• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 109
  • 19
  • 16
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 335
  • 96
  • 91
  • 85
  • 72
  • 71
  • 70
  • 42
  • 41
  • 34
  • 32
  • 26
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet

Laskowski, Andrew K., Kapp, Paul, Ding, Lin, Campbell, Clay, Liu, XiaoHui 01 1900 (has links)
The Lopu Range, located similar to 600km west of Lhasa, exposes a continental high-pressure metamorphic complex beneath India-Asia (Yarlung) suture zone assemblages. Geologic mapping, 14 detrital U-Pb zircon (n=1895 ages), 11 igneous U-Pb zircon, and nine zircon (U-Th)/He samples reveal the structure, age, provenance, and time-temperature histories of Lopu Range rocks. A hornblende-plagioclase-epidote paragneiss block in ophiolitic melange, deposited during Middle Jurassic time, records Late Jurassic or Early Cretaceous subduction initiation followed by Early Cretaceous fore-arc extension. A depositional contact between fore-arc strata (maximum depositional age 971Ma) and ophiolitic melange indicates that the ophiolites were in a suprasubduction zone position prior to Late Cretaceous time. Five Gangdese arc granitoids that intrude subduction-accretion melange yield U-Pb ages between 49 and 37Ma, recording Eocene southward trench migration after collision initiation. The south dipping Great Counter Thrust system cuts older suture zone structures, placing fore-arc strata on the Kailas Formation, and sedimentary-matrix melange on fore-arc strata during early Miocene time. The north-south, range-bounding Lopukangri and Rujiao faults comprise a horst that cuts the Great Counter Thrust system, recording the early Miocene (similar to 16Ma) transition from north-south contraction to orogen-parallel (E-W) extension. Five early Miocene (17-15Ma) U-Pb ages from leucogranite dikes and plutons record crustal melting during extension onset. Seven zircon (U-Th)/He ages from the horst block record 12-6Ma tectonic exhumation. JurassicEocene Yarlung suture zone tectonics, characterized by alternating episodes of contraction and extension, can be explained by cycles of slab rollback, breakoff, and shallow underthrustingsuggesting that subduction dynamics controlled deformation.
152

A regional assessment of volcanic and terrigenous inputs to the Western Pacific Ocean "Subduction Factory"

Scudder, Rachel Palley 12 March 2016 (has links)
This study utilizes major-, trace- and rare earth elements, as well as radiogenic isotopes (Rb-Sr, Sm-Nd, Pb), in bulk sediment, extracted glass shards, and discrete ash layers, at Ocean Drilling Program Site 1149 (Izu-Bonin Arc), Deep Sea Drilling Project Site 52 (Mariana Arc), and Integrated Ocean Drilling Program Sites C0011 and C0012 (Nankai Trough) in order to characterize and quantify the abundance of dispersed ash, rather than discrete ash layers, in sediments from the Northwest Pacific Ocean. Combination of the geochemical methods with multivariate statistical techniques, such as Q-mode Factor Analysis and multiple linear regressions, allows for differentiation of unique chemistries of the dispersed ash, and the terrigenous components. Therefore, we can document sources that change through time and space. At Site 1149 the bulk sediment is a mixture of two dust and two dispersed ash sources. The two dust sources show contrasting accumulation patterns changing over at a tectonically and climactically active time in Earth's past (~22 Ma) and yield a more complete history of Asian aridity than has been previously considered. We interpret the source of the ashes as basalt from the Izu-Bonin Front Arc (IBFA) and rhyolite from the Honshu Arc (HR). Comparison of the dispersed ash component to the discrete ash layers suggests that eruption frequency, rather than eruption size, drives the dispersed ash record. In contrast, at Site 52 Chinese Loess, IBFA, dispersed boninite from the Izu-Bonin arc, and a dispersed felsic ash of unknown origin are the sources. Interestingly, there are no boninite layers, yet boninite is dispersed within the sediment. Changes in the volcanic and eolian inputs through time indicate strong arc- and climate-related controls. The bulk sediment at Site C0011 is characterized by eolian dust, HR, and a dacite of unknown origin. Site C0012 is comprised of eolian dust, a dacite of unknown origin, as well as dacite and andesite from the Izu-Bonin Arc. Analysis of the total ash record at these two sites provides insight into subduction zone mass balance and water budgets as well as information about the changes in physical properties that result from the alteration of volcanic ash.
153

Sm/Nd garnet geochronology and pressure-temperature paths of eclogites from Syros, Greece: Implications for subduction zone processes and water loss from the subducting slab

Kendall, Jamie January 2016 (has links)
Thesis advisor: Ethan F. Baxter / Samarium/Neodymium (Sm-Nd) garnet geochronology of eclogites from Syros, Greece provides constraints on timing of peak metamorphism while thermodynamic modeling of the same samples allows a comparison of pressure-temperature (P-T) paths. Sm-Nd geochronology of four eclogite samples give ages of 48.8 ± 3.2 Ma (high 147Sm/144Nd = 0.49, n = 6, MSWD = 0.67), 48.1 ± 2.3 Ma (high 147Sm/144Nd = 1.22, n = 4, MSWD = 2.4), 44.7 ± 1.0 Ma (high 147Sm/144Nd = 3.9, n = 6, MSWD = 1.4), and 43.6 ± 1.6 Ma (high 147Sm/144Nd = 1.39, n = 6,MSWD = 2). These garnet growth ages span several million years and are younger than the only other published garnet eclogite ages from the island which use Lutetium/ Hafnium (Lu-Hf) garnet geochronology to place peak metamorphism at ~52 Ma (Lagos et al, 2007). Another eclogite sample dated less precisely yielded an age of 57.7 ± 6.3 Ma (high 147Sm/144Nd = 0.40, n = 10, MSWD = 1.9), significantly older than the other garnets dated in this study. The garnet ages from eclogites presented here suggest that high pressure-low temperature metamorphism, and related garnet growth and dehydration, on Syros lasted ~9 myr, similar to what has been reported for nearby Sifnos Island (Dragovic et al., 2015). Thermodynamic modeling of three samples reveals similar prograde P-T paths despite differences in tectonic setting and chemistry between samples. Water loss from mineral breakdown during the span of subduction zone garnet growth varies between samples from 1.09 to 5.13 weight percent but is greatest for the most ultramafic sample due to chlorite stability permitting greater capacity for water to be carried to depth. P-T paths reach greater maximum pressures (up to 2.42 GPa) than what is reported for Sifnos island (Dragovic et al., 2015) and greater than most previously published pressure estimates for Syros (ie. Okrusch and Bröcker, 1990; Putlitz et al., 2005). / Thesis (MS) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
154

Evolução petrogenética e geotectônica do Ofiolito Arroio Grande, SE do Cinturão Dom Feliciano (Brasil)

Ramos, Rodrigo Chaves January 2018 (has links)
O Ofiolito Arroio Grande, localizado no sudeste do Cinturão Dom Feliciano, próximo à fronteira Brasil/Uruguai, entre Arroio Grande e Jaguarão (RS), é uma associação metaultramáfica-máfica-sedimentar que representa fragmentos de uma mélange ofiolítica, relacionada à amalgamação do paleocontinente Gondwana Ocidental durante os estágios finais do ciclo orogênico Brasiliano-Panafricano. As rochas do Ofiolito Arroio Grande se encontram circundadas por rochas metassiliciclásticas do Complexo Arroio Grande, do qual o ofiolito faz parte, e também como xenólitos em meio a granitoides da Suíte Pinheiro Machado e do Granito Três Figueiras (os quais integram o Batólito Pelotas-Aiguá). A unidade metaultramáfica do ofiolito compreende serpentinitos e xistos magnesianos cromíferos. Sua unidade metamáfica é constituída por anfibolitos, metagabros e metadioritos. A unidade metassedimentar compreende mármores calcíticos, intrudidos por enxame de diques máficos. O Ofiolito Arroio Grande está posicionado ao longo da Zona de Cisalhamento Ayrosa Galvão-Arroio Grande (transcorrente, dúctil, alto ângulo), responsável pela milonitização da maioria das rochas dessa associação. As investigações desenvolvidas no ofiolito tiveram o objetivo de identificar as fontes magmáticas dos protólitos e os processos que ocorreram desde sua geração no manto/crosta oceânica até sua incorporação no continente, além de obter idades (absolutas e relativas) referentes a esses processos. Para os metaultramafitos, a geoquímica de rocha total (e.g. Ni >1000 ppm; Cr > 1500 ppm), em conjunto com a química mineral de cromitas (e.g. Cr# 0,6-0,8; TiO2 0,01-0,20 %peso; Fe2+/Fe3+ ± 0,9), sugeriu protólitos harzburgíticos mantélicos, cuja fonte é um manto depletado sob uma região de espalhamento oceânico de retroarco, que experimentou altas taxas de fusão parcial. Esses harzburgitos foram posteriormente serpentinizados em ambiente oceânico, sugerido pelas razões 87Sr/86Sr630 de um serpentinito (ca. 0,707). Para os metamafitos, a geoquímica de rocha total e isotópica sugeriram protólitos toleíticos oceânicos, gerados em um contexto de suprassubducção em ambiente de retroarco (e.g. Cr 260-600 ppm; Nb/Y 0,1-0,5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0,1-5 e Nb/Yb 1-5; padrões de REE; razões 87Sr/86Sr630 variando de MORB – 0,703 – a IAT – 0,705-0,707), cuja fonte magmática foi enriquecida por material crustal e fluidos relacionados à subducção. A idade mínima para a obducção e metamorfismo das unidades ofiolíticas foi estimada em 640 Ma, a partir da datação (U-Pb SHRIMP) de um quartzo sienito. Esse último é o resultado de fusões relacionadas a intrusões diorítico-tonalíticas, atribuídas ao magmatismo de arco continental da Suíte Pinheiro Machado. Essas intrusões afetaram os mármores e os anfibolitos (fragmentos dos enxames de diques máficos), de maneira que, em pelo menos 640 Ma, rochas da mélange ofiolítica (já metamorfizadas) estavam alojadas em ambiente continental. Um evento metassomático posterior (relacionado à intrusão do Granito Três Figueiras, sincinemática à zona de cisalhamento acima referida) afetou os serpentinitos, gerando zonas de talcificação, tremolitização e cloritização, essa última representando um blackwall que também envolveu unidades metassiliciclásticas do Complexo Arroio Grande. O Ofiolito Arroio Grande foi inserido no contexto geotectônico da bacia de retroarco Marmora, cujos fragmentos são encontrados na Namíbia (Terreno Marmora) e no Uruguai (Complexo Paso del Dragón e Bacia Rocha – Terreno Punta del Este). / The Arroio Grande Ophiolite, located in the southeastern region of the Dom Feliciano Belt, near the Brazil/Uruguay border, is a metaultramafic-mafic-sedimentary association which represents slices of an ophiolitic mélange, related to the Western Gondwana amalgamation during the late stages of the Brasiliano-Panafrican orogenic cycle. The Arroio Grande Ophiolite rocks are enveloped by metasiliciclastic units of the Arroio Grande Complex and occur as xenolyths within granitoids of the Pinheiro Machado Suite and within the Três Figueiras Granite (units of the Pelotas-Aiguá Batholith). The metaultramafites of the ophiolite comprise serpentinites and Cr-rich magnesian schists. The metamafites comprise amphibolites, metagabbros and metadiorites. The metasedimentary unit comprises calcitic marbles, which are intruded by mafic dykes. The ophiolite is found along the Ayrosa Galvão- Arroio Grande Shear Zone (transcurrent, ductile, high angle), responsible for the mylonitization of this association. The investigations developed in this ophiolite had the objective of identify the magmatic sources of the protoliths and the processes that occurred since their generation within the mantle/oceanic crust until their incorporation into the continental crust, including their absolute and relative ages. The bulk-rock chemistry of the metaultramafites (e.g. Ni >1000 ppm; Cr > 1500 ppm), together with the mineral chemistry of the chromites (e.g. Cr# 0.6-0.8; TiO2 0.01-0.20 wt%; Fe2+/Fe3+ ± 0.9), suggested harzburgitic protoliths, attributed to a depleted mantle source under a back-arc spreading region, which experienced high degrees of partial melting. These harzburgites were serpentinized in an oceanic setting, as suggested by the 87Sr/86Sr630 ratio of a serpentinite (ca. 0.707). The bulkrock chemistry of the metamafites suggested oceanic tholeiitic protoliths, generated in a supra-subduction setting in a back-arc environment (e.g. Cr 260-600 ppm; Nb/Y 0.1-0.5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0.1-5 and Nb/Yb 1-5; REE patterns; 87Sr/86Sr630 ratios ranging from MORB – 0.703 – to IAT – 0.705-0.707), whose magmatic source was contaminated by crustal material and subduction-related fluids. The minimum age for the obduction and metamorphism of the Arroio Grande Ophiolite rocks was estimated around 640 Ma from the U-Pb age of a quartz-syenite. The latter is the result of melting, related to dioritic-tonalitc intrusions, attributed to the continental magmatism of the Pinheiro Machado Suite. These intrusions affected both the marbles and the amphibolites (fragments of the mafic dykes), in order that, at least around 640 Ma, rocks of the ophiolitic mélange (already metamorphosed) were emplaced on the continent. A late metasomatic event (related to the emplacement of the Três Figueiras Granite, syn-kinematic to the abovementioned shear zone) affected the serpentinites, generating zones of talcification, tremolitization and chloritization, the latter representing a blackwall which also involved metasiliciclastic rocks of the Arroio Grande Complex. The Arroio Grande Ophiolite was inserted in the geotectonic context of the Marmora back-arc basin, whose fragments are found in Namibia (Marmora Terrane) and Uruguay (Paso del Dragón Complex and Rocha Basin – Punta del Este Terrane).
155

Controle de mudanças estruturais sob altas pressões e altas temperaturas da esmectita saturada em potássio

Carniel, Larissa Colombo January 2013 (has links)
O manto litosférico é depletado em elementos incompatíveis como potássio, rubídio e estrôncio, confinado sob altas condições de pressão e caracterizado por uma composição e mineralogia específicas: espinélios anidros e/ou granada lherzolitos e harzburgitos. Esta região pode ser hidratada e enriquecida em elementos incompatíveis (ex. potássio) através de processos de subducção, onde a placa oceânica subductada leva consigo material pelágico composto de argilominerais e filossilicatos. A transferência de massa entre a placa subductada com os sedimentos e a cunha mantélica ocorre primeiramente através da liberação de fluidos aquosos gerados pela devolatilização de minerais hidratados. Neste contexto, a esmectita destaca-se como um dos mais importantes minerias responsáveis pelo enriquecimento do manto litosférico em água e elementos incompatíveis, quando sua estrutura é desestabilizada. Com o aumento da pressão e temperatura, esmectitas perdem sua água interlamelar, ao mesmo tempo em que se transformam em camadas mistas esmectita-ilita. Nestas condições de desidratação, e com o aumento da pressão, mudanças estruturais ocorrem e, havendo potássio disponível no sistema, o argilomineral evolui para uma mica muscovita. Considerando este contexto, o presente trabalho tem como objetivo verificar o comportamento estrutural da esmectita saturada em potássio modificando as variáveis pressão e temperatura: (1) sob pressão atmosférica em diferentes temperaturas (100º a 700ºC); (2) sob pressão de até 11.5 GPa sem temperatura - Diamond Anvil Cell (DAC); (3) sob diferentes pressões com aplicação de temperatura: 2.5GPa (400º a 700ºC) e 4.0GPa (200º a 700ºC). Os resultados das técnicas de análise de Difração de raios X, Microscopia Eletrônica de Varredura (MEV), Microscopia Eletrônica de Transmissão (MET) e Espectroscopia por Infravermelho (FTIR) sugerem que, sob uma pressão de 2.5 GPa, que é cerca de 75km de profundidade no manto, e a aproximadamente 500ºC, a esmectita transforma-se em muscovita, enquanto sob a pressão de 4.0 Gpa, equivalente a cerca de 120 km de profundidade, a mesma transformação ocorre a 400ºC. Estes resultados contribuem significativamente para o entendimento de como a desidratação do sedimento pelágico ocorre em um processo de subducção, bem como o comportamento da esmectita sob a influência do aumento de pressão e temperatura. / The lithospheric mantle is depleted regarding to incompatible elements as potassium, rubidium and strontium, confined under pressure conditions and characterized by a specific mineralogy and composition, basically as anhydrous spinel and/or garnet lherzolite and harzburgite. This region can be hydrated and enriched in incompatible elements (e.g. potassium) through subduction processes that bring pelagic material, composed of clay minerals and other phyllosilicates, together with the hydrated subducted oceanic slab. A mass transfer from the subducted slab plus sediments into the mantle wedge occurs primarily through the release of aqueous fluids produced by devolatilization of hydrated minerals. In this context, smectite stands out as one of the most important minerals responsible for enriching the lithospheric mantle with water and incompatible elements when its structure is destabilized. By pressure and temperature increasing smectite lose its interlayer water, at the same time that it transforms into a mixed-layer illite-smectite. In this condition of dehydration and with increasing pressure, structural changes occur and, having potassium available on the system, the clay mineral evolves into a muscovite mica. Considering this context, we verified the structural behavior of potassium saturated smectite modifying variables pressure and temperature: (1) under atmospheric pressure at different temperatures (100º to 700º C); (2) under pressure up 11.5 GPa without temperature - Diamond Anvil Cell (DAC); (3) under different pressures with temperature application: 2.5 GPa (400º to 700º C) and 4.0 GPa (200º to 700º C). The results of the analysis techniques of X-ray diffraction, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Infrared Spectroscopy (FTIR), suggest that under the pressure of 2.5 GPa, which is about 75km depth in the mantle, and at around 500ºC smectite transforms into muscovite, while under the pressure of 4.0 GPa, equivalent to around 120km depth, the same transformation occurs at 400ºC. These results contribute significantly to understanding how pelagic sediment dehydration occurs in a subduction process, as well as the behavior of smectite under the influence of increasing pressure and temperature.
156

Provenance-related studies of Triassic-Miocene Tethyan sedimentary and igneous rocks from Cyprus

Chen, Guohui January 2018 (has links)
Cyprus comprises three tectono-stratigraphic terranes: first, the Troodos Massif made up of Late Cretaceous oceanic lithosphere and its sedimentary cover in the centre of the island; secondly, the Mamonia Complex (and Moni Melange) a passive margin lithological assemblage in the west (and south) and thirdly, the Kyrenia Range, an active margin lithological assemblage in the north. This study focuses on the sedimentary cover of the Troodos Ophiolite in W Cyprus, the Triassic-Cretaceous sedimentary rocks of the Mamonia Complex and Late Cretaceous-Miocene igneous and sedimentary rocks in the Kyrenia Range, mainly based on combined sedimentology, geochemistry and geochronological dating. The Late Triassic-Early Cretaceous Mamonia Complex, SW Cyprus (and the Moni Melange, S Cyprus) represent parts of the emplaced passive continental margin of the S Neotethys. Late Triassic sandstones are characterised by a predominantly felsic source, with a subordinate mafic contribution. Jurassic-Early Cretaceous sandstones have a polycyclic felsic origin. Geochemical analyses are suggestive of progressive weathering and sediment recycling/sorting. The dominance of Ediacaran-Cryogenian and Tonian-Stenian-aged detrital zircon populations is suggestive of an ultimate north Gondwana source, probably recycled from Palaeozoic siliciclastic sedimentary rocks within Anatolia to the north. Similar detrital zircon populations characterise Early Cretaceous deltaic sandstone of the Moni Melange, S Cyprus. Sporadic Late Cretaceous subduction-related magmatism, represented by a Campanian volcaniclastic sequence (80.44±1.0 Ma) inWCyprus and a Late Campanian felsic volcanogenic sequence (72.9±1.0 Ma) in N Cyprus, represents early and more advanced stages of northward subduction during closure of the S Neotethys. Specifically, the Kannaviou Formation in W Cyprus (up to 750 m thick) is made up of deep-marine volcaniclastic sandstones that were mostly deposited by gravity flows and as air-fall tuff, interbedded with clay and radiolarian mudstones. Petrographic and geochemical analyses are indicative of a volcanic arc source, with deposition in a fore-arc basin. Petrographic evidence of terrigenous input (e.g. muscovite, muscovite schist, polycrystalline quartz) points to a subordinate continental source. Mineral chemistry is consistent with a volcanic arc origin. Elevated trace-element ratios in undevitrified volcanic glass (e.g. Th/Nb, Th/La) are indicative of involvement of continental crust or subducted terrigenous sediments in source-arc melting. Felsic volcanogenic rocks (Fourkovouno (Selvilitepe) Formation) in the Kyrenia Range, N Cyprus, occur as an up to 400 m-thick sequence of felsic tuffs, felsic debris-flowdeposits and rhyolitic lava flows. Geochemical analyses are indicative of evolved high-K and shoshonitic compositions, similar to those of the Andean active continental margin. Subduction continued to affect the northern continental margin of the S Neotethys in the Kyrenia Range during the Maastrichtian. This lead to the accumulation of Late Cretaceous sandstone turbidites and related basaltic volcanics, possibly in a back-arc setting. The volcanism took place in two phases (Late Cretaceous and Palaeogene-Early Eocene) during pelagic carbonate accumulation. These lavas have within-plate affinities, but with a variable subduction influence in some areas (e.g. western Kyrenia Range), which may be contemporaneous or inherited from previous subduction. The sedimentary sequences in the Kyrenia Range, N Cyprus, document diachronous closure of the S Neotethys. Late Cretaceous and Eocene sandstone turbidites, and the lower part of the overlying Oligocene-Miocene succession exhibit enrichment in ultramafic components that was probably sourced from ophiolite-related rocks in the Taurides to the north. In contrast, Miocene sandstone turbidites higher in the sequence show an increasing input of continent-derived siliciclastic material (and sorting effects). The terrigenous-influenced sediments are likely to represent erosion of thrust sheets that were emplaced from the S Neotethys onto the Arabian foreland in SE Turkey related to continental collision. Ediacaran-Cryogenian and Tonian-Stenian-aged zircons dominate the Late Cretaceous and Eocene sandstone turbidites, consistent with derivation from the Tauride micro-continent to the north and/or NE. Overlying Miocene sandstones include minor populations of Neoproterozoic-aged zircons, suggestive of reworking from source rocks of ultimately Gondwanan origin (e.g. NE Africa/Arabian-Nubian Shield). In summary, the thesis results exemplify the interaction of tectonic processes associated with the evolution of the S Neotethys Ocean. This began in the area studied with passive margin development (Triassic-Cretaceous), and was followed by multi-stage subduction-related volcanism and sedimentation (Late Cretaceous-Miocene). Final closure of the S Neotethys in this area took place during the Late Miocene-Recent.
157

Discovery of Paleotsunami Deposits along Eastern Sunda Arc: Potential for Megathrust Earthquakes in Bali

Sulaeman, Hanif Ibadurrahman 01 December 2018 (has links)
Several laterally extensive candidate tsunami deposits are preserved along coastlines facing the eastern Java Trench, indicating it has experienced mega-thrust earthquakes in the past. We investigated 37 coastal sites in Bali, Lombok, Sumba and Timor islands, many of which preserve course sand and pebble layers that overlie sharp basal contacts with scour marks into the mud, fine upward in grain size, and have bimodal grain size distributions. Other unique features are the common occurrence of marine fossils and concentrations of heavy minerals. The occurrence of these high-energy deposits interlayered with clay-rich units indicates the coarse clastics are anomalous because they were deposited in what is normally a very low-energy depositional environment. The lateral extent and paucity of thin, coarse clastic layers with marine organisms are inconsistent with local stream flood event, and the proximity to the equator of the sites diminishes the possibility of marine flood events from cyclones. The sparse, but consistent, the occurrence of at least two candidate tsunami deposits at depths of 1 and 2 meters over 950 km along the strike of the Java Trench may reveal that mega-thrust earthquakes have occurred there and generated giant tsunamis in the recent past.Five widely scattered imbricated boulder deposits are also found on Bali, Lombok, and Sumba. The boulders consist of slabs of hardpan up to 2.5 m in length and 80 cm thick that was torn from a near-shore seabed and stacked on top of one another. Some of the boulders were carried over the erosional coastal bank and deposited up to 100 meters inland. Comparisons with imbricated boulder ridges formed during the 1994 tsunami in east Java indicate that these deposits are from one or multiple tsunamis sourced by the Java Trench.Experiments in effective ways to communicate and implement tsunami disaster mitigation strategies have led us to train local communities about the 20-20-20 rule. If coastal communities experience more than 20 seconds of shaking from an earthquake, even if it is not intense, they should evacuate the coast. The time delay between the earthquake and arrival of tsunami waves is around 20 minutes, which is the time window for evacuation. Some tsunami waves may be as high as 20 meters, which is the target elevation for evacuation. Adopting the 20-20-20 rule could save thousands of lives throughout the region, especially in Bali where nearly 1 million people inhabit likely tsunami inundation zones.
158

Provenance response to flat-slab subduction as recorded in detrital zircon signatures from the southern Alaskan forearc basin system

Hedeen, Tyler 01 May 2016 (has links)
Strata in the Cook Inlet forearc basin in south-central Alaska record the effects of tectonic events related to normal subduction and two flat-slab subduction events. Through detrital zircon geochronology we track provenance changes of strata deposited in a forearc basin in conjunction with these different subduction processes. Our data from strata deposited concurrent with normal subduction help to confirm previous provenance models of forearc basins that suggest provenance is sourced primarily from a proximal, coeval arc. However, compared to these models, our data from strata deposited coincident to flat-slab events show markedly different provenance signatures dependent upon: (1) geographic position relative to the flat-slab event; (2) pre-established, or lack thereof, topography; and (3) type of flat-slab event. Detrital zircon signatures of strata deposited in the Cook Inlet after flat-slab subduction of a mid-ocean ridge diversify to include older detritus found in the distal inboard region. This distal signature is then incrementally cut-off in younger strata due to deformation of the upper-plate from progressive insertion of a shallowly subducted oceanic plateau. Detrital zircon signatures for strata associated with each flat-slab event are largely older than depositional age due to the lack of coeval arc activity. Our data may help to improve the ability to recognize other flat-slab events through detrital zircon geochronology. In particular, changes in detrital zircon signatures found in strata deposited during flat-slab subduction of an oceanic plateau correlate well with the exhumation of rocks associated with the propagation of deformation in the over-riding plate due to plate coupling.
159

Subduction rollback, arc formation and back-arc extension

Schellart, Wouter Pieter January 2003 (has links)
Abstract not available
160

Impact de la ride 90°E et du flux crustal Est-Tibétain sur l'évolution récente de la subduction oblique Indo-Birmane. Approche géologique, sismique et géodésique

Maurin, Thomas 30 January 2009 (has links) (PDF)
La frontière tectonique entre les plaques indienne et birmane est principalement décrochante avec une faible composante de raccourcissement. La plaque subduite, le bassin du Bengale, est parcourue par des hétérogénéités crustales majeures acquises lors de son processus de formation et de migration vers le Nord (rides de point chaud, failles transformantes...). La plaque supérieure, la microplaque birmane, délimitée à l'Est par la faille décrochante dextre de Sagaing, est dans la zone d'influence du flux crustal Est-Tibétain. <br />Le long d'une large coupe Terre-Mer depuis le bassin du Bengale jusqu'au Nord de la Birmanie, je me suis intéressé à la géométrie structurale et à la cinématique de la subduction hyper-oblique Indo-Birmane en insistant sur les effets d'éléments perturbateurs (flux et hétérogénéités crustaux). Par une approche pluridisciplinaire combinant des observations géologiques structurales de terrain, des données géophysiques marines et des mesures géodésiques, je présente un modèle d'évolution néogène de la subduction oblique en réponse à ces perturbations. Une étude de la sismicité et quelques mesures paléomagnétiques ont complété ce travail.<br /><br />La ride de 90°E, formée au sein de la croûte océanique du Bengale vers 100Ma, est entrée en collision avec la marge Birmane au Miocène supérieur. Elle a probablement bloqué la subduction dans sa partie méridionale de telle sorte que seule une déformation décrochante dextre le long de son flanc Est est exprimé structuralement. Au Nord de la ride, le prisme externe Indo-Birman est libre de se développer rapidement vers l'Ouest depuis 2Ma à la faveur d'une forte épaisseur de sédiments déposés sur la plaque plongeante (delta du Ganges-Brahmapoutre).<br />Ce prisme Indo-Birman, construit en convergence hyper-oblique, a enregistré un partitionnement de la déformation : les zones internes sont cisaillées sur une direction Nord-Sud et les zones externes sont raccourcies sur une direction Est-Ouest. <br />La faille de Sagaing est défléchie de plus de 100km vers l'Ouest dans sa partie Nord. Je propose un modèle dans lequel le flux crustal résultant de l'effondrement du Tibet, est responsable de cette inflexion. Ce modèle questionne le rôle de ce flux dans la construction du prisme partitionné. Appuyé sur l'ensemble des données géodésiques disponibles autour de la syntaxe Est Himalayenne, il établit un lien entre les déformations finis néogènes de la région.<br /><br />Les données de sismique réflexion ont apporté des contraintes fortes sur la partie marine de la section. Ainsi, la présence de la ride de 90°E et la nature océanique de la croûte du Bengale ont pu être fixées. En revanche, le flux crustal Est-Tibétain reste mal compris. Les données géodésiques permettent d'en approcher la cinématique mais il est nécessaire, pour en connaître la nature, d'y combiner des données géologiques de terrain, qui sont les seuls à permettre l'observation direct de la déformation crustale profonde aujourd'hui exhumée. Ces observations géologiques peuvent aussi apporter des éléments de réponses sur la stabilité du flux au cours du temps. Un travail de modélisation doit encore être mené pour confronter ces idées nouvelles aux propriétés physiques de la lithosphère continentale en cours de déformation.

Page generated in 0.0872 seconds