• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 7
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 165
  • 165
  • 45
  • 33
  • 22
  • 20
  • 19
  • 18
  • 18
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Energy analysis for sustainable mega-cities

Phdungsilp, Aumnad January 2006 (has links)
ABSTRACT Cities throughout Asia have experienced unprecedented economic development over the past decades. In many cases this has contributed to their rapid and uncontrolled growth, which has resulted in a multiplicity of problems, including rapid population increase, enhanced environmental pollution, collapsing traffic systems, dysfunctional waste management, and rapid increases in the consumption of energy, water and other resources. The significant energy use in cities is not very well perceived in Asian countries. Although a number of studies into energy consumption across various sectors have been conducted, most are from the national point of view. Energy demand analysis is not considered important at the level of the city. The thesis is focused on the dynamics of energy utilization in Asian mega-cities, and ultimately aims at providing strategies for maximizing the use of renewable energy in large urban systems. The study aims at providing an in-depth understanding of the complex dynamics of energy utilization in urban mega-centers. An initial general analysis is complemented by a detailed study of the current situation and future outlook for the city of Bangkok, Thailand. An integrated approach applied to the study includes identification of the parameters that affect the utilization of energy in mega-cities and a detailed analysis of energy flows and their various subsystems, including commercial, industrial, residential and that of transportation. The study investigates and evaluates the energy models most commonly used for analyzing and simulating energy utilization. Its purpose is to provide a user-friendly tool suitable for decision-makers in developing an energy model for large cities. In addition, a Multi-Criteria Decision-Making (MCDM) process has been developed to assess whether or not the energy systems meet the sustainability criteria. A metabolic approach has been employed to analyze the energy flow and utilization in selected Asian mega-cities, including Bangkok, Beijing, Shanghai, and Tokyo. The approach is applied to measure the majority of indirect energy flows or the energy embodied in the flows of goods and services involving the residents of those cities. Since the function of cities is to serve the lives of the residents, indirect energy consumption could be regarded as being of equal importance as that of direct energy use. The essence of embodied energy is that an indirect reflection upon behavior following direct energy consumption. It can illustrate how a city relies on the outside, for example other cities, countries, etc. and provides some interesting information that cannot be easily drawn from the direct energy demand. The study reveals that the indirect energy demand is more significant than the direct energy demand in Bangkok, Shanghai, and Tokyo, while direct energy demand is greater than the indirect energy demand in Beijing. This can be explained by the fact that Bangkok, Shanghai, and Tokyo have a greater reliance upon the outside in terms of energy demand. The Long-range Energy Alternative Planning (LEAP) system has been selected to perform Bangkok energy modeling. In a Bangkok case study a range of policy interventions are selected and how these would change the energy development in Bangkok by the year 2025 is examined. Different policies can be grouped by the sectors analyzed. The only supply-side policy considered meets an existing target of having 10% of electricity generated from renewable sources. The study period for the model started in 2005 and ends in 2025, with the year 2000 taken as the base year. The proposed scenarios were evaluated using the MCDM approach to rate their sustainability. Team members found that this method provided a methodology to help decision-makers to systematically identify management objectives and priorities. / QC 20101123
112

Energy System Planning, Optimisation & the Impacts of Climate Hazards: the Case-Study of Malmö Municipality in Sweden

Fabris, Julia January 2023 (has links)
Urban areas house most of the global population and are also responsible for large shares of global greenhouse gas emissions. Cities and municipalities thus play a significant role in modern society to achieve an energy transition to renewable energy sources and to adapt to climate change. Achieving such a transition is a difficult process due to the high energy density and complexity of urban multi-energy systems. This is further exacerbated by the adverse effect future climate hazards will likely have on urban infrastructure. Despite this, energy development and climate adaptation plans are often researched and drafted in a disjointed manner. In many instances, future energy strategies do not consider climate impacts, whereas climate adaptation tactics disregard energy production. This study proposed that such mutually exclusive analysis and decision-making increases the vulnerability of planned and optimised future urban energy systems. Investigating the Swedish municipality Malmö, the study focused on achieving a future energy transition in its electricity network and then considering potential climate change impacts. Current urban energy plans and capacity were used to forecast the renewable energy potential for 2030 in Malmö’s geographical area. This formed the basis for modelling an optimised hybrid renewable energy system for the municipality using HOMER Grid. Based on future climate data and Malmö’s climate adaptation plans, this system was then evaluated in terms of impacts from climate hazards. The results indicated that Malmö’s current energy plans would expose a large share of their energy infrastructure to risk of damage from climate hazards. Thus, the vulnerability of the optimised energy system is indeed heightened when disregarding climate change impacts in the planning phase. If climate change and energy transition strategies are developed conjointly, urban energy system resilience could likely be increased significantly.
113

Dirhodium(II,II) Complexes as Electrocatalysts for Sustainable Energy Applications: Tunable Selectivity For H<sup>+</sup> or CO<sub>2</sub> Reduction

Witt, Suzanne Elizabeth January 2017 (has links)
No description available.
114

Material flow analysis of wood fuel in small urban areas : the case of Tsumeb Namibia

Mlunga, Lydia 03 1900 (has links)
Thesis (MPhil)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The current ways in which the human population continues to utilise natural resources in order to satisfy their lifestyle remains unsustainable. One such activity is the use of biomass resources mainly for cooking, heating and boiling water which sustains an estimated 2.4 billion people living in developing countries. Biomass not only is the fourth largest energy source after coal, oil and natural gas, but it is currently the largest renewable energy option and yet it has received minimal attention especially from current energy debates in developing countries. Literature shows cases of cities that remain ‘uncertain’ of their development agendas (regarding energy). The uncertainty is a result of most cities relying heavily on fossil fuel which is in most cases imported which minimises the possibilities of cities to come up with sustainable energy projects. As cities continue to grow the supply of this unsustainable energy puts cities in an uncertain position regarding the future energy sources of their cities. There are cities that have now realised the importance of understanding the flow of wood fuels in order to put in measures that can help manage the resource better. Most of them use a GIS-based tool, Wood fuel Integrated Supply Demand Overview Mapping Model (WISDOM) which was developed to analyse the wood fuel supply and demand spatial patterns. Tsumeb is currently also moving in an ‘uncertain’ direction especially when it comes to the energy needs of the town characterised by high electricity tariffs, increased population leading to clearing of land, high unemployment rate and distorted priorities (of the municipality). The Material Flow Analysis (MFA) of wood fuels in Tsumeb is highly dominated by the informal sector. It remains unregulated and no attempt has been made to determine the household energy flow. This study is the first attempt to determine the flow of this very important household energy resource used more especially in winter. The survey revealed that firewood is used to prepare one to two meals a day especially in the townships where the households opt to consume one meal a day. Some consumers collect their own firewood and often have to purchase wood fuels to meet their individual needs. The wood fuel retailers that were surveyed in the study obtain their wood fuels from local commercial farmers and use charcoal produced both in Namibia and South African. The commercial farmers also form part of the informal sector as they supply some of the informal suppliers and consumers. Some informal suppliers resort to open forests located far from their homes, putting a lot of strain on the transport mechanisms. In order to ensure a sustainable supply of household energy in Tsumeb, It is inevitable that a new paradigm is needed in the current planning and development process of the town. Therefore for an effective implementation of policies aimed at developing wood fuels, local conditions as well as the local wood fuel flows must be understood, grassroots initiatives need to be built and community participation should be encouraged in order to get a collective approach to issues that concerns and threatens their livelihoods. / AFRIKAANSE OPSOMMING: Die wyse waarop die mensdom natuurlike hulpbronne aanwend om aan die eise van hul leefstyl te voldoen, bly onvolhoubaar. Een sodanige aktiwiteit is die gebruik van biomassahulpbronne, hoofsaaklik vir kosvoorbereiding en ruimte- en waterverhitting. Biomassahulpbronne onderhou geraamde 2,4 miljard inwoners van ontwikkelende lande. Dit is nie net die grootste energiebron naas steenkool, olie en aardgas nie, maar is ook tans die belowendste bron van hernubare energie. Tog ontvang dit weinig aandag. Hoewel literatuur steeds merendeels oor gevalle handel wat ‘onseker’ is oor hul ontwikkelingsagendas, is daar tóg diegene wat uiteindelik besef hoe belangrik dit is om die vloei van houtbrandstof te begryp ten einde maatreëls te tref om dié hulpbron beter te bestuur. Die meeste van hierdie lande gebruik GIS-gebaseerde instrument, naamlik die WISDOM-model (“Wood-fuel Integrated Supply Demand Overview Mapping”), wat ontwikkel is om die ruimtelike patrone van houtbrandstofvraag en -aanbod te ontleed. Die Namibiese stad Tsumeb is een van die ‘onsekeres’, veral wat sy energiebehoeftes betref, en word gekenmerk deur hoë elektrisiteitstariewe, groeiende bevolking wat al hoe meer ontbossing tot gevolg het, hoë werkloosheidsyfers en verwronge prioriteite. Die materiaalvloeiontleding wat in hierdie studie met betrekking tot die houtbrandstof in Tsumeb onderneem is, word in groot mate deur die informele sektor oorheers. Hoewel die gebruik van houtbrandstof steeds ongereguleerd is, is geen poging tot dusver aangewend om die vloei van dié uiters belangrike huishoudelike energiebron, wat veral in die wintermaande gebruik word, te bepaal nie. Die opname het getoon dat brandhout gebruik word om een tot twee maaltye per dag te berei, veral in die townships waar die huishoudings meestal een keer per dag eet. Party verbruikers maak hulle eie brandhout bymekaar, maar moet steeds bykomende hout koop om in ál hulle behoeftes te voorsien. Die houtbrandstofhandelaars wat aan die opname deelgeneem het, bekom hul houtbrandstof van plaaslike kommersiële boere en van Namibiese sowel as Suid-Afrikaanse houtskoolverskaffers. Die kommersiële boere maak ook deel uit van die informele sektor, aangesien hulle sommige informele verskaffers en verbruikers van brandstof voorsien. Van die informele verskaffers wend hulle tot die plaaslike oop woud wat ver van hulle huise geleë is, en plaas sodoende heelwat druk op vervoerstelsels. Die enigste manier waarop Tsumeb sy huidige energie-onsekerheid te bowe kan kom, is deur nuwe benadering tot houtbrandstof in te stel. Om beleid met betrekking tot die ontwikkeling van houtbrandstof doeltreffend toe te pas, moet plaaslike omstandighede sowel Die enigste manier waarop Tsumeb sy huidige energie-onsekerheid te bowe kan kom, is deur nuwe benadering tot houtbrandstof in te stel. Om beleid met betrekking tot die ontwikkeling van houtbrandstof doeltreffend toe te pas, moet plaaslike omstandighede sowelDie enigste manier waarop Tsumeb sy huidige energie-onsekerheid te bowe kan kom, is deur nuwe benadering tot houtbrandstof in te stel. Om beleid met betrekking tot die ontwikkeling van houtbrandstof doeltreffend toe te pas, moet plaaslike omstandighede sowel Die enigste manier waarop Tsumeb sy huidige energie-onsekerheid te bowe kan kom, is deur nuwe benadering tot houtbrandstof in te stel. Om beleid met betrekking tot die ontwikkeling van houtbrandstof doeltreffend toe te pas, moet plaaslike omstandighede sowel as die plaaslike vloei van houtbrandstof dus beter begryp word; moet inisiatiewe op voetsoolvlak tot stand gebring word, en moet gemeenskapsdeelname aangemoedig word. Sodoende sal die mense van Tsumeb – huishoudings, owerhede én ondernemings – gesamentlik kan reageer op kwessies wat hul bestaan beïnvloed en bedreig.
115

Waste-to-Energy in Kutai Kartanegara, Indonesia : A Pre-feasibility study on suitable Waste-to-Energy techniques in the Kutai Kartanegara region

Torstensson, Johan, Gezelius, Jon January 2015 (has links)
The thesis outlined in this report is a pre-feasibility study of the potential to use waste-to-energy technology in the region Kutai Kartanegara, Borneo, Indonesia. The project is a collaboration between the Kutai Kartanegara government, Uppsala University, the Swedish University of Agricultural sciences and the technology consulttancy Sweco. The current waste management system in Kutai Kartanegara consists of landfills in the cities and open burnings and dumping in the lesser developed sub-districts. This is a growing problem both environmentally and logistically. The electrification in the sub-districts is sometimes as low as 17 % and access to electricity is often limited to a couple of hours per day. The current electricity production in the region is mainly from fossil fuels. Data was collected during a two month long field study in Tenggarong, the capital of Kutai Kartanegara. From the collected data, various waste-to-energy systems and collection areas were simulated in Matlab. Results from the simulations show that a system using both a waste incineration and biogas plant would be the best solution for the region. The chosen system is designed to handle a total of 250,000 tons of waste annually, collected from Tenggarong and neighbouring districts. The system will provide between 155 and 200 GWh electricity and between 207 and 314 GWh of excess heat energy annually. Some of this is used in a district heating system with an absorption-cooling machine. The system investment cost is around 42.5 MUSD and it is expected to generate an annual profit of 16 MUSD. The recommended solution will decrease the emissions of CO2-equivalents compared to the current waste system and fossil electricity production with 50%. The results in the study clearly show that there are both economic and environmental potential for waste-to-energy technologies in the region. But the waste management and infrastructure has to be improved to be able to utilize these technologies. By implementing waste-to-energy technologies, the supplied waste can be seen as a resource instead of a problem. This would give incentives for further actions and investments regarding waste management.
116

The Role of Leadership in Adoption of Waste-to-Energy (WtE) in Nigeria

Moghadam, Jahan 26 April 2017 (has links)
The use of Renewable Energy (RE) has considerably increased in the last several years. Innovative forms of sustainable alternative energy production, such as solar and wind, have now become recognized energy sources. Following suit, this paper has reviewed Waste-to-Energy (WtE), an innovative and evolving form of RE, and its possible adoption in Nigeria to address both the energy crisis and the pollution problem. The theoretical framework of this paper utilizes the genesis of Fishbein and Ajzen’s (1975) theory of reasoned action (TRA), expanding on renewable energy studies using TRA such as Bang, Ellinger, Hadimarcou, and Traichal (2000) Mishra, Akman, & Mishra (2014), and the leadership-led change framework (Andrews, McConnell, & Wescott, 2010) in order to explain leaders’ behavior to adopt WtE in Nigeria. Four factors act as antecedents to the formation of attitudes and subjective norms about WtE, which then impact intentions to adopt WtE. Intentions then become a predictor of behavior for adopting WtE in Nigeria as a solution for energy and pollution issues. Combining these two theoretical frameworks allows us to study leader’s behavioral intentions and the behavior to adopt WtE in Nigeria. Leadership-led change was examined as a moderator in the relationship between intention and behavior to adopt WtE in Nigeria. Results showed that leadership-led construct did not have a statistically significant moderating effect. This led to a post-hoc analysis of leadership-led as a mediator, which showed leadership-led had a partial statistically significant mediating effect between leaders’ attitudes and intention to adopt WtE.
117

Desenvolvimento de um reator de hidrogênio, por meio da reação entre alumínio e água, para alimentação de uma célula combustível / Developing a reactor hydrogen, through the reaction between aluminium and water, for feeding a fuel cell

Cassanelli, Luís Guilherme Trovó 01 July 2016 (has links)
Com a crescente busca por energia sustentável os países do mundo lutam para dominar tecnologias cada vez mais novas nesse mercado competitivo. Nesse âmbito a geração distribuída tem alavancado a maioria das novas pesquisas para geração ou cogeração de energia elétrica. Neste trabalho são propostos dois reatores de hidrogênio para operação de células combustíveis. A geração de hidrogênio de ambos os reatores ocorrerá por meio da reação entre água e alumínio assistido por hidróxido de sódio. Estudaram-se diversas variáveis acerca desta reação, sobretudo, a influência da temperatura e a concentração de hidróxido de sódio. Houve uma investigação dos aspectos sustentáveis do reator, evidenciando a importância industrial do resíduo do reator e a sua não degradação ambiental, bem como a possibilidade do uso de latas de alumínio vazias para a produção de hidrogênio para utilização em um PEMFC. / With the growing search for sustainable energy countries around the world struggle to dominate more and more new technologies in this competitive market. In this context distributed generation has leveraged most new research to generation or cogeneration of electricity. This paper proposes two reactors hydrogen fuel cell operation. The hydrogen generation from both reactors occurs by reaction between water and aluminium assisted by sodium hydroxide. They were studied on different variables of this reaction mainly the influence of the temperature and the concentration of sodium hydroxide. There was an investigation of sustainable aspects of the reactor, indicating the importance of the industrial reactor and its non-residue environmental degradation, as well as the possible use of empty aluminium cans for producing hydrogen for use in a PEMFC.
118

Life cycle sustainability assessment of shale gas in the UK

Cooper, Jasmin January 2017 (has links)
This research assesses the impacts of developing shale gas in the UK, with the focus of determining whether or not it is possible to develop it sustainably and how it could affect the electricity and gas mix. There is much uncertainty on the impacts of developing shale gas in the UK, as the country is currently in the early stages of exploration drilling and the majority of studies which have been carried out to analyse the effects of shale gas development have been US specific. To address these questions, the environmental, economic and social sustainability have been assessed and the results integrated to evaluate the overall sustainability. The impacts of shale gas electricity have been assessed so that it can be compared with other electricity generation technologies (coal, nuclear, renewables etc.), to ascertain its impacts on the UK electricity mix. Life cycle assessment is used to evaluate the environmental sustainability of shale gas electricity (and other options), while life cycle costing and social sustainability assessment have been used to evaluate the economic and social sustainability. Multi-criteria decision analysis has been used to combine the results of three to evaluate the overall sustainability. The incorporation of shale gas into the UK electricity mix is modelled in two future scenarios for the year 2030. The scenarios compare different levels of shale gas penetration: low and high. The results show that shale gas will have little effect on improving the environmental sustainability and energy security of the UK’s electricity mix, but could help ease energy prices. In comparison with other options, shale gas is not a sustainable option, as it has higher environmental impacts than the non-fossil fuels and conventional gas and liquefied natural gas: 460 g CO2-Eq. is emitted from the shale gas electricity life cycle, while conventional gas emits 420 g CO2-Eq. and wind 12 g CO2-Eq. The power plant and drilling fluid are the main impact hot spots in the life cycle, while hydraulic fracturing contributes a small amount (5%). In addition to this, there are a number of social barriers which need to be addressed, notably: traffic volume and congestion could increase by up to 31%, public support is low and wastewater produced from hydraulic fracturing could put strain on wastewater treatment facilities. However, the results indicate that shale gas is economically viable, as the cost of electricity is cheaper than solar photovoltaic, biomass and hydroelectricity (9.59 p/kWh vs 16.90, 11.90 and 14.40 p/kWh, respectively). The results of this thesis show that there is a trade-off in the impacts, but because of its poor environmental and social ratings shale gas is not the best option for UK electricity. The results also identify areas for improvement which should be targeted, as well as policy recommendations for best practice and regulation if shale gas were to be developed in the UK.
119

EES 2013 - Energy EcoSystems 2013

11 December 2014 (has links) (PDF)
Im Kontext der Energiewende durchlebt die Energiewirtschaft in Deutschland gegenwärtig einen tiefgreifenden Strukturwandel. Der Trend zur Fragmentierung und Dezentralisierung von Marktteilnehmern wird sich in den nächsten Jahren fortsetzen und weiter beschleunigen. Die Komplexität des Energiesystems wird weiter steigen. Gleichzeitig ergeben sich im Zuge dieser Entwicklung für energiewirtschaftliche Akteure (Erzeuger, Verbraucher, Netze, Energiemärkte und IuK-Technologien) vielfältige wirtschaftliche Herausforderungen und Entwicklungsperspektiven. Das Konzept "Ecosystems" eröffnet innovative Perspektiven auf die zu erwartenden energiewirtschaftlichen Entwicklungen. Es strukturiert das komplexe Zusammenspiel der einzelnen Akteure und Teilsysteme mit der Zielsetzung, das Gesamtsystem sicherer, effizienter und umweltverträglicher zu gestalten. Im Fokus der Energy EcoSystems Conference 2013 stehen hierbei vier Betrachtungsebenen – die physikalische Ebene, die IKT-Ebene, die ökonomische Ebene und die soziokulturelle Ebene – sowie deren ebenenübergreifenden Wechselwirkungen. Mit den Sessions "Energy EcoSystems heute und morgen", "Technische Informationsbedarfe im Energy EcoSystem", "Vermarktung und Verbrauch im Energy EcoSystem\\\", \\\"Erneuerbare Energien im Energy EcoSystem", "Innovationen im Energy EcoSystem" und "Quo vadis Energy EcoSystems?" liegen die Schwerpunkte der Konferenz in der Systemintegration von Erneuerbare-Energie-Anlagen, der Flexibilisierung des Verbrauchs auf physikalischer und ökonomischer Ebene, der Standardisierung von Datenformaten und Kommunikationsprotokollen, der Umsetzung steigender informationstechnischer Anforderungen sowie in Ansätzen zur Optimierung des Gesamtsystems. Dieser Tagungsband beinhaltet die wissenschaftlichen Beiträge der Scientific Tracks sowie ausgewählte Präsentationen der Industrie Tracks der Konferenz. Dr. Gerd Arnold, Dr. Stefan Kühne, Johannes Schmidt und Dr. Andrej Werner – das Konferenzkomitee – danken den Teilnehmern für die hochwertigen wissenschaftlichen sowie praxisrelevanten Beiträge und Diskussionen. Weiterhin möchte sich das Konferenzkomitee bei den Projektförderern Sächsische Aufbaubank (SAB), Bundesministerium für Bildung und Forschung (BMBF) sowie Bundesministerium für Wirtschaft und Technologie (BMWi) bedanken, welche durch unterschiedliche Förderprogramme die anstehenden Herausforderungen in der Energiewirtschaft und die Entwicklung hin zu einer erfolgreichen und exportierbaren Energiewende unterstützen. Besonderer Dank gilt den Sponsoren perdata Gesellschaft für Informationsverarbeitung mbH und GETEC net AG, durch deren Unterstützung viele Teilnehmer ihre Ergebnisse und Erkenntnisse auf der EcoSystems Conference 2013 vorstellen konnten. Das Konferenzkomitee dankt auch den Mitgliedern des Organisationskomitees –- Axel Hummel, Stefan Sprick und Robert Wehlitz –- für ihr persönliches Engagement und ihre tatkräftige operative Unterstützung. Weitere Informationen zur Energy EcoSystems Conference 2013 sowie die Folien der ReferentInnen finden Sie unter http://ees2013.infai.org. Alle Informationen zur nächsten Energy EcoSystems Conference werden unter http://ees.infai.org bekannt gegeben.
120

Betriebsführung und Instandhaltung regenerativer Energieanlagen

11 December 2014 (has links) (PDF)
Der vorliegende 38. Band der Reihe "Leipziger Beiträge zur Informatik" fasst die Ergebnisse der Fachtagung "Betriebsführung und Instandhaltung regenerativer Energieanlagen (BIREA)" am 24. und 25. September 2012 in Leipzig zusammen. Die Fachtagung adressierte aktuelle Herausforderungen der Energiewirtschaft im Allgemeinen und der Branche der Erneuerbaren Energien im Speziellen. Der Anteil erneuerbarer Energien am Bruttostromverbrauch wird sich von derzeit ca. 17 % im Jahre 2020 auf 35% verdoppeln und langfristig bis auf 80% steigen. Mit der wachsenden Bedeutung steigen auch die Anforderungen an die regenerative Energiebranche. Dabei stehen im Vordergrund: a) die Versorgungssicherheit und Netzstabilität, b) sinkende Einspeisevergütungen, c) die Betriebsoptimierung regenerativer Energieanlagen, d) die effiziente Instandhaltung regenerativer Energieanlagen, e) die Vernetzung von Energieerzeugern und -verbrauchern zu virtuellen Kraftwerken, f) Verfügbarkeitsgarantien für Energieanlagen sowie Strom- und Ausfallprognosen. Die Fachtagung fokussierte folgende Themen des Betriebs und der Instandhaltung regenerativer Energieanlagen: a) neuartige Dienstleistungen (z. B. Wirkungsgradanalyse, Ertragsprognosen, Ausfallprognosen), b) Standardisierungsprozesse (z. B. RDS-PP, IEC 61850 / IEC 61400-25), c) die IKT-unterstützte Optimierung (z. B. Lebenslaufakte, Betriebsführung, Instandhaltungsplanung).

Page generated in 0.1 seconds