 et agit transitivement (globalement mais pas localement) sur ∧. / We study two problems arising from geometric control theory. The Problem I consists of extending the concept of horizontal holonomy group for affine manifolds. More precisely, we consider a smooth connected finite-dimensional manifold M, an affine connection ∇ with holonomy group H∇ and ∆ a smooth completely non integrable distribution. We define the ∆-horizontal holonomy group H∆∇ as the subgroup of H∇ obtained by ∇-parallel transporting frames only along loops tangent to ∆. We first set elementary properties of H∆∇ and show how to study it using the rolling formalism. In particular, it is shown that H∆∇ is a Lie group. Moreover, we study an explicit example where M is a free step-two homogeneous Carnot group with m≥2 generators, and ∇ is the Levi-Civita connection associated to a Riemannian metric on M, and show in this particular case that H∆∇ is compact and strictly included in H∇ as soon as m≥3. The Problem II is studying the modeling of the problem of solver sketch. This problem is one of the steps of a CAD/CAM software. Our goal is to achieve a well founded mathematical modeling and systematic the problem of solver sketch. The next step is to understand the convergence of the algorithm, to improve the results and to expand the functionality. The main idea of the algorithm is to replace first the points of the space of spheres by displacements (elements of the group) and then use a Newton's method on Lie groups obtained. In this thesis, we classified the possible displacements of the groups using the theory of Lie groups. In particular, we distinguished three sets, each set containing an object type: the first one is the set of points, denoted Points, the second is the set of lines, denoted Lines, and the third is the set of circles and lines, we note that ∧. For each type of object, we investigated all the possible movements of groups, depending on the desired properties. Finally, we propose to use the following displacement of groups for the displacement of points, the group of translations, which acts transitively on Lines ; for the lines, the group of translations and rotations, which is 3-dimensional and acts transitively (globally but not locally) on Lines ; on lines and circles, the group of anti-translations, rotations and dilations which has dimension 4 and acts transitively (globally but not locally) on ∧.
|
9 |
Field Theoretic Lagrangian From Off-shell Supermultiplet Gauge QuotientsKatona, Gregory 01 January 2013 (has links)
Recent efforts to classify off-shell representations of supersymmetry without a central charge have focused upon directed, supermultiplet graphs of hypercubic topology known as Adinkras. These encodings of Super Poincare algebras, depict every generator of a chosen supersymmetry as a node-pair transformtion between fermionic bosonic component fields. This research thesis is a culmination of investigating novel diagrammatic sums of gauge-quotients by supersymmetric images of other Adinkras, and the correlated building of field theoretic worldline Lagrangians to accommodate both classical and quantum venues. We find Ref [40], that such gauge quotients do not yield other stand alone or "proper" Adinkras as afore sighted, nor can they be decomposed into supermultiplet sums, but are rather a connected "Adinkraic network". Their iteration, analogous to Weyl's construction for producing all finite-dimensional unitary representations in Lie algebras, sets off chains of algebraic paradigms in discrete-graph and continuous-field variables, the links of which feature distinct, supersymmetric Lagrangian templates. Collectively, these Adiankraic series air new symbolic genera for equation to phase moments in Feynman path integrals. Guided in this light, we proceed by constructing Lagrangians actions for the N = 3 supermultiplet YI /(iDI X) for I = 1, 2, 3, where YI and X are standard, Salam-Strathdee superfields: YI fermionic and X bosonic. The system, bilinear in the component fields exhibits a total of thirteen free parameters, seven of which specify Zeeman-like coupling to external background (magnetic) fluxes. All but special subsets of this parameter space describe aperiodic oscillatory responses, some of which are found to be surprisingly controlled by the golden ratio, [phi] = 1.61803, Ref [52]. It is further determined that these Lagrangians allow an N = 3 - > 4 supersymmetric extension to the Chiral-Chiral and Chiral-twistedChiral multiplet, while a subset admits two inequivalent such extensions. In a natural proiii gression, a continuum of observably and usefully inequivalent, finite-dimensional off-shell representations of worldline N = 4 extended supersymmetry are explored, that are variate from one another but in the value of a tuning parameter, Ref [53]. Their dynamics turns out to be nontrivial already when restricting to just bilinear Lagrangians. In particular, we find a 34-parameter family of bilinear Lagrangians that couple two differently tuned supermultiplets to each other and to external magnetic fluxes, where the explicit parameter dependence is unremovable by any field redefinition and is therefore observable. This offers the evaluation of X-phase sensitive, off-shell path integrals with promising correlations to group product decompositions and to deriving source emergences of higher-order background flux-forms on 2-dimensional manifolds, the stacks of which comprise space-time volumes. Application to nonlinear sigma models would naturally follow, having potential use in M- and F- string theories.
|
Page generated in 0.0801 seconds