• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 4
  • 1
  • Tagged with
  • 39
  • 39
  • 16
  • 12
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

On the sorption and diffusion of radionuclides in bentonite clay

Molera Marimon, Mireia January 2002 (has links)
No description available.
32

Interaction of Actinides with the Predominant Indigenous Bacteria in Äspö Aquifer - Interactions of Selected Actinides U(VI), Cm(III), Np(V) and Pu(VI) with Desulfovibrio äspöensis

Bernhard, Gert, Selenska-Pobell, Sonja, Geipel, Gerhard, Rossberg, Andre, Merroun, Mohamed, Moll, Henry, Stumpf, Thorsten January 2005 (has links)
Sulfate-reducing bacteria (SRB) frequently occur in the deep granitic rock aquifers at the Äspö Hard Rock Laboratory (Äspö HRL), Sweden. The new SRB strain Desulfovibrio äspöensis could be iso-lated. The objective of this project was to explore the basic interaction mechanisms of uranium, curium, neptunium and plutonium with cells of D. äspöensis DSM 10631T. The cells of D. äspöensis were successfully cultivated under anaerobic conditions as well in an optimized bicarbonate-buffered mineral medium as on solid medium at 22 °C. To study the interaction of D. äspöensis with the actinides, the cells were grown to the mid-exponential phase (four days). The collected biomass was usually 1.0±0.2 gdry weight/L. The purity of the used bacterial cultures was verified using microscopic techniques and by applying the Amplified Ribosomal DNA Restriction Enzyme Analysis (ARDREA). The interaction experiments with the actinides showed that the cells are able to remove all four actinides from the surrounding solution. The amount of removed actinide and the interaction mechanism varied among the different actinides. The main U(VI) removal occurred after the first 24 h. The contact time, pH and [U(VI)]initial influence the U removal efficiency. The presence of uranium caused a damaging of the cell membranes. TEM revealed an accumulation of U inside the bacterial cell. D. äspöensis are able to form U(IV). A complex interaction mechanism takes place consisting of biosorption, bioreduction and bioaccumulation. Neptunium interacts in a similar way. The experimental findings are indicating a stronger interaction with uranium compared to neptunium. The results obtained with 242Pu indicate the ability of the cells of D. äspöensis to accumulate and to reduce Pu(VI) from a solution containing Pu(VI) and Pu(IV)-polymers. In the case of curium at a much lower metal concentration of 3x10-7 M, a pure biosorption of Cm(III) on the cell envelope forming an inner-sphere surface complex most likely with organic phosphate groups was detected. To summarize, the strength of the interaction of D. äspöensis with the selected actinides at pH 5 and actinide concentrations ≥10 mg/L ([Cm] 0.07 mg/L) follows the pattern: Cm > U > Pu >> Np.
33

Uranium sorption on clay minerals: Laboratory experiments and surface complexation modeling

Bachmaf, Samer 11 November 2010 (has links)
The objective of the work described in this thesis was to understand sorption reactions of uranium occurring at the water-clay mineral interfaces in the presence and absence of arsenic and other inorganic ligands. Uranium(VI) removal by clay minerals is influenced by a large number of factors including: type of clay mineral, pH, ionic strength, partial pressure of CO2, load of the sorbent, total amount of U present, and the presence of arsenate and other inorganic ligands such as sulfate, carbonate, and phosphate. Both sulfate and carbonate reduced uranium sorption onto IBECO bentonite due to the competition between SO42- or CO32- ions and the uranyl ion for sorption sites, or the formation of uranyl-sulfate or uranyl-carbonate complexes. Phosphate is a successful ligand to promote U(VI) removal from the aqueous solution through formation of ternary surface complexes with a surface site of bentonite. In terms of the type of clay mineral used, KGa-1b and KGa-2 kaolinites showed much greater uranium sorption than the other clay minerals (STx-1b, SWy-2, and IBECO montmorillonites) due to more aluminol sites available, which have higher affinity toward uranium than silanol sites. Sorption of uranium on montmorillonites showed a distinct dependency on sodium concentrations because of the effective competition between uranyl and sodium ions, whereas less significant differences in sorption were found for kaolinite. A multisite layer surface complexation model was able to account for U uptake on different clay minerals under a wide range of experimental conditions. The model involved eight surface reactions binding to aluminol and silanol edge sites of montmorillonite and to aluminol and titanol surface sites of kaolinite, respectively. The sorption constants were determined from the experimental data by using the parameter estimation code PEST together with PHREEQC. The PEST- PHREEQC approach indicated an extremely powerful tool compared to FITEQL. In column experiments, U(VI) was also significantly retarded due to adsorptive interaction with the porous media, requiring hundreds of pore volumes to achieve breakthrough. Concerning the U(VI) desorption, columns packed with STx-1b and SWy-2 exhibited irreversible sorption, whereas columns packed with KGa-1b and KGa-2 demonstrated slow, but complete desorption. Furthermore, most phenomena observed in batch experiments were recognized in the column experiments, too. The affinity of uranium to clay minerals was higher than that of arsenate. In systems containing uranium and arsenate, the period required to achieve the breakthrough in all columns was significantly longer when the solution was adjusted to pH 6, due to the formation of the uranyl-arsenate complex. In contrast, when pH was adjusted to 3, competitive sorption for U(VI) and As(V) accelerated the breakthrough for both elements. Finally, experiments without sorbing material conducted for higher concentrations of uranium and arsenic showed no loss of total arsenic and uranium in non-filtered samples. In contrast, significant loss was observed after filtration probably indicating the precipitation of a U/As 1:1 phase.
34

Joint project: Geochemical retention of radionuclides on cement alteration phases (GRaZ) - Subproject B

Schmeide, Katja, Philipp, Thimo, Wolter, Jan-Martin, Kretzschmar, Jérôme, Dullies, Paul, Lippold, Holger, Schymura, Stefan, Stumpf, Thorsten 23 June 2021 (has links)
The report summarizes the results obtained by the Institute of Resource Ecology of the Helmholtz-Zentrum Dresden-Rossendorf within the BMWi-financed Joint Research Project “Geochemical retention of radionuclides on cement alteration phases (GRaZ)”. The project focused on the retention behavior of Ca-bentonite and cementitious material, both constituents of the geo-engineered barrier of deep geological repositories for high-level radioactive waste, towards radionuclides. Specifically, the influence of increased salinities and of hyperalkaline conditions on interaction processes in the system radionuclides – organics – clay/cementitious materials – aquifer was studied. For this purpose, complexation, sorption and desorption studies were performed at alkaline to hyperalkaline pH conditions (pH 8-13) and under variation of the ionic strength (0.1 to 4 M) applying complex solution compositions. For the U(VI) citrate system molecular structures dominating in the pH range 2-9 were studied spectroscopically (NMR, UV-Vis, FT-IR). As dominating species 2:2, 3:3, 3:2 and, above critical concentrations also 6:6 and 9:6 U(VI) citrate complexes were identified or confirmed and complex formation constants were determined. U(VI) sorption on Ca-bentonite at (hyper)alkaline conditions in mixed electrolyte solutions was studied by means of batch sorption experiments. The U(VI) retention on Ca-bentonite was shown to be very effective at pH>10, even in the presence of carbonate and despite the prevalence of anionic aqueous uranyl species. The presence of two independent U(VI) surface complexes on Ca-bentonite at pH 8-13 was shown by site-selective TRLFS and EXAFS spectroscopy. The sorption of anionic uranyl hydroxide complexes to the mineral surface was shown to be mediated by calcium cations. In further experiments, the effect of isosaccharinic acid (ISA) and polycarboxylate ether (PCE) on U(VI) and Eu(III) sorption, respectively, on Ca-bentonite was studied. An effect of ISA on U(VI) sorption on Ca-bentonite only occurs when ISA is present in very high excess to U(VI). The effect of PCE, as a commercial cement superplasticizer, on Eu(III) sorption onto Ca-bentonite was negligible already at moderate ionic strengths. The retention of U(VI) and Cm(III) by various C-(A-)S-H phases, representing different alteration stages of concrete, was studied by batch sorption experiments. Sorbed or incorporated actinide species were identified by TRLFS. The stability of U(VI) and Cm(III) doped C-(A-)S-H phases at high ionic strengths conditions was studied in solutions simulating the contact with North German claystone formation water. Potential changes of actinide speciation as well as formation of secondary phases due to leaching effects were followed spectroscopically. The results of this project show that both bentonite and cementitious material constitute an important retention barrier for actinides under hyperalkaline conditions and increased ionic strength.
35

Adsorption Of Naturally-Occurring Dicarboxylic Acids At The Hematite/Water Interface

Hwang, Yu Sik 14 November 2008 (has links)
No description available.
36

Aqueous Processing of WC-Co Powders

Andersson, Karin M. January 2004 (has links)
The object of this work is to obtain a fundamentalunderstanding of the principal issues concerning the handlingof an aqueous WC-Co powder suspension. The WO3 surface layer on the oxidised tungsten carbidepowder dissolves at pH&gt;3 with the tungsten concentrationincreasing linearly with time. Adding cobalt powder to thetungsten carbide suspension resulted in a significant reductionof the dissolution rate at pH&lt;10. Electrokinetic studiesindicated that the reduced dissolution rate may be related tothe formation of surface complexes; the experiments showed thatCo species in solution adsorb on the oxidised tungsten carbidepowder. The surface forces of oxidised tungsten and cobalt surfaceswere investigated using the atomic force microscope (AFM)colloidal probe technique. The interactions at various ionicstrengths and pH values are well described by DLVO theory. Theadsorption of cobalt ions to tungsten oxide surfaces resultedin an additional non-DLVO force and a reduced absolute value ofthe surface potential. It was shown that the adsorption ofpoly(ethylene imine) (PEI) to the WO3 surfaces induces anelectrosteric repulsion. The properties of spray-dried WC-Co granules were related tothe WC primary particle size, and the poly(ethylene glycol)(PEG) binder and PEI dispersant content in aqueous WC-Cosuspensions. The granule characterisation includes a new methodfor measuring the density of single granules. The increase inthe fracture strength of granules produced from suspensionsthat were stabilised with PEI was related to a more densepacking of the WC-Co particles. The AFM was used to study the friction and adhesion ofsingle spray-dried WC-Co granules containing various amounts ofPEG binder. The adhesion and friction force between two singlegranules (intergranular friction) and between a granule and ahard metal substrate (die-wall friction) have been determinedas a function of relative humidity. The granule-wall frictionincreases with binder content and relative humidity, whereasthe granule-granule friction is essentially independent of therelative humidity and substantially lower than the granule-wallfriction at all PEG contents. Key words:Hard Metal, Cemented Carbide, WC-Co, TungstenCarbide, Cobalt, Oxidation, Dissolution, Surface Complexation,XPS, AFM, Colloidal Probe, Hamaker Constant, Cauchy, WO3,CoOOH, ESCA, Zeta-Potential, Surface Potential, Poly(ethyleneimine), PEI, Suspension, van der Waals, Steric, Spray-Dried,Poly(ethylene glycol), Strength, Density, Friction, Adhesion,Granule, PEG, Pressing, FFM. / <p>QC 20161027</p>
37

Aqueous Processing of WC-Co Powders

Andersson, Karin M. January 2004 (has links)
<p>The object of this work is to obtain a fundamentalunderstanding of the principal issues concerning the handlingof an aqueous WC-Co powder suspension.</p><p>The WO3 surface layer on the oxidised tungsten carbidepowder dissolves at pH>3 with the tungsten concentrationincreasing linearly with time. Adding cobalt powder to thetungsten carbide suspension resulted in a significant reductionof the dissolution rate at pH<10. Electrokinetic studiesindicated that the reduced dissolution rate may be related tothe formation of surface complexes; the experiments showed thatCo species in solution adsorb on the oxidised tungsten carbidepowder.</p><p>The surface forces of oxidised tungsten and cobalt surfaceswere investigated using the atomic force microscope (AFM)colloidal probe technique. The interactions at various ionicstrengths and pH values are well described by DLVO theory. Theadsorption of cobalt ions to tungsten oxide surfaces resultedin an additional non-DLVO force and a reduced absolute value ofthe surface potential. It was shown that the adsorption ofpoly(ethylene imine) (PEI) to the WO3 surfaces induces anelectrosteric repulsion.</p><p>The properties of spray-dried WC-Co granules were related tothe WC primary particle size, and the poly(ethylene glycol)(PEG) binder and PEI dispersant content in aqueous WC-Cosuspensions. The granule characterisation includes a new methodfor measuring the density of single granules. The increase inthe fracture strength of granules produced from suspensionsthat were stabilised with PEI was related to a more densepacking of the WC-Co particles.</p><p>The AFM was used to study the friction and adhesion ofsingle spray-dried WC-Co granules containing various amounts ofPEG binder. The adhesion and friction force between two singlegranules (intergranular friction) and between a granule and ahard metal substrate (die-wall friction) have been determinedas a function of relative humidity. The granule-wall frictionincreases with binder content and relative humidity, whereasthe granule-granule friction is essentially independent of therelative humidity and substantially lower than the granule-wallfriction at all PEG contents.</p><p><b>Key words:</b>Hard Metal, Cemented Carbide, WC-Co, TungstenCarbide, Cobalt, Oxidation, Dissolution, Surface Complexation,XPS, AFM, Colloidal Probe, Hamaker Constant, Cauchy, WO3,CoOOH, ESCA, Zeta-Potential, Surface Potential, Poly(ethyleneimine), PEI, Suspension, van der Waals, Steric, Spray-Dried,Poly(ethylene glycol), Strength, Density, Friction, Adhesion,Granule, PEG, Pressing, FFM.</p>
38

Surface Complexation Modelling of the Adsorption of Cd(II), Cu(II), and Ni(II) to the Roots of Triticum turgidum

Boyle, David 14 January 2013 (has links)
The goal of this study was to characterize the binding sites on the surface of wheat roots, Triticum turgidum, involved in the adsorption of protons and metals, and quantify the thermodynamic constants needed for a surface complexation model to predict metal binding. The adsorption of protons, Cd(II), Cu(II), and Ni(II) to the root surface as a function of pH and ionic strength in single metal exposure scenarios was quantitatively described using potentiometric titrations, batch metal adsorption experiments, and the least squares fitting program FITEQL. Model predictions from single metal exposures were compared to measured metal adsorption concentrations when roots were exposed to binary and ternary combinations of the metals. Proton dissociation was a function of three discrete monoprotic acid sites on the root surface with log proton dissociation constants of -4.50, -6.23, and -7.37 respectively, upon which varied ionic strength had no effect. The total proton binding capacities for the three sites were 2.58 x 10-4, 1.29 x 10-4, and 2.58 x 10-4 M, respectively. Metal complexation was best described by a two-site model having conditional stability constant log values of 3.04 and 3.30 for Cd(II), 3.21 and 3.25 for Cu(II), and 2.83 and 2.84 for Ni(II) at ionic strength 0.01M. At ionic strength 0.1 M the conditional stability constants log values were 2.37 and 3.36 for Cd(II), 3.11 and 2.56 for Cu(II), and 2.18 and 3.00 for Ni(II). When roots were exposed to binary or ternary mixtures of the metals, the two monoprotic acid single metal model did not provide ideal fits to the data indicating that adsorption in a metal mixture scenario cannot be considered additive and is dependent on the combination of metals present in the exposure environment. The experimentally determined proton dissociation constants and metal stability constants could be used in commercial geochemical speciation programs such as Visual MINTEQ to predict metal adsorption to plants. / Natural Sciences and Engineering Research Council of Canada, The Mining Association of Canada, Ontario Power Generation, Environment Canada.
39

Etude thermodynamique de la sorption de l'uranyle sur la monazite et la magnétite / Thermodynamic study of uranyl sorption onto lanthanum monophosphate (LaPO4) and magnetite (Fe3O4)

Felix, Olivia 10 July 2012 (has links)
Les phénomènes d’adsorption interviennent dans les processus géochimiques gouvernant ainsi le transport des contaminants. Par ailleurs, les variations de température sont susceptibles d’influencer significativement leur comportement vis-à-vis de la surface des minéraux. Aussi, l'influence de la température sur la sorption doit être étudiée afin de mieux appréhender le devenir des éléments dans l'environnement. Dans cette optique, l'interaction entre un ion modèle, l'uranyle et deux minéraux a été étudiée. Dans un premier temps, un composé méthodologique, la monazite, a été choisi afin de déterminer la démarche à suivre pour étudier l'influence de la température sur la sorption de l'uranyle dans trois milieux plus ou moins complexants. Puis, des tests préliminaires ont été réalisés pour étudier la sorption de l'uranyle sur un composé d'intérêt industriel, la magnétite, en appliquant la démarche mise en place. Le solide a d'abord été caractérisé d'un point de vue massif puis les caractéristiques acido-basiques de sa mise en suspension dans les trois électrolytes (NaClO4, NaNO3 et Na2SO4) ont été étudiées en fonction de la température. Les constantes d'équilibre associées aux réactions de déprotonation des sites de surface ont été déterminées entre 25°C et 95°C par modélisation de courbes de titrages potentiométriques. Les simulations ont été effectuées en limitant au maximum le nombre de degrés de liberté du système. Le modèle 1-pK a donc été préféré au modèle 2-pK en raison du nombre de paramètres ajustables plus limité dans ce modèle. Des contraintes expérimentales telles que le pH de point de charge nulle ou les enthalpies déterminées par mesure directe des chaleurs associées par microcalorimétrie de mélange ont été imposées pour déterminer les constantes d'équilibre acido-basiques. La sorption de l'uranyle en fonction du pH sur le même intervalle de température a été étudiée en alliant l'acquisition de données macroscopiques telles que les sauts de sorption et la spéciation en solution à une étude structurale menée par analyse par spectrofluorimétrie laser permettant l'identification des espèces sorbées. La simulation des sauts de sorption permettant d'accéder aux constantes associées aux réactions de sorption a été réalisée en imposant les caractéristiques acido-basiques préalablement déterminées. Des mesures directes, par microcalorimétrie de mélange, des chaleurs mises en jeu lors de la sorption de l'uranyle ont permis de tester la validité de la loi de Van't Hoff sur ce phénomène. La même démarche a été suivie pour étudier l'influence de la température sur la sorption de l'uranyle sur la magnétite en milieu NaClO4 et NaNO3. Cependant, l'étude structurale par spectrofluorimétrie laser n'a pu être réalisée en raison de la couloration noire de la magnétite. / The migration of radiotoxic elements in the geosphere is mainly regulated by chemical parameters which control the partitioning of the elements between mineral phases and aqueous solutions. Variation in temperature may affect the retention properties of a mineral surface and requires a careful investigation in order to understand the radionuclides behavior in the geosphere. In this way, the interaction mechanisms between uranium(VI) and two minerals (LaPO4 and Fe3O4) have been studied. In a first step, the monazite (LaPO4) has been chosen as methodological solid in order to clearly define all the different stages needed to completely characterize the influence of temperature on the sorption phenomena. To reach that goal, three media, more or less complexants towards aqueous uranyl and the mineral surface, have been considered. Physico-chemical as well as surface acid-base properties of the solid surface have been studied by considering three electrolytes (NaClO4, NaNO3 and Na2SO4) and temperatures ranged from 25°C to 95°C. The point of zero charge has been found to be identical for perchlorate and nitrate media (pHPZC=2.1) but it was found to be one pK unit higher for the sulfate medium indicating a sorption of the background electrolyte ions. The reaction heats associated to the hydration of the solid have been measured by using microcalorimetry and the nature of the reactive surface sites has been determined by carrying out Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS). On the basis of these experimental constraints, the titration curves obtained for the monazite suspensions were fitted by using the Constant Capacitance Model and the 1-pK model was preferred to characterize the surface charge evolution, due to the limited number of adjustable parameters. The surface protonation constants being determined, the behavior of U(VI) towards the monazite surface in the three electrolytes has been investigated. On the basis of both U(VI) speciation in solution and the results of a structural study carrying out by using TRLFS together with calorimetric measurements, the sorption edges have been modeled and the corresponding sorption constants determined. Since these values take into account a wide number of experimental results (both structural and thermodynamical ones) they appear to be accurate and could be extrapolated more confidently to other physico-chemical conditions. The experimental approach being validated with the methodological solid, preliminary tests have been carried out to study uranyl sorption onto a second substrate, the magnetite, more relevant than monazite in the field of radionuclides migration in the geosphere.

Page generated in 0.0863 seconds